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Robust Pose Control of Robot Manipulators
Using Conformal Geometric Algebra

L. González-Jiménez∗, O. Carbajal-Espinosa, A. Loukianov, and
E. Bayro-Corrochano

Abstract. A controller, based on sliding mode control, is proposed for
the n-link robotic manipulator pose tracking problem. The point pair
(a geometric entity expressed in geometric algebra) is used to repre-
sent position and orientation of the end-effector of a manipulator. This
permits us to express the direct and differential kinematics of the end-
effector of the manipulator in a simple and compact way. For the con-
trol, a sliding mode controller is designed with the following properties:
robustness against perturbations and parameter variations, finite time
convergence, and easy implementation. Finally, the application, of the
proposed controller in a 6 DOF robotic manipulator is presented via
simulation.

Keywords. Serial manipulators, pose control, motors, conformal geome-
tric algebra, sliding modes.

1. Introduction

Accuracy, precision and repeatability are necessary features to ensure a good
performance of industrial robotic manipulators. Because the robotic mani-
pulators are complex and highly nonlinear plants, usually accompanied with
perturbations and parameter variations, a robust nonlinear controller is re-
quired to obtain a desired response of the robotic manipulator. In this work,
we obtain the differential kinematic model for manipulators with n-DOF
using Conformal Geometric Algebra (CGA) and propose a controller based
on sliding modes [1] to obtain robustness and finite time stabilization of
the error variables of the system. Among robust control methodologies for
robotic manipulators, sliding mode control [1, 2] is one of the most effective
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approaches because of its robustness to perturbations and parameter varia-
tions. Also, sliding mode control is obtained from a simple procedure, which
impacts in a low computational cost in a real implementation.

The CGA allows the representation of rigid transformations (rotations,
translations, screw motions and others) and geometric entities (points, lines,
planes, circles, spheres, point pairs, etc) in a simple way. Moreover, the com-
position of several rigid transformations acting over a geometric entity can
be computed as a sequence of geometric products of consecutive motors (the
conformal entity that represents a 3D rigid transformation). This efficient
representation will be exploited to obtain the direct and differential kinema-
tics of robotic manipulators [3, 4, 5, 6, 7].

Using the CGA framework, a sliding mode controller is designed for the
pose tracking problem for a n-manipulator, where the pose of the manipulator
is represented using a single geometric entity: the point pair. The rest of
the work is organized as follows. Section II presents an introduction to the
Conformal Geometric Algebra. The kinematic model for the pose of robotic
manipulators is obtained in section III. The design of the error variables and
sliding mode controller in CGA are defined in section IV. Section V presents
the application of the designed controllers in a robotic manipulator of 6-DOF,
via simulation. Finally, some conclusions are given in section VI.

2. Geometric Algebra

Let Gn denote the geometric algebra of n dimensions, which is a graded
linear space. As well as vector addition and scalar multiplication, Gn has a
non-commutative product that is associative and distributive over addition.
This is called the geometric or Clifford product.

The inner product of two vectors is the standard scalar or dot product,
which produces a scalar. The outer or wedge product of two vectors is a new
quantity, which we call a bivector. We think of a bivector as an oriented area
in the plane containing the vectors a and b, that is formed by sweeping a
along b. Thus, b ∧ a will have the opposite orientation, making the wedge
product anticommutative. The wedge product is immediately generalizable
to higher dimensions. For example, (a ∧ b) ∧ c, a trivector, is interpreted as
the oriented volume formed by sweeping the area a ∧ b along vector c. The
wedge product of k vectors is a k-blade, and such a quantity is said to have
grade k. A multivector (the linear combination of objects of different grades)
is a homogeneous k-vector if it contains terms of only a single grade k.

In this paper we will specify the geometric algebra Gn of the n dimen-
sional space by Gp,q,r, where p, q, and r stand for the number of basis vectors
that square to 1, -1, and 0, respectively, and fulfill n = p+ q + r. We will use
ei to denote the i − th basis vector, where 1 ≤ i ≤ n. In geometric algebra,
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Gp,q,r, the geometric product of two basis vectors, is defined as

eiej =

⎧⎪⎪⎨⎪⎪⎩
1 for i = j ∈ 1, . . . , p
−1 for i = j ∈ p+ 1, . . . , p+ q
0 for i = j ∈ p+ q + 1, . . . , p+ q + r

ei ∧ ej for i �= j.

This leads to a basis for the entire algebra

{1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, . . . , {e1 ∧ e2 ∧ . . . ∧ en}. (2.1)

Any multivector can be expressed in terms of this basis. The multivectors
can be of grade 0 (scalars), grade 1 (vectors), grade 2 (bivectors), grade 3
(trivectors), etc., up to grade n (n-vectors).

Any pair of multivectors can be multiplied using the geometric pro-
duct. Consider two k-vectors Ar and Bs of grades r and s, respectively. The
geometric product of these multivectors can be written as

ArBs = 〈AB〉r+s + 〈AB〉r+s−2 + ... + 〈AB〉|r−s|, (2.2)

where 〈〉t is used to denote the t-grade part of multivector, e.g. consider the
geometric product of two vectors

ab = 〈ab〉0 + 〈ab〉2 = a · b + a ∧ b.

2.1. Conformal Geometric Algebra

Geometric algebra G4,1 = G4,1,0 can be used to treat conformal geometry
in a very elegant way. To see how this is possible, we follow the same for-
mulation presented in [6] and show how the Euclidean vector space R

3 is
represented in R

4,1. This space has an orthonormal vector basis given by
{ei} and eij = ei ∧ ej are bivectorial bases and the bivector basis e23, e31
and e12 that corresponds together with 1 to Hamilton’s quaternions.

The unit Euclidean pseudo-scalar Ie = e1 ∧ e2 ∧ e3, the bivector or
Minkowski plane E := e4 ∧ e5 = e4e5 and a pseudo-scalar I = IeE are used
for computing Euclidean and conformal duals of multivectors. For more about
conformal geometric algebra see [5, 6].

2.1.1. The Point. The vector xe ∈ R
3 representing a point after a conformal

mapping is rewritten as

xc = xe +
1
2
x2
ee∞ + e0, (2.3)

where the null vectors are the point at infinity e∞ = e4 + e5 and the origin
point e0 = 1

2 (e4 − e5), with the properties e2∞ = e20 = 0 and e∞ · e0=1.

2.1.2. Lines. Lines can be defined in its dual form or OPNS (Outer Product
Null Space), by the wedge product of two conformal points and the point at
infinity as

L∗ = xc1 ∧ xc2 ∧ e∞. (2.4)
The standard IPNS (Inner Product Null Space) form of the line can be

expressed as
L = nIe − e∞mIe, (2.5)
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where n and m stand for the line orientation and moment, respectively. The
line in the IPNS standard form is a bivector representing the six Plücker
coordinates.

2.1.3. Point Pair. The point pair is represented as

P ∗p = p1 ∧ p2 (2.6)

and is obtained using the wedge product of the two points that define the
point pair, p1 and p2. It can be obtained as the intersection of a line and a
sphere, a line and a circle or a circle and a sphere. We can retrieve the points
that compose the point pair using

p1,2 =
P ∗p ± (

P ∗p · P ∗p
)1/2

−e∞ · P ∗p
. (2.7)

These entities are useful to represent the parts of a robotic manipulator;
for example, the line is used to express the joint axes of each D.O.F. of the
robot and the point pair to model the end-effector of the manipulator.

2.2. Rigid Transformations

We can express rigid transformations in conformal geometry carrying out
plane reflections.

2.2.1. Reflection. The combination of reflections of conformal geometric en-
tities enables us to form other transformations. The reflection of a point x
with respect to the plane π is equal to x minus twice the directed distance
between the point and plane. That is, ref(x) = x− 2(π · x)π−1. We get this
expression by using the reflection ref(xc) = −πxcπ

−1 and the property of
Clifford product of vectors 2(b · a) = ab + ba.

For an IPNS geometric entity Q, the reflection with respect to the plane
π is given as

Q′ = πQπ−1. (2.8)

2.2.2. Reversion. The reversion of an r-grade multivector Ar =
∑r

i=0 〈Ar〉i
is defined as:

Ãr =
r∑

i=0

(−1)
i(i−1)

2 〈Ar〉i . (2.9)

The reversion can also be obtained by reversing the order of basis vectors
making up the blades in a multivector and then rearranging them in their
original order using the anticommutativity of the Clifford product [5].
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2.2.3. Translation. The translation of conformal geometric entities can be
done by carrying out two reflections in parallel planes π1 and π2. That is,

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q(π−1
1 π−1

2 )︸ ︷︷ ︸
˜Ta

, (2.10)

Ta = (n+ de∞)n = 1 +
1

2
ae∞ = e

a
2
e∞ , (2.11)

with a = 2dn, where n is the normal of both planes and d is the Hesse
distance from the origin to the plane.

2.2.4. Rotation. The rotation is the product of two reflections at nonparallel
planes that pass through the origin:

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q(π−1
1 π−1

2 )︸ ︷︷ ︸
˜Rθ

, (2.12)

or by computing the Clifford product of the normals of the planes:

Rθ = n2n1 = cos(
θ

2
)− sin(

θ

2
)l = e−

θ
2
l, (2.13)

with l = n2 ∧ n1, and θ twice the angle between the planes π2 and π1.
The screw motion, called motor, related to an arbitrary axis L is

Mθ = TRT̃ (2.14)

and is applied in the same way as a rotor; that is,

Q′ = (TRT̃ )︸ ︷︷ ︸
Mθ

Q(TR̃T̃ )︸ ︷︷ ︸
˜Mθ

, (2.15)

Mθ = TRT̃ = cos(
θ

2
)− sin(

θ

2
)L = e−

θ
2
L, (2.16)

where L is an arbitrary axis defined by a normalized line.

3. Kinematic Modeling Of Manipulators

The direct kinematics of a manipulator consists of calculating the position
and orientation of the end-effector of a serial robot using the values of the
joint variables. The joint variable is a translation Mi = Ti = exp−dne∞ for a
prismatic joint and a rotation Mi = Ri = exp

−θLr
2 for a revolute joint, see

Figure 1.

The direct kinematics for a serial robot is computed as a successive multipli-
cation of motors given by

Q′ = M1 · · ·MnQM̃n · · · M̃1 =

(
n∏

i=1

MiQ

n∏
i=1

M̃i=n−i+1

)
. (3.1)

This equation is valid for points (i.e., the position of the end-effector),
lines (i.e., the orientation of the end-effector), planes, circles, pair of points
and spheres.
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Figure 1. The revolute joint has an axis L and an angle θ of
rotation (Left). The prismatic joint produces a displacement
along the direction and magnitude of d (Right).

If we define the initial pose of the end-effector for an n-manipulator
as the point pair P ∗p = p1 ∧ p2 where the orientation of the end-effector is
defined from p1 to p2 and the current position of the end-effector is given
by p2. Then we can obtain its current pose P ′p using the direct kinematics
of the manipulator defined as in (3.1) for a given angular position vector
q = [q1 . . . qn]T and Mi as the motor for the ith joint of the form

P ′p = M1 · · ·MnPpM̃n · · · M̃1. (3.2)

The advantage of this approach is that with only one geometric entity
it can be defined the pose of the manipulator, using a traditional method for
modeling the pose of the robot, like matrices [11], it is needed to define an
homogeneous transformation of the form

T 0
n =

(
R0

n o0n
0 1

)
, (3.3)

where R0
n its a matrix that represent the orientation and o0n is the position of

the end-effector, respectively. Due to the number of entries of the matrix T 0
n

and the number of sums and multiplication necessary to use this matrix, it
looks very attractive using a geometric entity of CGA which encloses all the
information about the pose of the manipulator, to reduce the computational
burden in real time implementations. Figure 2 shows a scheme of the proposed
method to model the end-effector pose.

Differentiation of (3.2) yields

Ṗ ′
p =

n∑
j=1

∂

∂qj

[(
n∏

i=1

Mi

)
Pp

(
n∏

i=1

Mn−i+1

)]
q̇j . (3.4)
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Figure 2. Point Pair modeling the pose of a n-link manipulator

The partial derivative can be expanded (as a product of two functions
of qk ) resulting in

Ṗ ′
p =

n∑
j=1

(
∂

∂qj

[
j∏

i=1

Mi

]
Ψ+Ω

∂

∂qk

[
n∏

i=n−j+1

M̃n−i+1

])
q̇j , (3.5)

where Ψ =
n∏

i=j+1

MiPp

n∏
i=1

M̃n−i+1 and Ω =
n∏

i=1

MiPp

n−j∏
i=1

M̃n−i+1.

A motor is defined as M = e−qL/2, where q is the angle, then the
differential of the motor is Ṁ = − 1

2MLq̇, and for the reversion of a motor

we get ˙̃
M = 1

2ṀLq̇. Thus, we can rewrite the differential of the products of
motors as

∂
∂qk

[
j∏

i=1

Mi

]
= − 1

2

j∏
i=1

MiLj = − 1
2

(
j−1∏
i=1

Mi

)
LjMj ,

∂
∂qk

[
n∏

i=n−j+1

M̃n−i+1

]
= 1

2
M̃jLj

n∏
i=n−j+2

M̃n−i+1.

(3.6)

By substitution of (3.6) in (3.5) we obtain

Ṗ ′
p =

n∑
j=1

(
−1

2

j−1∏
i=1

MiLjMjΨ+
1

2
ΩM̃jLj

j−1∏
i=1

M̃j−i

)
q̇j . (3.7)

Now, using the following property

j−1∏
i=1

M̃j−i

j−1∏
i=1

Mi = 1. (3.8)
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Using Φ =
j−1∏
i=1

M̃j−i

j−1∏
i=1

Mi, equation (3.7) becomes

Ṗ ′
p =

n∑
j=1

(
−1

2

j−1∏
i=1

MiLj [Φ] ζ +
1

2
ω [Φ]Lj

j−1∏
i=1

M̃j−i

)
q̇j , (3.9)

where ζ =
n∏

i=j

MiPp

n∏
i=1

M̃n−i+1 and ω =
n∏

i=1

MiPp

n−j+1∏
i=1

M̃n−i+1, and can be

simplified as

Ṗ ′
p =

n∑
j=1

(
−1

2

[
j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i

]
P

′
p +

1

2
P

′
p

[
j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i

])
q̇j , (3.10)

where from direct kinematics, we know that P
′
p =

n∏
i=1

MiPp

n∏
i=1

M̃n−i+1 and

L′
j =

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i, (3.11)

where Li is the axis for the ith joint in the initial position and L
′
j in the

current position.
Substituting equations (3.11) in (3.10) results in

Ṗ
′
p =

1

2

n∑
j=1

(
P ′

pL
′
j − L′

jP
′
p

)
q̇j . (3.12)

If we define

αj =
1

2

(
P ′
pL

′
j − L′

jP
′
p

)
(3.13)

equation (3.12) can be rewritten as

Ṗp
′
= Jq̇, (3.14)

where q̇ = [q̇1 . . . q̇n] are the angular velocities of each joint, and

J = [α1 . . . αn] (3.15)

which is defined as the differential kinematic of the manipulator. Again, as
in the direct kinematics, our method allows us to calculate the differential
kinematic for the pose of the manipulator with respect to one geometric
entity. It has been demonstrated in [9], that the calculus of the Jacobian
matrix for differential kinematic using the geometric approach decrease the
computational burden. In that paper they rename the jacobian matrix as V
and it is possible to get this matrix in O(Log2(n)) using parallel computing
and n2 threads. Using matrices, we need to calculate one jacobian matrix
for the position Jv of the end-effector and one more for the orientation Jω
[11], which increase the computational burden. For sake of comparison, we
will present the calculus of the jacobian matrix for the linear velocity of the
end-effector for revolute joints.
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The linear velocity of the end-effector is ȯ0n, which is the derivative of
the position o0n (3.3). By the chain rule for differentiation

ȯ0n =

i=1∑
2

∂o0n
∂qi

q̇i. (3.16)

Thus, the i− th column of the jacobian matrix Jv, is given by

Jvi =
∂o0n
∂qi

. (3.17)

Then, taking (3.3), o0n is given by [11]:

o0n = R0
i o

i
n +R0

i−1o
i−1
i + o0i−1. (3.18)

Now, using (3.18) in (3.16), differentiation of o0n, qi = θi, gives

∂

∂θi
o0n =

∂

∂θi

[
R0

i o
i
n +R0

i−1o
i−1
i

]
=

∂

∂θi
R0

i o
i
n +R0

i−1
∂

∂θi
oi−1
i

= θ̇iS(z
0
i−1)R

0
i o

i
n + θ̇iS(z

0
i−1)R

0
i−1o

i−1
i

= θ̇iS(z
0
i−1)

[
R0

i o
i
n +R0

i−1o
i−1
i

]
= θ̇iS(z

0
i−1)(o

0
n − oi−1),

where zi−1 is the axis of rotation of the i−th joint, and S() is a skew−matrix
with the next property, for any vectors a and p belonging to R

3,

S(a)p = a× p,

where a × p is the cross product between the vectors a and p. For a more
detailed development of the above equation and properties of the skew matrix,
please refer to [11].

4. Sliding Mode Controller

In this section, the output tracking problem for the pose of the end-effector
of a manipulator will be solved using the geometric algebra approach and the
sliding mode control method.

Figure 3 shows a general scheme for our case of study, where the current pose,
P ′p, and the reference pose, Pp ref , for the end-effector of a serial manipulator
are depicted. The control objective is to make the end-effector and refer-
ence poses equal by means of reconfiguring the structure of robot kinematics
through the actuators (electrical motors, pistons, valves) of the joints.
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Figure 3. Current pose for the end-effector of a 6-DOF
serial manipulator and the target Pp ref . Each qi, i = 1, . . . , 6
is and angular position

4.1. The pose tracking problem

Defining the following variables

x1 = q, x2 = P ′p,

where q = [q1, q2, . . . , qn]T are the angular position of each joint and adding a
disturbance term λ (due to external perturbations, model uncertainties and
parameter variations), we can obtain a state-space model from (3.14) as

ẋ1 = u, (4.1)
ẋ2 = Ju + λ,

where u = q̇ is the control term and the jacobian matrix J is defined as in
(3.15).

Now, let Pp ref be the reference for the pose of the end-effector expressed
in conformal algebra, and propose the sliding surface for the controller as the
tracking error variable of the form

s = P ′p − Pp ref , (4.2)

which represents the difference between the reference pose and the current
pose of the end-effector, this sliding surface is also a point pair as Figure 4
shows.

We assume that the disturbance term λ is bounded by positive scalar func-
tions as

‖λ‖ < δ1 |s| . (4.3)
Then, the proposed controller is given by

u = −KJ+sign (s) , (4.4)
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Figure 4. Geometric representation of the difference be-
tween P

′
p and Pp ref .

where J+ is the pseudo-inverse matrix of the jacobian matrix J and

K = diag
{

k1, . . . , k6
}

(4.5)

and k1, . . . , k6 are scalars.
The closed loop dynamics for the sliding surface S is given by

ṡ = Ṗp
′ − Ṗpref (4.6)

= Ju− Ṗpref + λ.

The stability conditions for (4.6) are given by

‖K‖ >
∥∥∥Ṗpref

∥∥∥ + ‖λ‖ , (4.7)

which are the standard stability conditions for sliding mode controllers. A
detailed analysis for the aforementioned stability conditions can be found in
[1, 12].

Due to the high frequency of the sliding mode controller, its implemen-
tation in real time becomes difficult. For this reason we will use the following
definition:

Definition 4.1. The sign function can be approximated by the sigmoid func-
tion as shown by the following limit:

lim
ε→∞ sigm (ε, S) = sign (S) . (4.8)

Figure 5 shows the approximation for various of ε, which defines the
slope of the sigmoid function for every S.

The sigmoid function that we used for this work is defined by

sigm (ε, S) = tanh (εS) . (4.9)

Now, we define the difference between the sign function and the sigmoid
function as

Δ (ε, S) = sign (S) − sigm (ε, S) , (4.10)
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Figure 5. Approximation of the sign function using a sig-
moid function for various values of parameter ε.

where Δ (ε, S) is a bounded function by

‖Δ (ε, S)‖2 ≤ ξ, (4.11)

where ξ is a positive constant scalar.
The Δ (ε, S) value can be considered as a new disturbance and is added

to the value of λ. The stability conditions for the controller using the sigmoid
approximation are discussed by González et al in [10].

5. Simulations

The proposed control strategy was applied to the 6-DOF robotic manipula-
tor shown in Figure 6. It is an industrial manipulator with 6 DOF that is
located at the Automatic Control laboratory from the CINVESTAV, campus
Guadalajara, Jalisco. This simulation was made using our own CGA libraries
on Matlab [14] and CLUCalc [13].

The initial values for the rotation axes are given by

L1,0 = e12, L2,0 = e31 + e∞ (−0.15e3 + 0.45e1) ,
L3,0 = e13 + e∞ (−1.02e1 + 0.15e3) , L4,0 = e23 + e∞ (−1.15e2) ,
L5,0 = e13 + e∞ (0.38e3 − 1.15e1) , L6,0 = e12 + e∞ (0.79e2) .

(5.1)

The initial pose of the end-effector is given by

P ∗p = p1 ∧ p2, (5.2)

where
p1 = 0.79e1 + 1.24e3 + 1.09e∞ + e0, p2 = 0.79e1 + 2.24e3 + 2.83e∞ + e0. (5.3)

The point pair reference is defined as

Pp ref = p ∧ pref ,
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Figure 6. Industrial robotic manipulator Adept Six600
(left) and its 6DOF rotation axis (right).

where the Euclidean components for p and pref are given by

pref =
[

6
5 ,

3
10 sin

(
3t + π

2

)
, 3

4 + 3
10 sin (6t)

]T
,

p =
[

2
√
27−5
5
√
3

, − 1√
3

+ 3
10 sin

(
3t + π

2

)
,

√
27−4√
48

+ 3
10 sin (6t)

]T
.

The control parameters for (4.4) used in the simulation were selected manu-
ally

K = diag
{

0.8, 0.8, 0.8, 5, 6, 6
}
.

The six components for the disturbance term used in the simulation can
be appreciated in Figure 7, we use the same perturbation for the joints 3 and
5 and also this is the case for the joints 4 and 6.

Figure 7. Six components of the disturbance term used in simulation.
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The simulation results are presented in the following images. Figures 8 and 9
show the tracking response for the 3 Euclidean components for the orientation
and position of the end-effector, respectively. It can be noted, for both cases,
that the control objective is fulfilled.

Figure 8. Tracking response for the orientation of the end-effector.

Figure 9. Tracking response for the position of the end-effector.
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The orientation and position error variables can be seen in Figures 10
and 11, respectively. Their convergence to a vicinity of zero shows the ro-
bustness of the sliding mode control to external disturbances.

Figure 10. Components of the error variables for the orien-
tation of the end-effector.

Figure 11. Components of the error variables for the posi-
tion of the end-effector.



548 L. González, O. Carbajal, A. Loukianov, and E. Bayro Adv. Appl. Cliff ord Algebras

The angular positions for the 6 joints of the manipulator are shown in
Figures 12 and 13.

Figure 12. Angular positions for the joints 1, 2 and 3 of the manipulator.

Figure 13. Angular positions for the joints 4, 5 and 6 of the manipulator.
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Finally, the smooth control signals (angular velocities) can be seen in
Figures 14 and 15. These are obtained by using a sigmoidal function.

Figure 14. Control signals for the joint 1, 2 and 3 of the manipulator.

Figure 15. Control signals for the joint 4, 5 and 6 of the manipulator.
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In order to compare our results against conventional approaches, we will
show the simulation of the position tracking response of the end-effector and
the control values using a matrices to model the pose of the manipulator and
a standart sliding mode controller. The tracking response for position of the
end-effector is shown in Figure 16.
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Figure 16. Tracking response for the position of the end-
effector using matrices and sliding modes.

and the control laws are shown in the figure (17).
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Figure 17. Control signals of the manipulator using matri-
ces and sliding modes.

As you can see in Figure 16, the presence of chattering in the tracking
is one issue when you use sliding modes control. Using the proposed control
law, we get smooth control signals and good performance in the control of
the pose of the manipulator.
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6. Conclusions

A methodology for modeling and control of robotic manipulators was deve-
loped using the conformal geometric algebra framework. The pose for the
manipulator was defined using a single geometric entity: the point pair. This
is impossible using vector calculus, which shows the potential of the CGA.
Moreover, a robust controller based in sliding mode control was designed for
the tracking problem of the pose of the manipulator, and the simulation re-
sults showed the robustness of the proposed controller. Therefore, it can be
concluded that CGA is a good framework for modeling and robust control of
robotic manipulators.
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