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Introduction 
 

The Discrete-Event Systems (DES), such as mass 
production systems, communicating processes, and digital 
networks, has evolved into highly specialized systems. 
Issues such as fault tolerance, reconfiguration, adaptation 
and control under partial state observation are very 
important whithin this field. Nowadays, many DES are 
controlled by automated systems based on events. The 
design of controllers for DES has been addressed in 
different ways. For example, the works in [1], consider a 
finite automaton (FA) for modeling the system and a 
sublanguage of the FA for representing the specifications. 
The controllability and observability notions there 
presented induce partial order relations that partition the 
automata language into equivalence classes. The approach 
considers that a specification is feasible to control if the 
classes induced by the observability are finer than those 
induced by the controllability. In other works, as in [2], the 
authors translate the same approach presented in [1] to the 
framework of the vector-additive system (VAS). The 
model of the plant is a VAS and a set of linear inequalities 
represent the specifications. The conjunctions of the 
restrictions define the case of multiple specifications on the 
system, which is visualized as a hyper-volume on a hyper-
Cartesian space. The observability notion establishes that if 
two different states produce the same output, then they 
must require the same control action. This is basically the 
same approach as for the FA framework. The Control by 
Monitor Places (CM), as in [3], uses Petri Net (PN) models 
for representing the system. Similarly as in the FA and 
VAS frameworks, a set of linear inequalities defines the 
specifications for the system. These restrictions correspond 
to the maximum number of tokens that a specified set of 
places must retain in any evolution of the PN. The solution 
of the control problem consists on inducing a conservative 
component on the closed-loop system. A proper set of 
places and control arcs attached to the transitions in the net 
allows for the construction of such a conservative 
component on the PN model. Within this framework, in [4] 

the authors propose a PN observer for providing the 
feedback information for the controller. 

This work presents a novel framework for the 
design of controllers and observers for Discrete-Event 
Systems (DES). The framework implements several 
Matlab functions embedded on Simulink models for the 
simulation of a control scheme. The framework mainly 
considers a discrete-event system, observer and controller. 
These elements interact for solving the problem that arises 
when the system state is not completely available for 
feedback. This paper organizes as follows. The next 
section presents the modeling methodology based on Petri 
Nets. Then, the paper introduces the controllability and 
observability notions. After that, the paper presents the 
problem of the control under partial state observation and 
the simulation framework. An illustrative example and 
concluding remarks are at the end of the paper. 

 
Modeling DES with Petri Nets 
 

The framework herein proposed uses Interpreted 
Petri Net (IPN) models. An IPN is a pair (ܳ, ܳ ଴), whereܯ = ,ܩ} ,ߑ ,ߣ ߶}, whose members are: ܩ = (ܰ,  ଴) is aܯ
Petri Net System; ߑ = ,ଵߙ} … , {௥ߙ ∪  is an input {ߝ}
alphabet, every ߙ௜ is an input symbol and ߝ the null input 
symbol; ߣ: ܶ → :߮ ;is a labeling function for transitions ߑ ,ܩ)ܴ (଴ܯ →  ௤ is an output function relating a(ା߄)
marking in R(G,M0) to a vector in (߄ା)௤, where ݍ is the 
number of available outputs; ܯ଴ is the initial marking 
for ܩ. This work considers that the functions ߮ and ߣ are 
linear, allowing their representation as matrixes ߮௤×௠ and ߣ௥×௡, respectively. Roughly speaking, the ݅ −  ℎ rowݐ
vector ߮(݅, : ) represents the places associated to the ݅ −  ℎݐ
output signal, where ݍ and ݉ are the number of output 
signals and the number of places in the net, respectively. 
Similarly, the ݆ − ,݆)ߣ ℎ row vectorݐ : )  represents the 
transitions associated to the ݆ −  ݎ ℎ input symbol, whereݐ
and ݊ are the number of input signals and the number of 
transitions in the net, respectively. By definition of ߮, a 
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place ݌௜ ∈ ܲ is measurable whenever ߮(: , ݅) ≠ 0ሬԦ, 
otherwise non-measurable. These concepts allows for 
defining the observability problem. Similarly, by the 
definition of λ, a transition ݐ௜ ∈ ܶ is manipulable if ߣ(ݐ௝) ≠  otherwise non-manipulable. This allows for ,ߝ
defining the controllability problem. Pictorially, circles 
represent the places in the net and rectangles the 
transitions. Arcs represent the flow functions. Gray-filled 
bars and circles represent non-manipulable transitions and 
non-measurable places, respectively. Capital letters and 
Greek symbols, closed to transitions and places, represent 
the input and output signals, respectively. The IPN state 
equation captures the dynamic behavior of an IPN: 
௞ାଵܯ  = ௞ܯ + ܥ ⋅ →௝ݐ , ௞ାଵݕ = ߮ ⋅   ௞ାଵ. (1)ܯ

Some illustrative surveys in PN theory and related 
topics are in [5] and [2]. 

 
Controllability on IPN 
 

The Linear Constrains defines the specification for 
the system under control, as defined in [2] and [3]. A 
Generalized Linear Constrain (GLC) is an inequality of the 
form ݍ௟௪௥ ≤ ݈ ⋅ ܺ ≤  ௟௪௥ݍ ௨௣௣, where the positive integersݍ
and ݍ௨௣௣ represents lower and upper bounds, respectively. 
The conjunction of GLC’s allows for the representation of 
multiple specifications on a system: 

௟௪௥→ݍ  ≤ ܺܮ ≤ ௨௣௣→ݍ ≔∧௜ୀଵ௡ ൫ݍ௟௪௥௜ ≤ ݈௜ܺ ≤ ௨௣௣௜ݍ ൯. (2)  

In (2), ݍ→௟௪௥ and ݍ→௨௣௣ are vectors and ܮ is a matrix whose 
rows represent single GLR’s. The vector X stands for the 
set of places in the net. From the point of view of an IPN, a 
GLR represents boundaries on the number of tokens that 
places must retain at any evolution of the net. 

A solution for (2) consists on a set of control places 
attached to the transitions that fill or drain tokens on the 
buffers of the system. The closed-loop system is: 

ܦ  = ൥ ܮ−ܥ ⋅ ܮܥ ⋅ ܥ ൩ , ଴஽⌣ܯ = ൦ ௨௣௣→ݍ଴ܯ − ܮ ⋅ ܮ଴ܯ ⋅ ଴ܯ − ௟௪௥→ݍ ൪ . (3)  

In (3), –  defines two conservative ܥܮ and ܥܮ
components in the controlled system that warranties the 
fulfillment of (3). However, the controller requires the 
system state as feedback, which is a problem if some 
sensors in the system are unavailable. 

 
Observability on IPN 
 

There exist several approaches dealing with the 
observability problem in the PN framework as in [3], [7], 
[8], [9] and [10]. This section follows the approach 
presented in [7], specially focusing on the case of State 
Machines (SM). Informally, an IPN (ܳ,  ଴) is observableܯ
if there exists a finite integer ݇ < ∞ such that for every 

evolution of the net, longer than ݇, the information of the 
input and output signals in the net, and the structure of (ܳ,  ݇ ௞. The numerical value ofܯ ଴ and the current markingܯ ଴) suffice to uniquely determine the initial markingܯ
is known as the observability convergence constant 
of (ܳ,  .(଴ܯ

Typically, the verification of this property is a 
difficult work, since it requires the verification of all the 
transition sequences in the net. However, the problem has 
efficient solutions under structural assumptions. The first 
assumption is the Firing-Vector-Detectability, a property 
that allows for reconstructing the Firing Vector of a net. 
The second is the Marking-Detectability, a property that 
allows for the reconstruction of the current marking 
reached by the net. In [7], a theorem shows that the Firing-
Vector-Detectability and the Marking-Detectability implies 
the observability. Moreover, that work also shows that for 
the case of a strongly connected and safe SM, the former 
property implies the later one, and consequently, the 
observability reduces to Firing-Vector-Detectability. 

Finally, the work in [7] proposes a stronger property, 
the Sequence-Detectability, as a way to verify the Firing-
Vector-Detectability. The Sequence-Detectability allows 
for determining the transition sequence executed in a net. 
An intersection of vector spaces provides a sufficient 
condition for the Sequence-Detectability in a safe SM: 

 ݇݁ (ିܥ߮)ݎ ∩ ݇݁ (ାܥ߮)ݎ ∩ (ܾܶ)݊ܽ݌ݏ = 0→. (4)  

Roughly, ݇݁(ିܥ߮) ݎ ∩  represents those (ାܥ߮) ݎ݁݇
transitions in the system that has the same input and output 
sensors. Similarly, ݊ܽ݌ݏ(ܾܶ) represents the Parikh vectors 
of the T-Invariants of the system. Consequently, (4) 
represents the set of T-Invariant of the system that has the 
same output signals. The T-Invariants in a SM may 
execute forever, confusing to each other, which implies 
non-observability. Thus, if the intersection of the vector 
spaces is null, the SM is sequence-detectable, and 
consequently, observable. The intersection of the vector 
spaces in (4) is easily performed by polynomial algorithms. 

 
Control under Partial State Observation 
 

Any observer carries an estimation error during its 
convergence period that may lead to the controller to guide 
the system to a prohibited configuration. There exist 
several techniques to cope with this situation. By the one 
hand, there exist defensive approaches, as in [2], [3] and 
[4], which imply disabling all of the events in the system. 
However, this technique may lead to the control scheme 
into a deadlock condition. On the other hand, there exist 
offensive approaches as in [11], which imply enabling all 
of the events in the system. By using this technique, the 
observer will detect the changes in the system outputs and 
consequently it will produce new estimations for the 
controller. This avoids deadlock conditions in the control 
scheme, but it may cause a violation of the especifications. 
Thus, extra restrictions considering the convergence 
constant of the observer solve this new situation. 

 
 
(2) 
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Fig. 1. Simulation framework 

 

 
Fig. 2. Model for an IPN 

 
As shown in [11], the problem of the control under 

partial state observation has a solution if the system 
satisfies the following conditions: 

a) Every buffer ݌௜ restricted by a GLR ݈௜, is filled in, 
and drained out, by sub-models with structures ܳ௨௣௣ and ܳ௟௪௥. The sub-models are observable 
with constants ݇௨௣௣௜  and ݇௟௪௥௜ , respectively. 

b) The initial marking ܯ଴(݅) for buffer ݌௜ fulfils the 
condition ݍ௟௪௥௜ + ݇௟௪௥௜ ≤ (݅)଴ܯ ≤ ௨௣௣௜ݍ − ݇௨௣௣௜ . 

 Roughly speaking, a) requires the verification of the  
observability of the subsystems that interacts with the 
buffers. The constant ݇௨௣௣௜  in b) defines the clearance that 
buffer ݅ should have to handle the pieces that the controller 
can erroneously put due to false estimations of the 
observer. Similarly, ݇௟௪௥௜  defines the mininum amount of 
pieces on the buffer ݅ to avoid a violation in the lower 
bound due to lack of parts. If the system satisfies these 
conditions, the control scheme solves the problem. 
However, the initial marking of the system is unknown. 
Fortunately, the selection of any marking ܯ଴ such that ߮ ⋅ ଴ܯ = ଴ܻ is suitable for the simulation process. Once ܯ଴ was fixed, the initial marking ܯ଴಴ for the control 
places is defined accordingly to (3). 

 
Simulation Framework 
 

The Fig. 1 depicts the proposed simulation 
framework. The model includes the system, observer and 
controller. The system block provides a restricted set of 
outputs defined by the function ߮. The observer uses the 
system outputs, and the structure of the system, for 
reconstructing the state. The controller uses the estimated 
estate for computing the required control actions. The 
overall goal of the control scheme is to satisfy the 
requirements even though the system state is incomplete. 
The System block implements the IPN state equation (1). It 
uses the current state, which is an internal variable, and the 

control pattern provided by the controller for computing 
the next state. The Fig. 2 depicts a simplified model for the 
system block, which includes sub-blocks for the input and 
output functions, as well as for the net structure. The block 
works as follows. By the one hand, the control pattern 
provided by the controller is a column-selector for the 
input function. That is, given a control pattern, the Input 
Function block provides to the Petri Net the transitions that 
were not disabled by the controller. On the other hand, the 
Output Function works as a filter that hides those states 
that are not accessible at the outside of the net. The 
separation of these functions into sub-blocks provides great 
flexibility, since the simulation of different input and 
output functions is easily performed by defining its 
matrices. Accordingly, this represents different 
arrangements of sensors and actuators on the system. This 
is a fast-prototyping capability of the framework. 

 

 
Fig. 3. Model for multiple observers 

 
The Observer implements the algorithms for the 

construction of observers for IPN’s following the sequence 
of events observed at the outputs of the system, as in [7]. 
The block uses the output of the net and its structure for 
reconstructing those states that are not directly measured 
by sensors. The Fig. 3 shows the model, which may 
include multiple instances of the Observer function. The 
overall block provides an integer vector that represents the 
estimated marking for the system model. For the particular 
framework herein presented, the marking estimations are 
maximal permissive in the sense that if the observer has a 
doubt about whether a place has a token or not, is assumes 
that indeed it has one. This marking estimation policy 
avoids blocking condition that otherwise may arise in the 
control scheme. However, such a policy is easily changed 
to meet the requirements in different control techniques. 

The Controller implements the control policy. The 
framework herein presented uses supervisory controllers 
for guiding the system. Generalized Linear Restrictions 
represents the specification that the system must satisfy. 
These restrictions allows for defining a suitable work 
region for the system. The simulation framework is 
configured to have a discrete solver with fixed step of size 
one. Thus, one event may occur in every block at every 
second during the simulation. 

Roughly speaking, the control scheme evolves as 
follows. The system produces a new output vector each 
time a transition fires. Their block computes its output as a 
multiplication of the current vector state and the matrix of 
the output function. Accordingly, the size of this vector is 
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the number of rows in the output matrix. The observer uses 
this output vector and provides an estimation of the system 
marking. The estimation is also given as a vector, which is 
generally a vector of bigger size than the system output. 
The block computes the estimations based on a technique 
presented in [7]. Accordingly to the observer policy, the 
marking of the system is generally overestimated until it 
converges to the real system state. This convergence 
occurs in at most the number of events in the observability 
convergence constant of the system. The supervisory 
controller uses the estimations produced by the observer 

and computes a control pattern that is a column vector 
which size is the number of rows in the input matrix. The 
last position of this vector is always one because it 
represents the null input symbol and, accordingly, the 
controller is unable to avoid it. This block simulates the 
firing of all the enabled transitions at the given estimated 
state. Then, it disables the firing of any manipulable 
transition whose firing violates the specification by 
avoiding its input symbol in the control pattern, closing the 
cycle of the control scheme. 

 

 
Fig. 4. Application example 

 
As expected, the overall goal of the control scheme 

is to keep the specifications even when some fails in 
sensors measuring the system state occurred. As 
mentioned, this is accomplished by introducing new 
restrictions to the system buffers. The new restrictions 
allow for the observer to completely reconstruct the system 
state while avoiding a violation to the restrictions. Due to 
the overestimating policy used by the Observer, the system 
usually evolves freely during the convergence period of the 
observer. However, the additional restrictions warranty the 
fulfillment of the requirements. In this way, the blocks in 
the scheme evolve together for solving the problem of the 
control under partial state observation. 

 
Application Example 

 
The following example illustrates the IPN model for 

a production system. Similarly, it is possible to obtain 
models for communicating processes, queue systems, and 
other systems based on events. 

The Fig. 4 depicts a system with two sections. The 
places from ݌ଵଵ to ݌ଵ଴ଵ  and transitions from ݐଵଵ to ݐଵଶଵ  
represents the Section 1. Similarly, the places from ݌ଵସ to ݌଻ସ and transitions from ݐଵସ to ݐସ଼ represents the Section 2. 

The buffers ݌ଵଶ and ݌ଵଷ couple together both sections. The 
robots ܴଵ and ܴଶ, at the center of each section, move the 
raw material and semi-finished pieces among the lines. In 
Section 1, the production system processes the raw 
material from non-depleting inventory. The Line 1 may 
produce one semi-finished part Type Y by every loop at ݌ଵଵ 
and ݌ଶଵ. Finally, the line produces one part Type X. The 
Line 2 produces one semi-finished piece of each type. In 
Section 2, the system further post-processes the semi-
finished pieces Type X and Type Y for producing final 
product. The sensors for Section 1 and Section 2 are {ܣଵଵ, ,ଵଵܤ ,ଵଵܥ ,ଵଶܣ} ଵଵ} andܦ ,ଵଶܤ ,ଵଶܥ  ଵଶ}, respectively. Theseܦ
provide the output information for the observer. The input 
commands for Section 1 and Section 2 are {ߙଵଵ, ,ଶଵߙ ,ଷଵߙ ,ସଵߙ ,ଵଶߙ} and {ߝ ,ଶଶߙ ,ଷଶߙ ,ସଶߙ  .respectively ,{ߝ
These allow the controller to guide the system evolution. 

Due to restrictions on the system performance, the 
controller must hold the levels of buffers ݌ଵଶ and ݌ଵଷ 
between the bounds ݍ௨௣௣ଶ  and ݍ௟௪௥ଶ , and ݍ௨௣௣ଷ  and ݍ௟௪௥ଷ , 
respectively. Then the GLR of the required behavior is: 

௟௪௥ଶݍ  ≤ ଵଶ݌ ≤ ௨௣௣ଶݍ ⋀ ௟௪௥ଷݍ ≤ ଵଷ݌ ≤ ௨௣௣ଷݍ . (5)  

The Fig. 4 shows the control structure as dot-dashed places 
and control arcs accordingly to (3). The control places stop 
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the firing of the transitions that otherwise may violate the 
buffer bounds. The initial load and the required bounds on 
the buffers define the initial marking for the control places, 
as remarked by inequalities shown at the top and bottom in 
the Fig. 5. The intersection of the restrictions in (5) defines 
a closed region depicted as a big rectangle in Fig. 5. The 
objective of the controller is to maintain the system state 
within that region. 
 

 
Fig. 5. Specification for system buffers 
 

The simulated scenario considers that multiple 
sensors in the system failed. The gray-filled places in Fig. 
4 represent the faulty sensors. In the Section 1, five sensors 
failed, while in Section 2, three sensors failed. At the time 

that the sensors failed, the workflow of the Section 1 was 
at the place ݌଻ଵ, while the workflow at the Section 2 was at 
place ݌ଶସ. However, the controller is unable to know that. 
In order to avoid the violation of the restrictions imposed 
to the buffer, a set of additional conditions must meet. The 
new conditions has to consider the observability 
convergence constant of the observers of the different 
sections on the system. In the Fig. 5, the constant ݇௨௣௣ଶ  
inside the big rectangle defines the clearance that buffer ݌ଵଶ 
should have to handle the pieces Type X that the controller 
erroneously can place due to false estimations. Similarly, 
the constant ݇௟௪௥ଶ  defines the mininum amount of pieces of 
Type X that the buffer must have in order to avoid a 
violation in the lower bound due to lack of parts. 
Simmetricaly, the constants ݇௨௣௣ଷ  and ݇௟௪௥ଷ  represent the 
additional restriction for buffer of pieces Type Y. If the 
initial state of the system is inside the inner rectangle of 
Fig. 5, then the scheme solves the problem of the control 
under partial state observation. The Fig. 6 shows the buffer 
levels during a simulation in the framework for the case of 
the restrictions 3 ≤ ଵଶ݌ ≤ 10 and 3 ≤ ଵଷ݌ ≤ 10 . The initial 
load of pieces Type X and Y on the buffers is ܯ௑ = 6 and ܯ௒ = 6. The observability convergence constants for the 
IPN representing Section 1 and Section 2 are three and 
one, respectively. Consequently there exist initial markings 
that solve the control problem within the control scheme.

 

 
a) 

 
b) 

 
c) 

Fig. 6. Buffer levels and observer error 
 

The Fig. 6 shows that the observer estimations carry an error during a short period at the beginning of the 
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simulation. However, buffer levels fulfill the restrictions 
imposed by the GLR as shown. Notice that the level of the 
buffers for pieces Type X and Type Y remain between the 
required levels even during the converges period of the 
observer. This confirms that the current observability 
convergence constants work for the required GLR and for 
the initial amount of pieces on the buffer. The framework 
allows for several simulations of faulty sensors providing 
useful information to cope with the most common 
scenarios in the real world. 

By using the proposed framework, the designer in 
charge of the construction of controllers and observers for 
a given system, can obtain useful information. 
Additionally, the proposed framework allows for 
visualizing the effect of the tuned parameters on the 
buffers. 

 
Conclusions 

 
This paper presented a novel framework for the 

design of controllers and observers for discrete-event 
systems based on simulations. The framework considers 
three entities, the system, the controller and the observer 
interacting among them. This allows simulating the 
different parts of the solution for the problem of the control 
under partial state observation. The framework implements 
Matlab functions embedded into Simulink models for 
representing these important entities. The framework uses 
a fixed-step discrete-event solver for the simulations. 
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 Apžvelgta nauja sistema, skirta projektavimo priežiūros ir kontrolės diskretiesiems įvykiams stebėti. Sistema nusakoma kaip diskretinių 
įvykių stebėjimo sistema, diskretinių įvykių valdiklis ir diskretinių įvykių stebėsena. Kontrolės schema įgyvendinama taikant „Matlab“ 
funkcijas. „Simulink“ modeliai naudoja modeliavimo funkcijas grįžtamajam ryšiui kaip galima labiau kontroliuojant ir stebėti. Modeliavimo 
metu gauti grafikai leidžia inžinieriams koreguoti svarbius sistemos parametrus. Il. 6, bibl. 14 (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 
 


