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Abstract— State-feedback Supervisory Controllers for Dis-
crete Event Systems are synthesized. A state Observer pro-
viding the feedback information is integrated to the control
scheme. Petri Nets models are used for modeling the sys-
tem, the controller and the observer. The required behavior
of the system is specified as Linear Constrains. The pro-
posed technique allows the construction of controllers for
systems with partial state observation. An application ex-
ample is provided.
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I. INTRODUCTION

The design of controllers for Discrete Event Systems
(DES) has been addressed in different ways. In Supervisory
Control Theory (SCT) [4],[7], the problem of supervising a
plant, modeled as a finite automata or as a vector-additive
system, has been introduced. In case of a finite automata,
the specifications are represented as a sublanguage of the
automata modeling the plant. In vector-additive systems,
specifications are represented as linear inequalities. How-
ever, these approaches do not consider a state observer in
their control scheme reducing the usability of the technique.

In Petri Net (PN) control techniques [8], systems and
their specifications are modeled as PN’s. Nevertheless,
these approaches assume that every state variable is mea-
surable. Consequently, the cases where the system state is
realistically partially observed are not considered.

In Control by Monitor Places (CM) [6], the system is
also modeled as a PN. However, the specifications are rep-
resented as a linear inequality, similar to [4]. Unfortunately,
as occurs in [4], the feedback information came exclusively
from the system outputs.

In this paper, the problem of controlling a DES using
a state-feedback supervisory controller is presented. The
plant, the closed-loop system and the state observer are
modeled as PN’s. The technique is a generalization of that
one presented in [6] but this approach considers upper and
lower bounds for the state variables. Additionally, the cases
when not all the system variables are measured is con-
sidered. An state observer is used for reconstruction the
missing information. The proposed technique ensures the
fulfillment of the specifications, even during the transitory
period of the observer.

This paper is organized as follows. Section II reviews
PN notation and concepts used in this article. Section
III introduces the SCT techniques from the PN point of
view. Section IV presents Observability concepts within

the PN framework. Finally, section V provides a technique
for controlling a plant where the controller uses the esti-
mations produced by an observer as feedback information.
An application example illustrates the techniques. Finally,
section VI provides conclusions.

II. PETRI NETS

The PN framework is suitable for the modeling and con-
trol of DES. An illustrative PN survey is presented in [2].
This work uses Interpreted Petri Nets (IPN) an extension
to the Petri Net models [5].

Definition 1: An Interpreted Petri Net IPN is a 4-tuple
(N,%, A, ) where: N = (Q, M) is a PN system, where
Q is a PN structure and Mj is the intial marking; & =
{ou,09,...,a,} is the input alphabet, where each «; is an
input symbol; A : T — T U {e} is a transition labeling
function, where the symbol & usually represents internal
events in a DES; ¢ : R(Q, M) — {Z*}" is an output
function that associates each marking in R(Q, M) to an
output vector of dimension g, where ¢ is the number of
system outputs and Z* represents the set of non-negative
integers.

When a transition t; fires in a marking M; reaching

M.y, denoted My ey M1, is computed as:

Miyr =My +C &, yr =10 My 1)

where C and f;, are the incidence matrix of (@, Mp) and the
Parikh vector of ¢y, respectively. The vector ;. € (Z+)? is
the k — th output vector of the IPN.

Accordingly to function A, if A(¢;) # ¢, then #; is said to
be a manipulated transition; otherwise non-manipulated.
Pictorially, non-manipulated transitions are gray filled.
The submatrix formed by the columns in C' correspond-
ing to non-manipulated transitions is denoted by Qnm.

Definition 2: A firing transition sequence is a sequence

0 = titj..t...t;, such that My — M Ly AT
My..M; =% M,. The length |o| of ¢ is the number
of transition in o. The prefix set of ¢ is denoted by &.
The firing language £(Q,M,) of (Q, Mp) is the set of
firing transition sequences. Given a o = titj.. ity €
£(Q,M,), such that My % M; -4 .. L

=Ly w —
Mi..M; 2 r, the output word associated to ¢ is

¢ (0) = (Mo) p (M) .0 (M) 0 (M) .0 (M) 0 (M,).
Let o = tt;...tx...ty € £(Q, Mp). The Parikh vector
7T — ANJE of ¢ maps every transition ¢, € T to the



number of its occurrences in o, where m = |T'|. Given a
vector V, that can be a firing vector or a Marking vector,
[V] denotes the support of V, i.e., the set of elements in V
different from 0.

Remark 1: This work considers safe nets (1-bounded
nets) which markings are known as safe markings [2]. A
safe marking which puts a token in every place in the set
of places {p;, ..., p, } will be expressed as Myp,.... 00}

The following example presents an IPN model.

Ezample 1: The Fig. 1a) depicts an I PN model of a pro-
duction system. It is composed by two machines coupled
to three buffers. Machine 1 (K;) performs two different
processes over incoming inventory parts. These processes
are represented by the transition loops from ¢} to ¢ and
from t] to t12, respectively. Machine K; through the first
sequence (t] to t$) process two different semifinished parts
type As and Ag, delivering them into Buffer 1 and 2, as
shown. The first sequence processes two parts of type As,
through A; and C}, and one part of type Ag, through B;.
Similarly, the second sequence (¢] to ¢12) processes parts
As and Ag, but in this case, two parts of type Ag and one
part of type As. Then, Machine K; balances the buffers
capacity depending on the selected process sequence. Ma-
chine 2 (I3) delivers parts from Buffers 1 and 2 to Buffer 3
firing the transitions 5 and ¢0.

ITI. SUuPERVISORY CONTROL OF IPN

Linear constraints (LC) are specifications for restricting
the system behavior used in the SCT framework [4],[6].
In an IPN, a linear constrain represents a bound in the
number of tokens that the places hold:

IX<gq (2)

where every a;,b € Z* for 1 <i < n, | := [ay,...,a,] and
X := [pi,...,pn]. Every p; is a token-bounded net place.
A generalization for a linear constrain (GLC) results from
extending a LC to a lower bound:

Giwr < LX < Gupp i= |\ (Ghor < X < dpp)

i=1

(3)

where i, and g, are vectors and L is a matrix.

Next example illustrates a GLC.

Ezample 2: Let (Q, Mp) be the IPN depicted in Fig. 1a).
Let G:= (g5 < ps < a3) A (g < s < @) A(g} <p} <
g¢3) be a GLC. The hyper-volume depicted in Fig. 1b),
representing the GLC G, denotes buffer constrains in the
production line. Notice that only the places of interest are
shown for an intuitive visualization. Every state inside the
hyper-volume satisfies to G.

A technique for enforcing LC’s in the form of the equa-
tion (2) is found in [6]. It consists on the inhibition of the
transition firings that otherwise would lead to a violation
in the constrains. Such inhibition is achieved by means of
“control places” linked to an IPN model [6],[4].

The inequality (2) is transformed into equality adding
extra “slack-variables” [6], as shown in equation (4).

IX+X,=q (4)

The term X, represents the set of control places. The
closed-loop system is another IPN Ab_ H_Nav given by:

SHES

where D, represents an “extra-structure” added to the sys-
tem model. My, is a suitable marking for the control places
[6].

If the restriction has the form of equation (3), the next
theorem gives a solution.

Theorem 1: Let (Q, Mp) be an IPN where every transi-
tion is both distinguishable and controllable. Let G, <
LX < qupp be a GLC given by equation (3). If:

(5)

Gupp — LMo > 0, LMo — Giwr > 0 (6)

holds, then the PN controller (D., My.) in equation (7):

—L Gupp — LM
Un = —H h@QH— 3 .M_K_.oo = _Hm.wumﬂ.c . m..me..__wu— Aﬂu

enforces the GLC lur < LX < Gupp over (Q, My).

Proof: The IPN structure of the closed-loop system
using equations (5) and (7) is:

Q y My
D=| -LQ |, My=| Gupp— LM, (8)
LQ LMy — Qrur
The GLC is divided into the single LC’s:
LM’ < Gupp (9)
and:
Grwr < LM’ (10)

To verify that inequality (9) is satisfied, consider the sub-
system AUD : ._.,Nco_ v&mmbma as:

Q v % Mo
Dy = y Moy, =| - 1
1 _H ml..w@v Ocy Gupp — h.._.&_.c ﬁ v
The equation (7) ensures that:
LMy + b&.cﬁ — nm.ﬂ% AHNV

where Moc, = [Gupp — LM)).

Now, let Pry, := Tuh
formed by those places in L and the control places in D, .
Multiplying Pr, D., results in Pr,Q + (—LQ), since the
control places in D, are exactly those in (—LQ).

Moreover, PLQ = LQ. Therefore, Pp., D, = PLQ +
(-LQ) = LQ + (—LQ) = 0. As a consequence, every
reachable marking M’ satisfies the equation LM’ + M =
Gupp and accordingly, LM’ < ypy as required.

To verify that inequality (10) is satisfied, consider the
sub-system ﬁb&t@«anuv defined as:

| e

P g be the row vector
1

(-LQ)
LQ

Q.ﬁﬁﬂ = hx_ﬂﬂo

b.m.:_._rp,_....,u | _H.“Gq. w G.wu

Do =
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Fig. 1. a) An IPN model for a Production System; b) A convex volume produced by a GLC

The inequality (10) can be transformed as:

m:.mg. M m‘zﬂﬁ == gon- AH&
since by equation (12) it is hold that LMy = Gypp — My, -

Then, equation (14) can be written as:

H..__m.u._u.ﬁw M m...ﬂﬂﬁ = @MEﬂ AHWV

That is, the inequality (10) is satisfied restricting the
tokens in the places of equation (11).

Again, equations (7) and (14) ensure that, for the sub-
system given by equation (13), the following holds:

M, + M., = ﬂu_.ﬁﬂ..a = Qluwr Q.mv
where Mo, = [LMy — Giur)-

From equation (13) it follows that the identity row vec-
tor, denoted as P, is a positive S-invariant that includes
every place of D.,. Therefore, equations (16) and (10) are
kept for any reached marking.

It follows that the extended row vectors Pivp =

ﬁ Prie : 0 % and Pur := ﬁ 0! B g are place in-
variants for the closed-loop system described by equation
(8)-

Finally, the result follows from the fact that equations
(12) and (16) are valid for every marking in the closed-
loop system of equation (8). As consequence, inequalities
(10) and (9) are satisfied for every reachable marking and
the result holds. |

By Theorem (1):

LM = b&.nu - %.:Bnu AH.NV

for every marking M in the closed-loop system. That is,
the marking in the control places for the LC LX < @ypp is
always determined by @,y — Pr. From this fact, the next
theorem follows.

Theorem 2: Let (Q, Mp) be an IPN and let §j,r < LX <
Jupp be a GLC. Then L can be enforced on (Q, Mp) by
means of a supervisor if there exist linear transformations

Ry, Ry, R} and R} such that:

Amﬁ+mmhv.§ommm.mm.cﬁwlvwvlw (18)

and

(By+ Ry (=L)) - Qnm < 0
Amm g .mm ﬁ|h\vu : .?a.on— = .m___w ' Aﬂr.ﬁﬁu . Qm::. s M.v =]
(19)
Proof: If linear transformations satisfying equation
(18) exist, then Theorem 1 guarantees that the LC LX <
Jupp can be enforced.

If equation (19) is satisfied, then (R} + R} (Me, — Gupp))-
Qnm < 0 is also satisfied, since by equation (17),
it is hold that —L = M, - Gupp- It means that
ﬁmm = mmbm‘om = ____m.wﬁﬁﬂ__v 2 @33 < O._ or m@c.maawmm.b&—uﬁ
h.mwwn_nmwmg&v = @33@ < 0, for .mww = mwm. - .mwm . a._.:ﬂﬁu as
required. ||

For the computation of the linear transformations
Ry, Ry, R} and R}, the next extended version of the Linear
Optimization Problem (LOP) in [6] is used.

Algorithm 1: Computation of Linear Transformations

Inputs: An IPN (Q, M) and a GLC §jr < LX < Gupp 1D
the form of equation (3).

Outputs: Linear transformations Ry, Ry, R] and R}.

Let R:=[ Ry R} R3], where R} := Ry — 1. The



LOP for the LC LX < Gupp is constructed as:

Mo
R| LMy—g-1
0

min
R

@:3
s.t. R h@»«:ﬁ th@:?

R>0R+#LX

Let R := [ Ri Ry’ Rj; ], where Ry := R, —1. The
LOP for the LC G, < LX is constructed as:

My
min (R | —-LMy—¢—-1
R =
0
Qnm (21)
! e
s.t. .m ].ﬁmﬁﬁ = h@x&-
R >0,F #LX

Once the matrices R;, R, R} and R} are computed, the
controller structure is obtained as follows.

Theorem 3: Suppose that the system has only distin-
guishable transitions. Given the linear transformations
Ry, Ry, R} and R, the controller computed as:

D. = Tmimus.@_
: 1+ Ry (-L)-Q
M. = ﬁ Ql:ﬁc - ﬁ.me nTmeh_v .._“_E,c
on l m.mwm + w\u ﬁlhvV .N&cl m.mgk,

enforces the GLC Glur < LX < Gupp over (Q, Mp).

The proof of the previous theorem is straightforward
from Theorem 2 and is omitted due to space requirements.

The following example illustrates the theorems.

Ezample 3: The uncontrollable matrix Q,,, of the
IPN model in Fig. 1 is formed by the transitions
{t3,48,83,11%,13,13,13,7,43,43}. The LC’s are | = (¢ <
ps < q3), b = (g < ps < ¢§) and I3 = (¢} < p} < ).
The GLCis G:=1; Alz Als.

The LC’s l; and I3 hold that l;-Qpy % 0and ly-Qpum £ 0.
Thus, the linear transformations WMH = mw =1 and
mwu =P mhuw =1 are new GLC computed by Algorithm 1,
for I; and [5, respectively.

The GLC [3 directly satisfies that I3 - Qnm < 0 and —I3 -
Qnm < 0. Thus, it does not require the computation of
new linear restrictions.

These linear transformations and equations (20) and (21)
are used for constructing the closed-loop system that can
be depicted as in Fig. 2. Suitable markings have been
selected for buffers p§, p§ and p} and control places ¢, ¢
and 2.

The system in Fig. 2 guarantees the fulfilment of the
GLC. However, the controller requires the exact knowledge
about every transition firing in the net. If sensors in the
system fail, the synthesized controller is no longer valid and
the bounds for the buffers may be violated.

a (22)

Next section is devoted to the analysis of the observabil-
ity property within the IPN framework for reconstructing
the missing information.

IV. OBSERVABILITY FOR IPN MODELS

There exist several approaches dealing with the observ-
ability problem in the IPN framework [9],[3],[1]. This sec-
tion follows the concepts and approach presented in [1].

Definition 3: An IPN (Q, Mp) represented by the equa-
tion (1), where Mp is probably unknown, is Observable if
there exists an integer k < co such that for any transition
sequence o = t,tp...t, where My £ M;... e, M, and
lo| > k, the output word @ (o) = @(Mo)p(My)...o(My)
and the mathematical structure of (Q, Mp) suffice for de-
terminning the initial marking M, and the current marking
M,.

In general, deciding the observability property of an IPN
is a computational complex problem [9],[3],[1]. Fortunately,
the notions of Firing-Vector-Detectability and Marking-
Detectability lead to efficient solutions [1]

Definition 4: An IPN (Q, Mp) described by the state
equation (1), where My is probably unknown, is Firing-
Vector-Detectable if there exists an integer kp < oo such
that the Parikh vector of any transition sequence o €
£(Q, Mp), fulfilling |o| > kp, can be uniquely determined
using the output word ¢ (¢) and the mathematical struc-
ture of (Q, Mp).

The Marking-Detectability is defined as follows.

Definition 5: An IPN (Q, M) described by the state
equation (1), where Mj is probably unknown, is Marking-
Detectable if there exists an integer kj; < co such that
the current marking reached by the firing of any transi-
tion sequence o € £(Q, My), fulfilling |o| > kps, can be
uniquely determined using the output word ¢ (¢) and the
mathematical structure of (Q, My).

Next theorem states that the previous detectability prop-
erties are sufficient conditions for Observability.

Theorem 4: A IPN (Q,Mp) which is Firing-Vector-
Detectable and Marking-Detectable is Observable.

Proof: See [1]. ]

In the case of a safe SM, the Firing-Vector-Detectability
implies the Marking-Detectability [1].

Proposition 1: If a strongly connected safe SM is Firing-
Vector-Detectable then it is Observable.

Proof: See [1]. s

The Sequence-Detectability is a stronger property used
for testing the Firing-Vector-Detectability [1] in a safe SM.

Definition 6: An IPN (Q, My) described by the state
equation (1), where Mp is probably unknown, is Sequence-
Detectable if there exists an integer kg < oo such that any
transition sequence ¢ € £ (Q, My), fulfilling |o| > kg, can
be uniquely determined using the output word ¢ (¢), and
the mathematical structure of (Q, Mp).

Next theorem gives a sufficient condition for Sequence-
Detectability in a strongly connected and safe SM.

Theorem 5: Let (Q, Mp) be a strongly connected safe SM
described by the state equation (1). Let bT be a basis for
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Fig. 2. Closed-loop System

the T-invariants in (Q, Mp). The net is sequence-detectable
if:

(ker (p-C7) Nker (p-C*)) Nspan (bT) =0  (23)

Proof: See [1]. |
The equation (23) is completely algebraic and can be
easily tested in polynomial time.
Once a strongly connected and safe SM has verified this
equation, a Sequences-Observer is used for producing esti-
mations of the net marking [1].

Algorithm 2: Sequence Observer

Inputs: An IPN (Q, Mp) and the net’s output vector Vp =
@ - M.
Outputs: Set of possible current markings {M;} and pos-
sible fired transitions {i)}.
Let N = (P,T,1,0) be the underlying net structure of

(Q, Mp) and let C be its incidence matrix.
(Initialization) Initialize the Sequence Observer as follows:

o Let {My} = A.MS_..H?L 1 Mipy = q\me

o Let {tx} := {e};

o Let §:={e};
(Estimations) Once a chance AVp occurs, do:

1. Let o be the top of S;

2. Ho=¢gletU:= Tﬁmﬂ“ﬁ.Q.thDH\OL

3. Otherwise U := .Te €T:p-C-t,=AVpAce Mowsw

4. Put the set of transitions U in the top of S;

5. Update the stack S in the following way:

(a) Get the element wy,, in the top of S;

(b) Get the next element w,,.,¢ of S and update wpezs 1=

Wregt 1@ Ac@«oﬂvm

(c) While the next element of S is different from &, inter-
change Wiop := Wneqt and go to point (b);

6. Let wy,p be the top element in S. Update the set { My}
and {t;} as follows:

(2) {Mi} = {Mp;): p; € tj9,t; € wiop};

(b) {tk} = weop;

7. Return {M;} and {¢}.

The algorithm provides both, a set of possible current
net markings and a set of possible fired transitions. These
elements allow the utilization of controllers requiring state-
and event-feedback, as well.

A simple further analysis of equation (23) allows for de-
termining the largest transition sequences required by the
observer in the Algorithm 2 to completely reconstruct the
net marking and the fired transition. This number is known
as the convergence constant of the observer [1].

V. SUPERVISORY CONTROL USING OBSERVERS

Fig. 3 depicts the proposed control scheme. The con-
troller uses the estimations of the observer for computing
a control pattern. However, these estimations may carry
an error during a “transitory” period, which could lead the
system into a state that violates the specifications given by
GLC.

Next theorem states a sufficient condition that allows
to a controller for supervising a GLC using the scheme
depicted in Fig. 3.

Theorem 6: Let (Q, M) be an IPN model representing
a plant. Let Gjur < LX < @yupp be a GLC.

Suppose that the following holds:



