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Abstract—A Leak Detection and Isolation algorithm with a
State Observer is designed and tested in simulation to locate
a water-leak on a pipeline. Most of the works presented in
the literature make some linearization in the model limiting
the performance of the approach. In order to avoid this
situation, in this work, the State Estimation is designed with the
nonlinear model using an observer based on robust sliding mode
differentiators. The approach assumes only flow and pressure
sensors at the ends of the duct. Simulation results with synthetic
data obtained from a pipeline simulator are presented to assess
the method efficiency. The proposed scheme ensures finite time
convergence of the observer and the reduction of chattering effect.

I. INTRODUCTION

Leak Detection and Isolation (LDI) is an important problem
to solve. Due to this fact, the design of fast and robust methods
to locate and isolate leaks is the subject of several research
initiatives.

A successful technique to deal with the LDI problem is the
Fault Model (FM) based approach. Many FM algorithms for
LDI (FM-LDI) have been proposed in the literature, most of
these procedures use a state space model of the pipeline in
order to obtain a steady-state detection and isolation; some
examples of FM-LDI applications are presented in [1], [2],
[3] and [4]. All of these works have shown positive result,
however, they use asymptotic observers in order to tackle the
isolation task and, in this way, limiting the localization time.

On the other hand, sliding mode approach has been
widely used for problems of dynamic systems control
and observation due to their characteristics of finite time
convergence, robustness to uncertainties and insensitivity to
external bounded disturbances [5], [6]. In observers based
on sliding mode, the sliding motion is obtained by means
of a Sliding Operator depending on the output error [7].
Additionally, by using an Sliding Operator of the error (like
the sign function) to drive the sliding mode observer, the
observer trajectories become insensitive to many forms of
noise. Hence, some sliding mode observers have attractive
properties and simple implementation [8].

The purpose of this work is to design a FM-LDI scheme
whit an observer based on robust exact sliding mode
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differentiators [9] (it should be noted that to the authors
knowledge, there are not studies exploring the finite time
convergence of the observer in a LDI problem). In order
to obtain the estimate states, the system is transformed
in a special case of triangular form based on the Lie
derivatives of the system output [10] and, in this way, calculate
the estimations in the original variables using an inverse
transformation.

At first, we use the model shown in [4], where the states
are flows, pressure heads, the leak position and a parameter
related with the leak intensity. Then, the resulting continuous-
time nonlinear model is employed together with robust sliding
mode differentiator in order to design a state observer. The
observer is used to isolate a leak by direct estimation of its
location. Finally, the estimation of the pipeline state variables
is done comparing the derivatives of the model with the
sliding differentiator calculation. These high order sliding
operators provide the observer with the properties of finite
time convergence and reduction of chattering effect.

To assess the performance of the designed LDI system, it
is tested with synthetic data obtained from a simulator based
on the pipeline prototype described in [11].

The paper continues as follows: Section II states the
considered model and Section III describes the proposed
model-based detection approach. Section IV then presents
some successful simulation results while Section V finally
concludes the paper.

II. MODEL

This section presents the two Partial Differential Equations
and the leak model which describe the pipeline dynamics.
Also, a finite dimensional model is obtained from a space
discretization.

A. Modelling equation

Assuming the fluid to be slightly compressible and the duct
walls slightly deformable; the convective changes in velocity
to be negligible; the cross section area of the pipe and the fluid
density to be constant, then the dynamics of the pipeline fluid
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can be described by the following partial differential equations
[12]:
Momentum Equation

0Q(z,1) OH(z,t) B
Continuity Equation
OH(z,t) = b 0Q(z,t)
ot T gA 0z 0 @

where Q is the flow rate [m?> /s], H is the pressure head [m],
z the length coordinate [m], ¢ the time coordinate [s], g the
gravity acceleration [m/s?], A the cross-section area [m?], b
the speed of the pressure wave in the fluid [m/s], p = 557,
D the diameter [m] and 7 the friction factor.

Leak model. One leak arbitrarily located at point z; (see
Fig. 1) in a pipeline can be modeled as follows [12]:

QL =AHg 3)

where the constant ) is a function, among others of the orifice
area and the discharge coefficient, )1, is the flow through the
leak and H7p, is the head pressure at the leak point [12].
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Fig. 1. Discretization of the pipeline with a leak Qr,

This leak produces a discontinuity in the system.
Furthermore, due to the law of conservation of mass, (J; must
satisfy the next relation:

Qp=Qq + Q1 €]

where @), and @, are the flow before and after of the leak,
respectively.

B. Spatial Discretization of the Modelling Equations

In order to obtain a state space representation of model (1)
and (2), the partial differential equations are discretized with
respect to the spatial variable z, as in [2], [13], by using the
following relation:

OH Hye — H,

0z 2 )
9Q _Qj —Qj
9z 25 ©

Assuming only two partitions in the pipeline, as shown in
Fig. 1, then z; (j = {1,2}) becomes the distance from the
beginning of the pipe to point of the leak and from the point
of the leak to the end of the pipe, respectively. Notice that zo =
L —z, where L is the total length of the pipeline. Applying the

approximation (5) and (6) to the equation (1) and (2) together
with (3) and (4), and then incorporating as additional states
z1 and A\, we get:

Q1 — 2 (Hy — 1) — 1Q1 |Q1]
H, — 2 (Q2— Q1+ W)
QQ = - Lgil (u2 — Ha) — uQ2 |Q2| 7
“1 0
A 0
Here, the input vector is u = [H; H3|T = [u; us]”,

since these signals are measured, and the output vector is
y=[Q1 Q"
I1I. FAULT MODEL BASED OBSERVER SCHEME
A. Method Description
Let us consider the following system
&= f(z)+g(@)u (®)
y=h(z)
where x € R” is the state, u € R™ is the input, y € R? is
the output and f, g, h are sufficiently differentiable function
vectors.

For the system (8), the vector of output derivatives is given
by:

Vi(t) = ' ©)

k
a0

From (8), V(t) can be expressed as a fuction of
zou, b, .., u®

V(t) = H(z,u,a,...,u™, . ) (10)

Observability somehow means that this relationship is
invertible, and that one can find elements among the
components of H defining an invertible map with respect to
x [14].

Let us denote by H(z,u,t) this map, and consider the
vector V (t) of the n corresponding elements of V/(¢). Then:

v=H"(V(t),ut). (11)

Now nothing that the system output time derivative being
unknown, the problem reduces to the estimation V' (¢) of V'(¢)
so that an estimation of the state can be given by:

= H! (f/(t),u, t) (12)
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B. Robust sliding mode differentiators

The estimation of the output derivatives are made by means
of a k-order exact robust differentiator SDy(+) [9]. Let s (t) €
C* [0, 00) be a function to be differentiated and let k < k, then
the k-th order differentiator is defined as an application

SD(s(t) = [s(1), &1, .., &]T (13)

where

€0 = Co,
Co = —paD ™ [&o — s (£)] 77 sign (& — 5 (1)) + &
él = Cla

(1 = —prp 1D & — C0|L;1 sign (& — Co) + &2

: (14)

o1 = Co1,

Co1 = —p1 0% gy — Ck—2|% sign (§p—1 — Cr—2) + &k
& = —poDsign (& — Gi-1)

where &; is the estimation of the true signal s() (t).

The differentiator provides finite time exact estimation
under ideal condition when neither noise nor sampling are
present. For the gain T' case (p;, ¢ = {0,...,k} can
be computed proceeding as [9]), the following condition is
provided:

Condition 1. The parameter 1" is selected such that it is an
upper bound for |s*+1)|,

If Condition 1 is fulfilled, then [s(¢),&1, ..
[s(t), $(t),...,s™) (t)]T in finite time.

Applying the form (13) and (14) to the model (8), the vector
of the system output derivatives V (t) could be defined as:

ig oo (y1(1))
V(t) _ (y2( )

. 7£n71]T =

5)

SD o (1))

It is possible to form the vector ‘i/(t) selecting the n
corresponding elements of V(t). Now, just rest to find the
function H in (12) for a specific application.

C. Observer Design

Equation (7) can be written in compact form (8) as:

&= f(z)+g(@)u (16)
y=nh(x)
with x = [Ql HQ QQ Z1 /\]T = [Il To T3 T4 1‘5]T. MOI’COVCI’,

if we consider unidirectional flow (i.e. ;1 > 0 and x3 > 0),
f(x), g(z) and h (z) are as follows:

gA

e — pa?
— a3 — 1+ 25/T2)
f(x) = Lgf;gcg — px3
0
0
T ogA
1—4 0
0 0
_ A
g((E) - 0 _Lgiz4
0 0
0 0
@) ] [ =
vo= | =15 ]

Here it is easy to check that the elements of H, in (12),
correspond to output time derivatives is as follows:

yl(t) jv:{l(x’uv u)

R B 71 (¢) Hy(x,u, )
V(t) = H(z,u,a) = | §1(t) | = | Hs(x,u,u) (17)

ya(t) }_14(95, u, )

U2(t) Hs(x,u, )
where H (v) = z1, Hy(x) = —‘;‘—f(mg — uy) — p?,
Hj () = 2uz3  + % (x5 — o1+ 25\/T2)  +
i—f (g + 2uz1me — 2uT1U1),  Hy (2) = r3 and
Hs () = Li‘i4 (ug — x2) — px3. Therefore, the state

estimate in terms of the output derivatives (11), is written as:

1 =Y
o U2t 3 L (91 + pyi) — Ag (92 + p3) o
2 — 3 2
Ag (I + wy?) — (Y2 + py3)
T3 = Y2 (18)
oo L2t py3) — Ag (ur — uz)
4 — 5 N
(92 + py3) — (91 + po?)
2
x5 . . Ag. 1
5= G+ 2min — i )+ —= (1 —
x N (y1—|— pyy — u1> + \/>(y1 ya) -

Finally, from (12), the estimated values of the state variables
in (18), #;, i = {1,...,5}, are obtained replacing the output,
the inputs and their derivatives by the robust sliding mode
differentiators. To do that, the form (15) is applied to the vector
of the system output derivatives V' (¢) defined as follows:

(t) = SD3(y1(t)) )
SDa(y2(t))

where y1(t) = x1(t), y2(t) = z3(t), SD3(y1(t)) provides

an estimation of y(¢) and its first and second derivatives,

and SD(y2(t)) provides an estimation of y»(¢) and its first
derivative.

<I>

19)

IV. SIMULATION EXAMPLE

In this section we present simulation results in order to
evaluate the performance of the designed LDI scheme. The
simulator has the same structure as the model system (equation
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TABLE I

PIPELINE PARAMETERS
Parameter Symbol Value Units
Length between sensors L 86.49 [m]
Internal diameter D 6.54 x 102 [m]
Pressure wave speed b 3.75 x 102 [m/s]
Friction factor coefficient T 1.72 x 10—2 [-]
Gravity g 9.81 [m/s?]

(7)). The parameters of pipeline simulated are given in Table L.
The initial pressure head at the upstream and the downstream
point of the pipe (the simulator and observer inputs) were
fixed in 14.15 [m] and 7.15 [m], respectively. The simulator
was initialized in steady state condition as follows: @1(0) =
Q2(0) = 7.75 x 1073 [m3/s] since, in a free-leak regime,
the inflow is equal to the outflow; z1(0) = 0.5L [m], i.e. the
discretized point is located in the middle of the pipe length;
A0) = 0 [m? /s] since, at the beginning of the simulation,
the pipe is not leaking; finally, H5(0) was computed with the
well-known Darcy-Weisbach equation at the distance z1(0).
The parameters of the observer, following [9], are fixed as
follows: @9 = 1.1, o1 = 1.5, 2 = 2, p3 = 3, 4 = 5,
p5 = 8 are suggested for the construction of differentiators
up to the 5-th order; finally, the I' parameter was fixed as
I" = 10000.

To test the previous scheme, a leak at z;, = 72 m was
suddenly induced in the simulator at time 500 s whit A =
2.7e — 5.

The initial conditions for the observer are equal to zero:

~ 1 0
a9 0

O A
20 0
A0 0

Fig. 2 presents the pressure heads at inlet (H;,, = u1) and
outlet (H,,+ = uo) of the pipe (i.e. the observer inputs). Fig.
3 shows the evolution of the inflow and outflow, @1 and @),
respectively. On the other hand, the pressure head, Ho, at the
leak point and its estimation H, are presented in Fig. 4.

In Fig. 5, the A parameter and its estimation valued \ are
shown. Using (3) with A and H, we can compute a leak
intensity of 3.36 x 10~5 m3 /s which is equivalent proximately
to 0.4% of the nominal flow.

Finally, the leak position is well estimated as seen in Fig.
6.

V. CONCLUSIONS

A Leak Detection and Isolation algorithm based on Robust
Sliding Mode Differentiators has been designed and tested
with synthetic data to locate a water-leak on a pipeline.

Flow estimations have been well estimated in the presence
of a leak, which means that the Sliding Observer correctly
follows the dynamics of the model with a leak. In the same

way, the observer has estimated the leak position and its
intensity in a very acceptable way.

The proposed scheme ensures finite time convergence of the
observer and the reduction of chattering effect.

As a future work, this algorithm will be tested with real
data obtained from a pipeline prototype.
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Fig. 3. Flow rate at inlet and outlet of the pipeline.
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