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Abstract— This paper deals with the control of an Anti-
lock Brake System (ABS) assisted with an active suspension.
The main objective is to track the slip rate of a car and
ensure a shorter distance in the braking process. For the ABS
subsystem an integral nested sliding mode controller basedon
the block control principle is designed. On the other hand, for
the active suspension subsystem a sliding mode controller based
on regular form and linear geometric techniques is proposed.
Both closed-loop subsystems are robust in presence of matched
and unmatched perturbations. To show the performance of
the proposed control strategy, a simulation study is carried
on, where results show good behavior of the ABS with active
suspension under variations in the road.

I. INTRODUCTION

The ABS control problem consists of imposing a desired
vehicle motion and as a consequence, provides adequate
vehicle stability. On the other hand, an active suspension is
designed with the objective of guaranteeing the improvement
of the ride quality and comfort for the passengers. The main
difficulties arising in the ABS design and control are due
to its high non-linearities and uncertainties presented inthe
mathematical model. For the active suspension control design
is necessary to cope with the disturbance due to road friction
which is unknown. Therefore, the ABS and active suspension
have become two attractive examples for research in area
of robust control. There are several works reported in the
literature using the sliding mode technique to a slip-ratio
control of ABS, some examples are [1], [2], [3], [4]; a
similar approach is used in the active suspension case [5].
However, in most of the cases these two system are treated
independently. In [6] a backstepping design is applied to
ABS and active suspension as a whole system, in this case
the road disturbances are assumed to be known in order to
propose the control law.

In this work, we are compelled with asymptotically
tracking the relative slip to a desired trajectory while the
active suspension guarantees the passenger comfort and
helps to improve the braking process. In order to reach
this objective, we design a new controller for ABS on the
basis of integral Sliding Mode (SM) [7] in combination
with nested SM [8], [9]. Theoretically, this integral nested
SM control can guarantee the robustness of the system
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throughout the entire response starting from the initial time
instant and reduce the sliding functions gains in comparison
with standard SM.

For the active suspension, another new controller based
on the regular form [10], SM and geometric linear
control methods [11] for the sliding surface design is
proposed in order to achieve robustness to matched, and
unmatched perturbations and ensure output tracking. In both
subsystems a Super-Twisting (ST) control is used [12]. As
a result the vehicle dynamic, i.e., the vehicle velocity and
horizontal position, on the designed SM manifolds becomes
asymptotically stable with disturbance attenuation, ensuring
an stable tracking error.

The work is organized as follows. The mathematical model
for the longitudinal movement of a vehicle, including the
brake and active suspension systems is presented in Section
II. In Section III the supertwisting controllers with special
emphasis in the design of sliding surfaces for ABS and active
suspensions are shown. The simulation results are presented
in Section IV to verify the robustness and performance of
the proposed control strategy. Finally, some conclusions are
presented in Section V.

II. MATHEMATICAL MODEL

In this section, the dynamic model of a vehicle active
suspension and ABS subsystems is revised. Here we consider
a quarter of vehicle model, this model includes the active
suspension, the pneumatic brake system, the wheel motion
and the vehicle motion. We study the task of controlling the
wheels rotation, such that, the longitudinal force due to the
contact of the wheel with the road, is near to the maximum
value in the period of time valid for the model. This effect
is reached as a result of the ABS valve effort.

A. Active suspension model

The quarter-car active suspension is a 2-DOF mechanical
system shown in Fig. 1 This system connects the car
body and the wheel masses and is modeled as a linear
viscous damper and a spring elements, whereas the tire is
represented as a linear spring and damping elements. The
motion equations for this system are governed by

mcz̈c = −Kcw (zc − zw)− Ccw (żc − żw) + fha

mw z̈w = Kcw (zc − zw) + Ccw (żc − żw) (1)

−Kwr (zw − zr)− Cwr (żw − żr)− fha

wheremc andmw are the mass of the car and the wheel,
respectively,zc is the car vertical displacement,zw is the



wheel vertical displacement,Kcw andKwr are the spring
coefficients,Ccw andCwr are the damping coefficients,zr
is the disturbance due to road andfha is the force of the
hydraulic actuator

Fig. 1. Active suspension scheme

B. Pneumatic brake system equations

The specific configuration of this system considers the
brake disk, which holds the wheel, as a result of the
increment of the air pressure in the brake cylinder. The
entrance of the air trough the pipes from the central reservoir
and the expulsion from the brake cylinder to the atmosphere
is regulated by a common valve. The time response of the
valve is considered small, compared with the time constant
of the pneumatic system.

Fig. 2. Pneumatic brake scheme

Considering Fig. 2, we suppose the brake torqueTb is
proportional to the pressurePb in the brake cylinder

Tb = kbPb (2)

with kb > 0. For the brake system we use an approximated
model of pressure changes in the brake cylinder due to the
opening of the valve with a first order relation [13], this
relation can be represented as

τṖb + Pb = Pc (3)

where τ is the time constant of the pipelines,Pc is
the pressure inside the central reservoir. The atmospheric
pressure,Pa, is considered equal to zero.

C. Wheel motion equations

To describe the wheel motion we use a partial
mathematical model of the dynamic system as it is done
in [14]. Considering the Fig. 2, the dynamics of the angular
momentum variation relative to the rotation axis, are given
by

Jω̇ = rf (s)− bbω − Tb (4)

whereω is the wheel angular velocity,J is the wheel inertia
moment, r is the wheel radius,bb is a viscous friction
coefficient due to wheel bearings andf is the contact force
of the wheel.

The expression for longitudinal component of the contact
force in the motion plane is

f (s) = νNmφ (s) (5)

whereν is the nominal friction coefficient between the wheel
and the road,Nm is the normal reaction force in the wheel
and it is defined by

Nm = mg −Kwr (zw − zr)− Cwr (żw − żr)

with g the gravity acceleration andm the mass supported on
the wheel and it is given bym = mw +mc/4. The function
φ(s) represents a friction/slip characteristic relation between
the tyre and road surface. Here, we use the Pacejka formula
[15], defined as follows

φ (s) = (6)

D sin (C arctan (Bs− E (Bs− arctan (Bs)))) .

In general, this model produces a good approximation of the
tyre/road friction interface. With the following parameters
B = 10, C = 1.9, D = 1 and E = 0.97 that function
represents the friction relation under a dry surface condition.
A plot of this function is shown in Fig. 3.
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Fig. 3. Characteristic functionφ (s)

The slip rates is defined as

s =
v − rω

v
(7)

wherev is the longitudinal velocity of the wheel mass center.
The equations (4)-(7) characterize the wheel motion.



D. The vehicle motion equation

The vehicle longitudinal dynamics considered without
lateral motion, are described by

Mv̇ = −F (s)− Fa (8)

whereM = 4mw +mc is the total vehicle mass;Fa is the
aerodynamic drag force, which is proportional to the vehicle
velocity and it is defined as

Fa =
1

2
ρCdAf (v + vw)

2

whereρ is the air density,Cd is the aerodynamic coefficient,
Af is the frontal area of vehicle,vw is the wind velocity; and
the contact force of the vehicleF is modeled of the form

F (s) = νNMφ (s) (9)

whereNM is the normal reaction force of the vehicle,

NM =Mg −Kwr (zw − zr)− Cwr (żw − żr) .

E. State space equations

The dynamic equations of the whole system (3)-
(8) can be rewritten using the state variablesx =
[x1, x2, x3, x4, x5, x6, x7]

T = [zc, żc, zw, żw, ω, Pb, v]
T

results in the following form:

ẋ1 = x2

ẋ2 = −a1 (x1 − x3)− a2 (x2 − x4) + b1us

ẋ3 = x4 (10)

ẋ4 = a3 (x1 − x3) + a4 (x2 − x4)

−a5 (x3 − zr)− a6 (x4 − żr)− b2us

ẋ5 = −a7x5 + a8f (s)− a9x6

ẋ6 = −a10x6 + b3ub (11)

ẋ7 = −a11F (s)− fw (x7)

with the outputs

y1 = x1 andy2 = x5

where a1 = Kcw/mc, a2 = Ccw/mc, a3 = Kcw/mw,
a4 = Ccw/mw, a5 = Kwr/mw, a6 = Cwr/mw, a7 = bb/J ,
a8 = r/J , a9 = kb/J , a10 = 1/τ , a11 = 1/M , b1 = 1/mc,
b2 = 1/mw, b3 = 1/τ , us = fha, ub = Pc andfw(x7) =
1

2M (ρCdAf ) (x7 + vw)
2 .

III. CONTROL DESIGN

In this section, we use first the concepts of regular form,
SM and geometric linear control methods for the sliding
surface for an active suspension controller design; and, then
the integral nested SM control is applied to design an
ABS controller. The structure of the whole system (10)-(11)
permits to design both controllers in an independent way.

A. Suspension Control

Definexs = [x1, x2, x3, x4] and p =
[

zr żr
]T
, then

the subsystem (10) is represented in the form

ẋs = Asxs + bsus +Dp (12)

where

As =









0 1 0 0
−a1 −a2 a1 a2
0 0 0 1
a3 a4 −a3 − a5 −a4 − a6









bs =









0
b1
0

−b2









; D =









0 0
0 0
0 0
a5 a6









.

with the outputy1 = x1. Now, defining the new variables

xr1 = x1, xr2 = x2 +
b1
b2
x4, xr3 = x3, xr4 = x4

the system (12) is transformed into regular form [10]

ẋr1 = A11xr1 +A12xr2 +D1p (13)

ẋr2 = A21xr1 +A22xr2 +D2p+ b2us (14)

which consists of the two blocks: (13) withxr1 =
[

xr1 xr2 xr3
]T

and (14) with xr2 = [xr4], where

A11 =





0 1 0

a3
b1
b2

− a1 a4
b1
b2

− a2 a1 −
b1
b2

(a3 + a5)

0 0 0



,

A12 =







− b1
b2

a2 −
b1
b2

(a4 + a6 − a2)− a4

(

b1
b2

)2

1






, A21 =

[

a3 a4 −a3 − a5
]

, A22 =
[

−a4

(

b1
b2

+ 1
)

− a6

]

,

b2 = [−b2], D1 =





0 0
b1
b2
a5

b1
b2
a6

0 0



 and D2 =

[

a5 a6
]

. Then for the first block (13), the output can
be regarded asy1 = cxr1, with c =

[

1 0 0
]

. The
vectorxr2 is handled as a control in the first block and it is
designed as a linear function ofxr1

xr2 = −C1xr1 + ξ (15)

where C1 are the feedback gains. Under the assumption
that the matrix(A11 −A12C1) is Hurwitz, the termξ is
chosen asξ =H−1

k y1d with Hk = c (A12C1 −A11)
−1

A12,
yielding a constant stable responsey1d. Using (15), a sliding
variableφ is formulated as

φ = xr2 +C1xr1 − ξ (16)

and the dynamics of (16) are governed by

φ̇ = (C1A11 +A21)xr1 + (C1A12 +A22)xr2(17)

+(C1D1 +D2)p+ b2us.



To induce sliding mode onφ = 0, the super-twisting control
algorithm [12] is applied

us = −b−1
2

[

−λs1 |φ|
1

2 sign(φ) + us2 (18)

− (C1A11 +A21)xr1 − (C1A12 +A22)xr2]

u̇s2 = −λs2sign(φ) (19)

whereλs1 > 0, λs2 > 0 are control parameters. The stability
condition for the closed-loop system (17) and (18) can be
obtained via the transformationqs = (C1D1 +D2)p −
λs2

∫ t

0 sign(φ) dt to

φ̇ = −λs1 |φ|
1

2 sign(φ)− qs (20)

q̇s = −λs2sign(φ) + (C1D1 +D2) ṗ.

If |(C1D1 +D2) ṗ| < L < ∞ and choosingλs2 > 5L and
32L ≤ λ2s1 ≤ 8 (λs2 − L) then the system (20) is finite time
globally stable [16], i.e, its solution converges in finite time
to the origin(φ, qs) = (0, 0). The sliding motion onφ = 0
is given by (13) and (15), in this way the SM equation is

ẋr1 = (A11 −A12C1)xr1 +A12ξ +D1p. (21)

At this point, to reject the unmatched unknown perturbation
p in the SM equation (21), we apply the well known
geometrical approach [11]. The disturbancep can be
rejected preserving SM equation stability if and only if
the image of the matrix associated to the disturbance,
ImD1, belongs toV∗

g , the so-called maximal(A11,A12)-
invariant subspace contained in the kernel of the outputy1 =
xr1 =

[

1 0 0
]

xr1. It can be seen that this problem

is solvable, since clearly ImD1 =span
{

D̃1

}

belongs to

V∗

g =span
{

V
∗(1)
g ,V

∗(2)
g

}

with D̃1 =
[

0 1 0
]T

,

V
∗(1)
g =

[

0 1 0
]T

andV∗(2)
g =

[

0 0 1
]T

. Then,
using the virtual controlxr2 (15), which producesV∗

g to
be SM equation (21) invariant, the outputy1 = xr1 is
not affected at all by the signalp, i.e, this control rejects
the disturbancep in the SM equation. Notice that this
control renders the system (21) maximally non-observable
by canceling out the zeros associated to the transfer function
betweenp andy1 = xr1 with closed-loop poles. The closed-
loop system (21) is stable, because these zeros are stable, and
the remaining pole is located in a suitable stable position.

B. Brake Control

Let xb = [x5, x6, x7] and taking into account the direct
action of the pressurePb in the brake cylinder over the
wheels motion, we define the output tracking error as

e1 , x5 −
1− s∗

r
x7. (22)

Then, from (10), (11) and (22) the derivative ofe1 is

ė1 = f1 (x5, x7) + b1 (x5, x7)x6 +∆1 (23)

wheref1 (x5, x7) = 1−s∗

r
[a11νNMφ (s)− fw(x7)]−a7x5+

a8νNmφ (s) and b1 (x5, x7) = −a9. The term∆1 contains
the reference derivativės∗, the variations of the friction
parameterν, the wind speedvw, the influence ofzr, żr on

F (s) and it will be considered as an unmatched and bounded
perturbation term.

Considering the variablex6 as virtual control in (23) we
determinate its desired valuex6δ as

x6δ = x6δ,0 + x6δ,1 (24)

wherex2δ,0 is the nominal part of the nominal control and
x6δ,1 will be designed using the SM technique to reject the
perturbation in (23). In this way, we propose the desired
dynamics−k0e0 − k1e1, which are introduced by means of

x6δ,0 = −
1

b1 (x5, x7)
[f1 (x5, x7) + k0e0 + k1e1] (25)

wherek0 > 0, k1 > 0 ande0 is defined by

ė0 = e1, e0(0) = 0. (26)

Now, in order to attenuate the perturbation term∆1 in (23),
we define the surface

σ1 = e1 + z (27)

wherez is an SM integral variable and will be defined later.
From (23), (25), (24) and (27) the derivative ofσ1 is given
by

σ̇1 = −k0e0 − k1e1 + x6δ,1 +∆1 + ż. (28)

Selectingż = k0e0 + k1e1 with z (0) = −e1 (0), Eq. (28)
reduces to

σ̇1 = x6δ,1 +∆1. (29)

To enforce quasi-sliding motion in (29) the termx6δ,1 in
(28) is chosen as

x6δ,1 = −kσ1
sigm(ε, σ1)

where we use the result that the sign function can be
approximated by the sigmoid function in the form

lim
ε→∞

sigm(ε;x) = sign(x) .

Now, we define a new error variablee2 as

e2 = x6δ − x6. (30)

Using (10), (11) and (30), straightforward calculations
reveal

ė2 = ∆2 − b3ub (31)

where the term

∆2 = a3x6 +
∂x6δ
∂x5

ẋ5 +
∂x6δ
∂x7

ẋ7 (32)

is considered as a perturbation.
Using the new variablese0, e1, e2 and σ1 the extended

closed loop system (23), (26), (31) and (29) is presented as

ė0 = e1 (33)

ė1 = −k0e0 − k1e1 + e2 − kσ1
sigm(ε, σ1) + ∆1 (34)

σ̇1 = −kσ1
sigm(ε, σ1) + ∆1 (35)

ė2 = ∆2 − b3ub (36)

ẋ7 = −a11F − fw (x7) . (37)



We now consider the types of valve that can vary its
position in a continuous range. To induce sliding mode on the
sliding manifolde2 = 0, the super-twisting control algorithm
is applied [12] to (36)

ub =
1

b3
[ub1 + ub2] (38)

with ub1 = −λb1 |e2|
1

2 sign(e2), u̇b2 = −λb2sign(e2), where
λb1 > 0, λb2 > 0 are control parameters. Now, the stability
of (33) - (36) closed loop by (38) is outlined in a step by
step procedure:
Step A) Reaching phase of the projection motion (36);
Step B) SM stability of the projection motion (35);
Step C) SM stability of (33)-(34) on the manifolde2 = 0
and in the vicinity ofσ1 = 0.

We use the assumptions

|∆1| ≤ α1 |σ1|+ β1 (39)
∣

∣

∣
∆̇1

∣

∣

∣
≤ α0 |σ̇1| (40)

∣

∣

∣
∆̇2

∣

∣

∣
≤ β2 (41)

with α0 > 0, α1 > 0, α2 > 0, β1 > 0, β2 > 0.
Step A) For (36) in closed loop with (38) we use the

transformationqb = ∆2 − λb2
∫ t

0sign(e2) dt, then, we have

ė2 = −λb1 |e2|
1

2 sign(e2)− qb (42)

q̇b = −λb2sign(e2) + ∆̇2

and under the assumption (41), then choosingλb2 > 5β2 and
32β2 ≤ λ2b1 ≤ 8 (λb2 − β2), the system (42) is finite time
globally stable [16], i.e, its solution converges in finite time
to the origin(e2, qb) = (0, 0).

Step B) To analyze the stability of the projection
motion (35) we assume that the signum function can
be approximated by the sigmoid function in the form
sigm(ε;x) → sign(x) as ε → ∞, then, we can establish
the following equality

sign(x)− sigm(ε;x) = ∆s (ε;x) . (43)

It is evident that∆s (x) is bounded, that is, for a given
ε there exists a positive constant0 < γ < 1 such that
‖∆s (ε;x)‖ = γ. Now, taking the Lyapunov candidateV1 =
1
2σ

2
1 and taking its derivative, with (39) results

V̇1 = σ1 [−kσ1
sigm(ε, σ1) + ∆1]

≤ − |σ1| [kσ1
(1− γ)− α1 |σ1| − β1]

therefore, ifkσ1
> β1

1−γ
thenσ1 converges to a vicinity of

zero, |σ1| < ϑ, with

ϑ =
ln
(

2−γ
γ

)

2ε

and, with (40),σ̇1 converges to zero in finite time [9].
Step C) To analyze the SM stability of (33)-(34) on the

manifold e2 = 0 and in the vicinity ofσ1 = 0 we define

the Lyapunov functionV2 = 1
2

(

e20 + e21
)

and taking its
derivative,

V̇2 = e1 [(1− k0) |e0| − k1e1]

≤ − |e1| [(k0 − 1) |e0|+ k1 |e1|]

therefore, whenk0 > 1 and k1 > 0 then, e1 converges
asymptotically to zero.

IV. SIMULATION RESULTS

To show the effectiveness of the proposed control law,
simulations have been carried out on the wheel model design
example, the system parameters used are listed in Table 1.

TABLE 1

Values of Parameters (MKS Units)

Parameter Value Parameter Value Parameter Value

mc 1800 J 18.9 E 0.97

mw 50 kb 100 Af 6.6

Kcw 1050 bb 0.08 Cd 0.65

Kwr 175500 r 0.535 ρ 1.225

Ccw 19960 B 10 vw -6

Cwr 1500 C 1.9 g 9.81

τ 0.0043 D 1 v 0.5

In order to maximize the friction force, we suppose that
slip tracks a constant signal during the simulationss∗ =
0.203, which produces a value close to the maximum of the
functionφ(s). The reference for suspension isy1d = −0.2.
The road perturbation is considered aszr = 0.1 cos (10t).
The parameters used in the control law arey1d = 0.1, λs1 =

10, λs2 = 15, C1 =
[

−175 −35 0
]T

, k0 = 700, k1 =
120, kσ1

= 10, λb2 = 1, λb2 = 2 andε = 10. On the other
hand, to show robustness properties of the control algorithms
in presence of parametric variations we introduce a change
of the friction coefficientν which produces different contact
forces, that isF and F̂ . Then, ν = 0.1 for t < 4 s and
ν = 0.5 for t ≥ 4 s. It is worth mentioning that just the
nominal values were considered in the control design.

Longitudinal speedv and the linear wheel speedrω are
shown in Fig. 4, the ABS controller should be turned off
when the longitudinal speed is close to zero.

Fig. 4. Longitudinal speedv (dashed) and the linear wheel speedrω
(solid)

Fig. 5 shows the slip rate during the breaking process, we
can see the fast convergence to the reference values∗ and
Fig. 6 presents the friction/slip characteristic relationφ(s)
obtained during the breaking process under control actions.



Fig. 5. Slip performance in the
braking process

Fig. 6. Performance ofφ(s) in the
braking process

Fig. 7 shows the vertical vehicle position during the
breaking process. The position is lowered0.2 m under zero
position and it is kept constant until the car is almost stopped,
until Fig. 8 presents the suspension position of the vehicle;
it moves constantly, counteracting the changes on road and
wheel.

Fig. 7. Vehicle positionx1 Fig. 8. Suspension positionx3

The control actionus for the suspension is shown in Fig. 9.
The valve can put or extract fluid into the reservoir to obtain
the necessary forces. The sliding variableψ is presented in
figure 10.

Fig. 9. Control signal for
suspensionus

Fig. 10. Sliding surface for
suspension controlψ

The control signalub for the ABS is presented in Fig. 9,
and the sliding variableσ is presented in figure 12.

Fig. 11. Control signal for ABSub Fig. 12. Sliding surface for ABS
control σ

Finally, in Fig. 13 the nominalF , and theF̂ contact forces
are shown.

Fig. 13. Nominal contact forceF (dashed) and real forcêF (solid)

V. CONCLUSIONS

In this work sliding mode based controller for ABS
assisted with active suspension has been proposed. The
simulation results show good performance and robustness
of the closed-loop system in presence of both, the matched
and unmatched perturbations, namely, parametric variations
and neglected dynamics. Giving an important application of
the sliding mode control theory in the automotive problems.

REFERENCES

[1] Tan, H., Chin, Y., 1991. ”Vehicle traction control: variable structure
control approach”,Journal of Dynamic Systems, Measurement and
Control, no. 113, pp. 223–230.

[2] S. Drakunov, U. Ozguner, P. Dix and B. Ashrafi, ”ABS control using
optimum search via sliding modes”,IEEE Transactions in Control
Systems Technology, vol 3, no. 1, pp. 79-85, 1995.

[3] C. Unsal and P. Kachroo, ”Sliding mode measurement feedback
control for antilock braking systems”,IEEE Transactions in Control
Systems Technology, vol 7, no. 2, pp. 271-278, 1999.

[4] Ming-Chin, W., Ming-Chang, S., 2003. ”Simulated and experimental
study of hydraulic anti-lock braking system using sliding-mode PWM
control ”, Mechatronics, no. 13, pp. 331– 351.

[5] Yahaya Md. Sam, Johari H.S. Osman and M. Ruddin A. Ghani, ”A
class of proportional-integral sliding mode control with application
to active suspension system”,Systems & Control Letters, no. 51, pp.
217-223, 2004.

[6] Lin, J. S. and Ting, W.E., ”Nonlinear control design of anti-lock
braking system with assistance of active suspension”,IET Control
Theory Appl., vol. 1, no. 1, pp. 343-348, 2007.

[7] Utkin, V., Guldner, J., Shi, J.,Sliding Mode Control in Electro-
Mechanical Systems, Second Edition (Automation and Control
Engineering), 2nd Edition. CRC Press; 2009.

[8] Adhami-Mirhosseini, A. and Yazdanpanah, M.J., ”Robusttracking
of perturbed nonlinear systems by nested sliding mode control”,
International Conference on Control and Automation, 2005. ICCA ’05,
vol. 1, pp.44 - 48, 2005.
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