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Abstract— This paper deals with the control of an Anti- throughout the entire response starting from the initialeti

lock Brake System (ABS) assisted with an active suspension. instant and reduce the sliding functions gains in compariso
The main objective is to track the slip rate of a car and with standard SM

ensure a shorter distance in the braking process. For the ABS For th ti . th troller based
subsystem an integral nested sliding mode controller basedn or the actve suspension, another new controlier base

the block control principle is designed. On the other hand,6r On the regular form [10], SM and geometric linear
the active suspension subsystem a sliding mode controlleebed control methods [11] for the sliding surface design is
on regular form and linear geometric techniques is proposed proposed in order to achieve robustness to matched, and
Both closed-loop subsystems are robust in presence of mawth \,,matched perturbations and ensure output tracking. Im bot

and unmatched perturbations. To show the performance of . .
the proposed control strategy, a simulation study is carrid ~SUPSYystems a Super-Twisting (ST) control is used [12]. As

on, where results show good behavior of the ABS with active @ result the vehicle dynamic, i.e., the vehicle velocity and
suspension under variations in the road. horizontal position, on the designed SM manifolds becomes

asymptotically stable with disturbance attenuation, eéngu
I. INTRODUCTION an stable tracking error.

The ABS control problem consists of imposing a desired The work is organized as follows. The mathematical model
vehicle motion and as a consequence, provides adequéde the longitudinal movement of a vehicle, including the
vehicle stability. On the other hand, an active suspension brake and active suspension systems is presented in Section
designed with the objective of guaranteeing the improvameH. In Section Il the supertwisting controllers with spati
of the ride quality and comfort for the passengers. The maiemphasis in the design of sliding surfaces for ABS and active
difficulties arising in the ABS design and control are duesuspensions are shown. The simulation results are presente
to its high non-linearities and uncertainties presentethen in Section IV to verify the robustness and performance of
mathematical model. For the active suspension controfjdesithe proposed control strategy. Finally, some conclusioes a
is necessary to cope with the disturbance due to road fnictigoresented in Section V.
which is unknown. Therefore, the ABS and active suspension
have become two attractive examples for research in area Il. MATHEMATICAL MODEL
of robust control. There are several works reported in the In this section, the dynamic model of a vehicle active
literature using the sliding mode technique to a slip-ratiguspension and ABS subsystems is revised. Here we consider
control of ABS, some examples are [1], [2], [3], [4]; aa quarter of vehicle model, this model includes the active
similar approach is used in the active suspension case [8lispension, the pneumatic brake system, the wheel motion
However, in most of the cases these two system are treatgdd the vehicle motion. We study the task of controlling the
independently. In [6] a backstepping design is applied twheels rotation, such that, the longitudinal force due ® th
ABS and active suspension as a whole system, in this casentact of the wheel with the road, is near to the maximum
the road disturbances are assumed to be known in ordervalue in the period of time valid for the model. This effect
propose the control law. is reached as a result of the ABS valve effort.

In this work, we are compelled with asymptotically
tracking the relative slip to a desired trajectory while thé®- Active suspension model
active suspension guarantees the passenger comfort andhe quarter-car active suspension is a 2-DOF mechanical
helps to improve the braking process. In order to reacfystem shown in Fig. 1 This system connects the car
this objective, we design a new controller for ABS on theéyody and the wheel masses and is modeled as a linear
basis of integral Sliding Mode (SM) [7] in combination viscous damper and a spring elements, whereas the tire is
with nested SM [8], [9]. Theoretically, this integral nedte represented as a linear spring and damping elements. The
SM control can guarantee the robustness of the systefiotion equations for this system are governed by
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wheel vertical displacemenfs.,, and K. are the spring where 7 is the time constant of the pipelines;. is
coefficients,C.,, and C,,,- are the damping coefficients, the pressure inside the central reservoir. The atmospheric
is the disturbance due to road afg, is the force of the pressurep,, is considered equal to zero.

hydraulic actuator . :
y C. Wheel motion equations

rzc To describe the wheel motion we use a partial

mathematical model of the dynamic system as it is done
in [14]. Considering the Fig. 2, the dynamics of the angular
momentum variation relative to the rotation axis, are given

by

Jw=rf(s)—byw—Tp (4)

wherew is the wheel angular velocity] is the wheel inertia
moment, » is the wheel radiusp, is a viscous friction
coefficient due to wheel bearings afids the contact force
of the wheel.

The expression for longitudinal component of the contact
force in the motion plane is

f(8) =vN,o(s) (5)

wherev is the nominal friction coefficient between the wheel
and the road}V,,, is the normal reaction force in the wheel
and it is defined by

Fig. 1. Active suspension scheme

B. Pneumatic brake system equations
e X X . . Nm:mg_Kwr (Zw_zr)_cwr (zw_zr)

The specific configuration of this system considers the
brake disk, which holds the wheel, as a result of th&ith g the gravity acceleration and the mass supported on
increment of the air pressure in the brake cylinder. Ththe wheel and it is given by = m,, +m./4. The function
entrance of the air trough the pipes from the central reservap(s) represents a friction/slip characteristic relation betwe
and the expulsion from the brake cylinder to the atmosphetie tyre and road surface. Here, we use the Pacejka formula
is regulated by a common valve. The time response of tH&5], defined as follows

valve is considered small, compared with the time constar(}t(s) _ ©6)
of the pneumatic system.

Dsin (C arctan (Bs — E (Bs — arctan (Bs)))) .

(\ In general, this model produces a good approximation of the

tyre/road friction interface. With the following paramete

. B =10,C =19, D =1 and E = 0.97 that function

senesl T sk represents the friction relation under a dry surface caomlit

A = 5 A plot of this function is shown in Fig. 3.
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Fig. 2. Pneumatic brake scheme

=0

Considering Fig. 2, we suppose the brake tordyeis
proportional to the pressurg, in the brake cylinder ° o o % o !

Ty, = kp Py (2) Fig. 3. Characteristic functios (s)

with &, > 0. For the brake system we use an approximated 1pe slip rates is defined as
model of pressure changes in the brake cylinder due to the

opening of the valve with a first order relation [13], this 5=
relation can be represented as

vV —=TW

_ ™

. wherev is the longitudinal velocity of the wheel mass center.
TP+ P, =P, (3) The equations (4)-(7) characterize the wheel motion.



D. The vehicle motion equation A. Suspension Control

The vehicle longitudinal dynamics considered without Definex; = [z, %2, 73,74] and p = [ Zr  Zr ]T, then
lateral motion, are described by the subsystem (10) is represented in the form

Mo =—F(s)— F, (8) Xs = Agxs + bsus + Dp (12)
where M = 4m,, + m, is the total vehicle mas<t, is the where
aerodynamic drag force, which is proportional to the vehicl T 0 1 0 0
velocity and it is defined as
A = —a1  —a ay ap
1 9 ® 0 0 0 1
Fo= §pCdAf (v+vw) | a3 a4 —az—as —asg—ag
wherep is the air density(; is the aerodynamic coefficient, 0 0 0
Ay is the frontal area of vehicle,, is the wind velocity; and b, = by . D= 0 0
the contact force of the vehicle is modeled of the form (z) 0 0
—02 as ae

F(s) =vNpyo(s) (9)

where N, is the normal reaction force of the vehicle,

with the outputy; = z1. Now, defining the new variables

1
Tprl = T1, Tp2 = T2+ T4, Tp3 = T3, Trq = T4

ba

the system (12) is transformed into regular form [10]

Ny =Mg— Kyr (20 — 20) — Cupr (200 — 21) -

E. Sate space equations
Anixp + A +Dip

Ao1x,1 + Agexyo + Dap + byug

(13)
(14)

The dynamic equations of the whole system (3)- *rl
(8) can be rewritten using the state variables =
[xl,xg,x3,:v4,x5,x6,x7]T = [zc,éc,zw,éw,w,Pb,v]T
results in the following form:

Xr2

which consists of the two blocks: (13) witk,; =

[ 1 @2 ap3 |° and (14) withx,s = [z,4], Where
. 0 1 0
rKT = X2
Ay, = b b b ,
Ty = —ai (v —x3) — a2 (v2 — x4) + brus H 3 b20 o aa b20 az 4173, E)a3 +as)
j?g = X4 (10) _lg_l
2
T4y = az(x1—x3)+ag(rze—2x 2
1 3 (x1 — m3) + aq (22 4.) A = aZ_Z_;(a4+a6_a2)_a4(Z_;) , As =
—as (x3 — 2r) — as (x4 — 2,) — baus 1
. [a3 a4 —03—a5],A22 = [—a4(§—;+1)—as},
@5 = —arxs+asf(s) — agTe 0 0
Te = —a10Te + baup (12) by = [-b], D = Z_;at') %GG ] and Dy =
i7 = —ank(s) — fu(27) 0 0

[ as ag |. Then for the first block (13), the output can
be regarded ag; = cx,1, withc = [1 0 0 ]. The
vectorx,s is handled as a control in the first block and it is
designed as a linear function &f.;

with the outputs
Y1 = X1 andyg = X5
where a; = Keyw/me, az = Ceyw/Mme, a3 = Kew/May,

a4 = ch/mwn as = Kwr/mwn ag = er/mwi a7 = bb/J|
as :T/J, ag = kb/J, alg = 1/7’, aylp = 1/M, b1 = l/mc,

Xpo = —Cixp1 +§ (15)

where C; are the feedback gains. Under the assumption

b2 = 1/mwa b3 = 1/Ta Us = fhav Up = Pc andfw(x’?) =
a7 (pCaAy) (a7 +vu)*.

1. CONTROL DESIGN

that the matrix(A; — A12Cq) is Hurwitz, the term¢ is
chosen ag§ =H, 'y14 with H, = ¢ (A12C1 — Ay1) " Aja,
yielding a constant stable respongg. Using (15), a sliding
variable¢ is formulated as

In this section, we use first the concepts of regular form,
SM and geometric linear control methods for the sliding
surface for an active suspension controller design; areh thand the dynamics of (16) are governed by
the integral nested SM control is applied to design an .

ABS controller. The structure of the whole system (10)-(11) ¢ =
permits to design both controllers in an independent way.

¢ =Xr2+C1xX1 — ¢ (16)

(C1A11 + Agi) %01 + (C1A12 + Agz) x,2(17)
+ (ClDl + Dg) P + bous.



To induce sliding mode o = 0, the super-twisting control F' (s) and it will be considered as an unmatched and bounded

algorithm [12] is applied perturbation term.
_1 1. Considering the variableg as virtual control in (23) we
us = —bg [—)\51 9] sign(¢) + us2 (18)  determinate its desired valugs as
—(C1An + As1) %1 — (CrArz + Ags) X;9] Tes = T6s,0 + T66,1 (24)
Usa = —As25igN(9) (19) ' '

. wherexzsys is the nominal part of the nominal control and
wherels; > 0, Agx > 0 are control parameters. The stability ;... | will be designed using the SM technique to reject the
condition for the closed-loop system (17) and (18) can bgerturbation in (23). In this way, we propose the desired

obtai?e_d via the transformatiop, = (Ci1D1+D2)p —  dynamics—koeo — k1e1, which are introduced by means of
As2 [, Sign(¢) dt to )
. 1 x65,0 = ———— [f1 (&5, 27) + koeo + kie1]  (25)
¢ = —Xs1lo|?sign(¢) — gs (20) by (25, x7) [ ( ]
Gs = —As28ign(¢) 4+ (C1D; + D2) p. wherekq > 0, k1 > 0 andeq is defined by
If |(C1D; + D3)p| < L < oo and choosing\so > 5L and éo = e1, eo(0) = 0. (26)

32L < N2 < 8()\s2 — L) then the system (20) is finite time . ) )
globally stable [16], i.e, its solution converges in finiime NOW: in order to attenuate the perturbation tetmin (23),
to the origin (¢, ¢s) = (0,0). The sliding motion ony — 0 We define the surface

is given by (13) and (15), in this way the SM equation is ol =e + 2 (27)

Xr1 = (A1 — A12C1) X1 + A12§ + Dip. (21)  wherez is an SM integral variable and will be defined later.

At this point, to reject the unmatched unknown perturbatioifom (23), (25), (24) and (27) the derivative of is given
p in the SM equation (21), we apply the well knownbY

geometrical approach [11]. The disturbange can be 01 = —koeo — kier + wgs 1 + A1 + 2. (28)
rejected preserving SM equation stability if and only if Selecting: = koeo + ki1 with 2 (0) = —e; (0), Eq. (28)
the image of the matrix associated to the disturbancgaqyces to

ImD;, belongs toV;, the so-called maximalAi1, Ajz)- 61 = g1 + A (29)
invariant subspace contained in the kernel of the ougput '

2,1 = [ 1 0 0]x.. It can be seen that this problem To enforce quasi-sliding motion in (29) the tetrgs; in

is solvable, since clearly 1B, =spar{]51} belongs to (28) is chosen as

v :spar{VZ(l),VZ(g)} with D, = [0 1 0], 65,1 = —ko, SIgM(e, 01)

v;=[0 1 0] andVv;® =[0 0 1]". Then, where we use the result that the sign function can be
using the virtual controk,, (15), which producesV; to approximated by the sigmoid function in the form

be SM equation (21) invariant, the outpyt = =z, is
not affected at all by the signa, i.e, this control rejects
the disturbancep in the SM equation. Notice that this  Now, we define a new error variablg as

control renders the system (21) maximally non-observable

by canceling out the zeros associated to the transfer famcti €2 = Tes — L6- (30)
betweenp andy; = x,1 with closed-loop poles. The closed-
loop system (21) is stable, because these zeros are statble,
the remaining pole is located in a suitable stable position.

slggo sigm(e; ) = sign(x) .

Using (10), (11) and (30), straightforward calculations
veal

é2 = AQ — bgub (31)
B. Brake Control where the term
Let x, = [x5, 26,2, and taking into account the direct Ores Ores
action of the pressuré®, in the brake cylinder over the Ay = azwe + ——id5 + ——d7 (32)
. . . (91'5 8$7
wheels motion, we define the output tracking error as _ ) )
1 g is considered as a perturbation.
e1 2 x5 — —° z7. (22) Using the new variablegy, e1, e2 and o; the extended
closed loop system (23), (26), (31) and (29) is presented as
Then, from (10), (11) and (22) the derivative &f is
. éo =€ (33)
é1=f1 ($575i7) + by (1175,177) Te + A1 (23) 61 = —koeo — kieg + eq — kglsigm(s,al) + A (34)
wheref (z5,27) = 1= [a11v Ny ¢ (s) — fular)]—aras+ o1 = —ko,Sigm(e, 1) + Ay (35)
asVN,, ¢ (s) andb; (x5,27) = —ag. The termA; contains 6y = Ay — bsuy (36)

the reference derivativeé*, the variations of the friction )
parameter, the wind speed,,, the influence of,, z, on i7 = —anF — fu (27). (37)



We now consider the types of valve that can vary itshe Lyapunov functionVz = 3 (ef +e?) and taking its
position in a continuous range. To induce sliding mode on theerivative,
sliding manifolde; = 0, the super-twisting control algorithm

is applied [12] to (36) Vo = er[(1—ko)leo| — kel]
< —leal[(ko — 1) [eo] + k1 [ea]]
Up = — |Up1 + U 38
’ bg[ b i) (38) therefore, wherky > 1 and k; > 0 then, e; converges
. 1. . ) asymptotically to zero.
with up; = —Ap1 ea]2sign(es), e = —Ap2Sign(ez), where

A1 > 0, Ap2 > 0 are control parameters. Now, the stability IV. SIMULATION RESULTS
of (33) - (36) closed loop by (38) is outlined in a step by

step procedure:

Step A) Reaching phase of the projection motion (36);
Step B) SM stability of the projection motion (35);

To show the effectiveness of the proposed control law,
simulations have been carried out on the wheel model design
example, the system parameters used are listed in Table 1.

Step C) SM stability of (33)-(34) on the manifold, = 0 TABLE 1
and in the vicinity ofo; = 0. Values of Parameters (MKS Units)
We use the assumptions Parameter| Value Parameter| Value | Parameter| Value
M 1800 J 189 | F 0.97
Al < ailo] + B (39) T s T 00 | A, o6
’A1’ < ag|d1] (40) K. 1050 | by 008 | Cy 0.65
. Ky, 175500 | T 0535 | p 1.225
’A2’ < B (41) Cew 19960 | B 10 Vo 6
with ag>0,a1 >0, as >0, 51 > 0, 52 > 0. Cur 1500 ¢ 19 g 981
Step A) For (36) in closed loop with (38) we use the T 00043 | D ! v 0°
transformationy, = Az — A\po fotsign(eg) dt, then, we have In order to maximize the friction force, we suppose that
) slip tracks a constant signal during the simulaticris=
€a = —MXp1lea|?sign(es) — g (42)  0.203, which produces a value close to the maximum of the
Qb = —Nsign(es) + Ay function ¢(s). The reference for suspensiongg; = —0.2.

The road perturbation is considered as= 0.1 cos (10t).
and under the assumption (41), then choosing> 582 and  The parameters used in the control law arg = 0.1, ;1 =
328, < A}, < 8(\2 — ), the system (42) is finite time 10, \;, = 15, C; = [ =175 =35 0], ko = 700, ky =
globally stable [16], i.e, its solution converges in finit@é 120, k,, = 10, \p2 = 1, A2 = 2 ande = 10. On the other
to the origin(ez, ¢») = (0,0). hand, to show robustness properties of the control algosth

Step B) To analyze the stability of the projectionin presence of parametric variations we introduce a change
motion (35) we assume that the signum function caof the friction coefficienty which produces different contact
be approximated by the sigmoid function in the formforces, that isF" and F'. Then,v = 0.1 for t < 4 s and
sigm(e;z) — sign(xz) ase — oo, then, we can establish » = 0.5 for ¢t > 4 s. It is worth mentioning that just the
the following equality nominal values were considered in the control design.

Longitudinal speed) and the linear wheel speed, are
shown in Fig. 4, the ABS controller should be turned off
when the longitudinal speed is close to zero.

sign(x) — sigm(g; x) = Ag (g52) . (43)

It is evident thatA, (z) is bounded, that is, for a given
¢ there exists a positive constafit < v < 1 such that
IIAs (g;x)|| = . Now, taking the Lyapunov candidaig =
%of and taking its derivative, with (39) results

Vl = 01 [—kg]Sigm(E,Ul)-i-Al]
—lo1| ko, (1 =7) — a1 |o1]| = Bi]

therefore, ifk,, > lﬁ—ly theno; converges to a vicinity of

zero,|o1| < ¢, with

IN

Fig. 4. Longitudinal speed (dashed) and the linear wheel speed

In (2__V) (solid)
I N
2e Fig. 5 shows the slip rate during the breaking process, we
and, with (40),6, converges to zero in finite time [9]. can see the fast convergence to the reference wluend

Step C) To analyze the SM stability of (33)-(34) on theFig. 6 presents the friction/slip characteristic relatiofs)
manifold e = 0 and in the vicinity ofo; = 0 we define obtained during the breaking process under control actions



Fig. 5. Slip performance in the Fig. 6. Performance ab(s) in the Fig. 13. Nominal contact forcé& (dashed) and real forcg' (solid)

braking process braking process

V. CONCLUSIONS

Fig. 7 shows the vertical vehicle position during the In this work sliding mode based controller for ABS

bre"?“?'”g Process. The position 'S Iower@zd_m under zero assisted with active suspension has been proposed. The
position and it is kept constant until the car is almost seahp simulation results show good performance and robustness

until Fig. 8 presents the suspension position of the vehicl%f the closed-loop system in presence of both, the matched

it moves constantly, counteracting the changes on road aﬁﬂd unmatched perturbations, namely, parametric vanistio

wheel. and neglected dynamics. Giving an important application of
the sliding mode control theory in the automotive problems.
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