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Abstract— This paper exposes a controller for the nonlinear
systems in the block controllable form. This proposal
guarantees exponential exact tracking in the presence of
unknown matched and unmatched disturbances by means
a combination of the block control method and integral
terms designed with high-order sliding-modes algorithms. Both,
matched and unmatched, disturbances are compensated by
those integral continuous terms and the tracking is achieved
with the design of a nominal control law.

I. INTRODUCTION

A basic problem in the design of feedback control
systems in the stabilization and tracking in presence of
uncertainty caused by plant parameter variations and external
perturbations. In order to deal with these problems, several
approaches have been proposed. Most of them are based on
Lyapunov stability theory and variable structure systems with
sliding modes (SM). The SM techniques are based on the
idea of the sliding manifold, that is an integral manifold with
finite reaching time [1] and have been widely used for the
problems of dynamic systems control and observation due
to their characteristics of finite time convergence, robustness
and insensitivity to uncertainties due to external bounded
disturbances and parameters variation [2].

For the design process of controllers based on Lyapunov
and SM it is recognized the disturbances which belongs
to the control subspace, the matched ones, and those
disturbances that appear into a subspace spanned by different
than the control coordinates, the unmatched. For the sliding
mode control case, the closed-loop system can be proposed to
be insensitive to a certain class disturbances, which results to
be the matched disturbances [3]. However, these controllers
are not able to compensate the disturbances affecting the
motion on the sliding manifold, i.e. unmatched disturbances,
making the controller synthesis for the systems with
unmatched disturbances a high challenging and interesting
problem.

For systems presented in some block-wise form as the
regular form [4], or block controllable forms [5], [6],
the design procedures is performed, usually by applying
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step-by-step algorithms as the block control or the back-
stepping [7], using some of the states as intermediate control
variables or pseudo-controllers. Also, these forms allow
the easy identification of the matched and the unmatched
disturbances, leading to a straight calculation of pseudo-
controllers which reduce the unmatched disturbances effect.

Taking into account that, for the case of SM control, the
pseudo-control proposal is derived from the sliding manifold
design, a manifold with high gain structure to attenuate the
unmatched disturbances and to stabilize the SM dynamics
for systems presented in the nonlinear block controllable
(NBC) form [6] is proposed in [8]. Similarly, for this class of
systems, the nested SM control [9] is proposed by replacing
the high gain terms with sigmoid functions with the aim to
create a quasi-sliding dynamics. Note that, in order to induce
the SM dynamics, the manifold must be differentiable, this
is the reason for the use of sigmoid functions instead of the
well-known sign function.

As alternative to the mentioned high gain methods, a
common and effective approach is the design of sliding
manifolds which include integral SM control terms as, for
example, the proposed in [10]–[12], including high order
designs [13]. The integral SM control [14]–[16] has been
proposed with the aim to force the system trajectory starting
from the sliding manifold, eliminating the reaching phase
and ensuring robustness. These controllers have been shown
high performance and easy implementation, specially with
its discrete version as shown in [17]–[20]. An important case
of the application of integral SM control terms is the use of
integral nested SM algorithms (IN-SM) [21], [22], which are
based on the application of the nested SM control, combined
with the integral SM control to systems presented in the NBC
form. In this way, the motion on the sliding manifold has the
characteristics of the integral SM controllers, rejecting or
attenuating the unmatched disturbances. However, as for the
case of nested SM control, avoiding the sliding manifold to
contain discontinuous terms as the sign function, continuous
approximation of the sign function is applied in the IN-
SM case, where the sign function is replaced by a sigmoid
function for each block. This proposal allows the design of
a well defined manifold, but, with reduced robustness and
tracking performance.

In order to overcome this major drawback of the IN-SM
scheme, in this paper a new control algorithm for systems
presented in the NBC form, the integral nested high order
sliding mode control (IN-HOSM). The first forms of IN-
HOSM were presented in [23], [24] with the main idea to use
the quasi-continuous SM (QC-SM) algorithms [25] instead
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of sigmoid functions (used by the IN-SM) to the integral SM
terms design, leading to a nested integral structure but with
exact disturbance rejection. A similar technique presented in
[26], which is an improvement of the mentioned high gains
methods, offering exact tracking an finite time convergence.
It is worth to highlight that the QC-SM algorithms can be
designed to be differentiable for each block by selecting a
suitable order.

The closed-loop system exhibits the properties of
exponential tracking and robustness, rejecting the uncertainty
due to the parameter variations and external disturbances.

The paper is exposed as follows: Section II presents
the nonlinear system in the NBC form to be studied
and the problem formulation. Section III describes the
proposed controller, including a stability and robustness
analysis. Simulation results which demonstrate the main
characteristics of the proposed controller, are presented in
Section IV. Finally, in Section V the conclusions are given.

II. PROBLEM STATEMENT

Consider the nonlinear system in the NBC form

ẋ1 = f1(x1, t) +B1(x1, t)x2 + ∆1(x1, t)

...
ẋi = fi(x̄i, t) +Bi(x̄i, t)xi+1 + ∆i(x̄i, t)

...
ẋr = fr(x, t) +Bn(x, t)u+ ∆r(x, t)

(1)

where i = 2, . . . , r − 1, t ≥ 0 is the time variable,
x =

[
xT1 . . . xTr

]T
is the system state, divided in

r blocks xi ∈ Xi ⊂ Rni , with the hierarchical structure
x̄i =

[
xT1 . . . xTi

]T
and n1 ≤ n2 ≤ . . . ≤ nr, u ∈ Rnr

is the control input, fi(·) are known nonlinear smooth vector
fields, Bi(x̄i, t) ∈ Rni×n1 are known full rank and uniformly
bounded matrices in Xi and, ∆i(x̄i, t) are unknown bounded
perturbation terms due to parameter variations and external
disturbances.

The control output is y = x1, the system state x and
the control signal u are assumed to be known. The control
problem is to design a controller such that the output tracks
a smooth desired reference yd in spite of the perturbations
presence.

III. CONTROLLER DESIGN

A. On the Quasi-continuous controller

Consider the following SISO affine system:

φ̇ = a(t, φ) + b(t, φ)u (2)

where φ ∈ Rp. The control objective is the finite time
stabilization of a variable σ(t, φ) ∈ R assumed to be the
output of the system (2). The functions a, b and σ can be
considered as unknown, as well the system dimension p. It
is assumed the relative degree [27] of (2) with respect to σ
is rσ ∈ N, that is

σ(rσ) = h(t, φ) + g(t, φ)u (3)

where h(t, φ) = σ(rσ)|u=0 and g(t, φ) = ∂σ(rσ)

∂u . Those
functions are considered to globally fulfill the inequalities

0 < Km ≤
∂σ(rσ)

∂u
≤ KM and |σ(rσ)|u=0 ≤ C

for some positive constants Km, KM and C, following to
the differential inclusion

σ(rσ) ∈ [−C,C] + [Km,KM ]u. (4)

The quasi-continuous (QC) homogeneous controller,
introduced in [25], provides a bounded control feedback
which establishes a finite time sliding mode on the manifold
σ = σ̇ = . . . σ(rσ−1) = 0. The control signal is continuous
everywhere but in this manifold, so it is called quasi-
continuous. For rσ > 1, the following functions are defined:

ϕ0,rσ = σ, N0,rσ = |σ|, Ψ0,rσ =
ϕ0,rσ

N0,rσ

ϕi,rσ = σ(rσ) + βiN
(rσ−i)/(rσ−i+1)
i−1,rσ

Ψi−1,rσ

Ni,rσ = |σ(rσ)|+ βiN
(rσ−i)/(rσ−i+1)
i−1,rσ

Ψi,rσ =
ϕi,rσ
Ni,rσ

, i = 1, . . . , rσ.

(5)

With the parameters β1, . . . , βrσ , α > 0 large enough, the
controller

u = −αΨrσ−1,rσ

(
σ̇, . . . , σ(rσ−1)

)
(6)

results in a rσ-sliding homogeneous controller, providing
finite tine stability of (4), then inducing a rσ-sliding mode on
(2). The solutions of the closed loop systems are understood
in Filippov sense [28].

B. Integral Nested Structure

Block 1: For the first block, let e1 = x1 − yd, then

ė1 = f1(x1, t) +B1(x1, t)x2 + ∆̄1(x1, t) (7)

where ∆̄1(x1, t) = ∆1(x1, t)− ẏd.
Defining

e2 = x2 − φ1(x1, t, u10, u11) (8)

with φ1(x1, t, u10, u11) = B+
1 (x1, t)[−f1(x1, t)+u10 +u11]

and B+
1 (x1, t) = BT1 (x1, t)

(
BT1 (x1, t)B1(x1, t)

)−1
.

Replacing (8) in (7), it follows

ė1 = u10 + u11 +B1(x1, t)e2 + ∆̄1(x1, t) (9)

where, the control variable u10 is used to stabilize the
tracking error e1 and u11 is designed such that the
disturbance ∆̄1(x1, t) is compensated.

In order to propose the control term u11, the variable
σ1 ∈ Rn1 is defined as

σ1 = e1 + z1 (10)

where z1 is an integral SM variable, thus

σ̇1 = u10 + u11 +B1(x1, t)e2 + ∆̄1(x1, t) + ż1. (11)
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By selecting dynamics for z1 as ż1 = −u10−B1(x1, t)e2,
the equation (11) reduces to

σ̇1 = u11 + ∆̄1(x1, t). (12)

The control term u10 is proposed as

u10 = A1e1 (13)

with A1 ∈ Rn1×n1 being a Hurwitz matrix and, u11 selected
from (5) as

u
(r−1)
11 =

[
−α1,1Ψr−1,r

(
σ̇11, . . . , σ

(r−1)
11

)
. . .

−α1,n1
Ψr−1,r

(
σ̇1n1

, . . . , σ
(r−1)
1n1

) ]T (14)

where the σ1k, with k = 1, . . . , n1, is the k-th element of the
vector σ1, and its time derivatives are calculated by using a
finite time robust differentiator [29].

Finally, (9) takes the form

ė1 = A1e1 + u11 +B1(x1, t)e2 + ∆̄1(x1, t) (15)

with u11 as in (14).
The exposed procedure for the Block 1 will be extended

to the blocks i with i = 2, . . . , r − 1, as follows:
Block i: For the block i, let ei = xi − φi−1, then

ėi = fi(x̄i, t) +Bi(x̄i, t)xi+1 + ∆̄i(x̄i, t) (16)

where ∆̄i(x̄i, t) = ∆i(x̄i, t)− φ̇i−1.
Defining

ei+1 = xi+1 − φi(xi, t, ui0, ui1) (17)

with φi(xi, t, ui0, ui1) = B+
i (x̄i, t)[−fi(x̄i, t) + ui0 + ui1]

and B+
i (x̄1, t) = BTi (x̄i, t)

(
BTi (x̄1, t)Bi(x̄i, t)

)−1
.

Replacing (17) in (16), it follows

ėi = ui0 + ui1 +Bi(x̄i, t)ei+1 + ∆̄i(x̄i, t) (18)

where, as for the first block, the control variable ui0 is used
to stabilize the error variable ei and ui1 is designed such that
the disturbance ∆̄i(x̄i, t) is compensated.

To propose the control term ui1, the variable σi ∈ Rni is
defined as

σi = ei + zi (19)

where zi is an integral SM variable, thus

σ̇i = ui0 + ui1 +Bi(x̄i, t)ei+1 + ∆̄i(x̄i, t) + żi. (20)

With żi = −ui0−Bi(x̄i, t)ei+1, the equation (20) reduces
to

σ̇i = ui1 + ∆̄i(x̄i, t). (21)

Similarly, ui0 is proposed as

ui0 = Aiei (22)

with Ai ∈ Rni×ni being a Hurwitz matrix and, ui1 selected
from (5) as

u
(r−i)
i1 =

[
−αi,1Ψr−i,r−i+1

(
σ̇i1, . . . , σ

(r−i)
i1

)
. . .

−αi,niΨr−i,r−i+1

(
σ̇ini , . . . , σ

(r−i)
ini

) ]T
(23)

where the σik, with k = 1, . . . , ni, is the k-th element of the
vector σi.

Therefore, (18) takes the form

ėi = Aiei + ui1 +Bi(x̄i, t)ei+1 + ∆̄i(x̄i, t) (24)

with ui1 as in (23).
Finally, the control signal design for the Block r will be

presented.
Block r: For the block r, let er = xr − φr−1, then

ėr = fr(x, t) +Br(r, t)u+ ∆̄r(x, t) (25)

where ∆̄r(r, t) = ∆r(x, t)− φ̇r−1.
Defining

u = B+
r (x, t)[−fr(x, t) + ur0 + ur1] (26)

with B+
r (x, t) = BTi (x, t)

(
BTr (x, t)Br(x, t)

)−1
, and

replacing (26) in (25), it follows:

ėr = ur0 + ur1 + ∆̄r(x, t) (27)

where, as for the previous blocks, the control variable ur0
is used to stabilize the error variable er and ur1 is designed
such that the disturbance ∆̄r(x, t) is compensated.

For the control term ur1 definition, the variable σr ∈ Rnr
is defined as

σr = er + zr (28)

where zr is an integral SM variable, yielding to

σ̇r = ur0 + ur1 + ∆̄r(r, t) + żr. (29)

With żr = −ur0, the equation (29) reduces to

σ̇r = ur1 + ∆̄r(x, t). (30)

With the aim to obtain a continuous control u, ur0 is
proposed as

ur0 = Arer (31)

with Ar ∈ Rnr×nr being a Hurwitz matrix.
The control term ur1 designed with the use of the super-

twisting algorithm [30] as

ur1 =
[
−λ1,1v1(σr1)− λ2,1v2(σr1) . . .

−λ1,nrv1(σrnr )− λ2,nrv2(σrnr )
] (32)

where the σrk, with k = 1, . . . , nr, is the k-th element of
the vector σr, λ1,k, λ2,k > 0 are tuning parameters and, the
functions v1(·), v2(·) are selected such that

v1(·) = | · |1/2sign(·)
v̇2(·) = sign(·).

Therefore, (27) takes the form

ėr = Arer + ur1 + ∆̄r(x, t) (33)

with ur1 as in (32).
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C. Stability Analysis
The closed loop system, consisting of the equations (15),

(24) and (33), has the form
ė1 = A1e1 + u11 +B1(x1, t)e2 + ∆̄1(x1, t)

ė2 = A2e2 + u21 +B2(x̄2, t)e3 + ∆̄2(x̄2, t)

...
ėi = Aiei + ui1 +Bi(x̄i, t)ei+1 + ∆̄i(x̄i, t)

...
ėr = Arer + ur1 + ∆̄r(x, t)

(34)

For the block r, by selecting every gain λ1,k > 0 and
λ2,k >

1
2 supx,t

∥∥ d
dt∆̄r(x, t)

∥∥
1
, the manifold σr = σ̇ = 0 is

reached in finite time [31]. Hence, from (30), the equivalent
control value [32] for ur1, {ur1}eq, rejects the disturbance
∆̄r(x, t).

Similarly, note that, with a suitable controller gains
selection for the quasi-continuous controllers, for the block i,
i = 1, . . . , r−1 a sliding mode is established on the manifold
σ̇1 = . . . = σ

(r−i)
1 = 0 in finite time. Hence

{ui1}eq = −∆̄i(xi, t) (35)

that is, the equivalent control value {ui1}eq rejects the
disturbance ∆̄i(xi, t).

Therefore, the system (34) reduces to

ė1 = A1e1 +B1(x1, t)e2

ė2 = A2e2 +B2(x̄2, t)e3
...

ėi = Aiei +Bi(x̄i, t)ei+1

...
ėr = Arer

(36)

which is a linear perturbed system with vanishing
perturbation.

The system can be written as

ė = Ae+B(x, t)e (37)

with A = blockdiag[A1, . . . , Ar], e = col[e1, . . . , er−1, 0nr ]
and B(x, t) = col[B1(·), . . . , Br−1(·), 0nr×nr ].

Since B(x, t)e is bounded, it follows that

‖B(x, t)‖ < γ ‖e‖ (38)

with γ and upper bound of B(x, t).
Consider the system (37). Let Q = QT > 0 and solve the

Lyapunov equation [33].

PA+ATP = −Q. (39)

The quadratic Lyapunov function V = eTPe

λmin(P ) ‖e‖2 ≤ V ≤ λmax(P ) ‖e‖2

∂V

∂e
Ae = −eTPe ≤ −λmin(Q) ‖e‖∥∥∥∥∂V∂e

∥∥∥∥ =
∥∥2eTP

∥∥ ≤ 2 ‖P‖ ‖e‖ = 2λmax(P ) ‖e‖

(40)

The derivative of V along the trajectories of the system
satisfies

V̇ ≤ −λmin(Q) ‖e‖2 + 2λmax(P )γ ‖e‖2 (41)

Hence, the system is globally exponentially stable if γ <
λmin(Q)
2λmax(P ) .

IV. NUMERICAL SIMULATION EXAMPLE

In order to expose the performance of the proposed
controller, consider the perturbed third order system [26]

ẋ1 = 2 sin(x1) + 1.5x2 + ∆1(x1, t)

ẋ2 = 0.8x1x2 + x3 + ∆2(x̄2, t)

ẋ3 = −x23 + 2u+ ∆3(x, t)

∆1(x1, t) = 0.2 sin(t) + 0.1x1 + 0.12

∆2(x̄2, t) = 0.3 sin(2t) + 0.2x1 + 0.2x2 − 0.4

∆3(x, t) = 0.2 sin(2t) + 0.2x1 + 0.3x2 + 0.2x3 + 0.3.

where ∆i, i = 1, 2, 3 are disturbances, which are regarded
as unknown to the controller .

For this case, the tracking of the reference yd =
2 sin(0.15t) + 4 cos(0.1t) − 4 by x1 is desired. For that, a
IN-HOSM controller is designed. The controller variables
are presented as follows:

The sliding manifolds are

σ1 = e1 + z1

σ2 = e2 + z2

σ3 = e3 + z3

where the error variables are given by

e1 = x1 − yd
e2 = x2 − φ1
e3 = x3 − φ2

and the integral sliding mode variables are

ż1 = −u10 − 1.5e2

ż2 = −u20 − e3
ż3 = −2u30.

The quasi-controllers are given by

φ1 =
1

1.5
(−2 sin(x1) + u10 + u11)

φ2 = −0.8x1x2 + u20 + u21

which are designed by using the quasi-continuous algorithms
for the integral terms

ü11 = −α1

 σ̈1 + β1

(
|σ̇1|+ |σ1|

2
3

) 1
2
(
σ̇1 + |σ1|

2
3 sign(σ1)

)
|σ̈1|+ β1

(
|σ̇1|+ |σ1|

2
3

) 1
2


u̇21 = −α2

(
σ̇2 + β2|σ2|

1
2 sign(σ2)

|σ̇2|+ β2|σ2|
1
2

)
and the nominal terms u10 = −k1e1, u20 = −k2e2.
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Similarly, the controller u is given by

u = 0.5
(
x23 + u30 + u31

)
where u30 = −k3e3is the nominal control input and
the super-twisting u31 = −λ11v1 − λ21v2, with v1 =
|σ3|

1
2 sign(σ3) and v̇2 = sign(σ3) is the integral control term.

The closed loop disturbances are ∆̄1(x1, t) = ∆1(x1, t)−
ẏd, ∆̄2(x̄2, t) = ∆2(x̄2, t)−φ̇1 and ∆̄3(x, t) = ∆3(x, t)−φ̇2.

The derivatives of the manifolds are obtained with a
sliding mode differentiator [29]. The gains for the controller
are k1 = 5, k2 = 5, k3 = 5, λ11 = 13, λ21 = 15, α1 = 15,
α2 = 5, β1 = 2 and β2 = 1.

The results obtained by simulation are shown in the
following figures. The reference tracking is shown Fig. 1.
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Fig. 1. Reference tracking x1 (solid) and yd (dashed)

The control signal is presented in Fig. 2.
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Fig. 2. Control signal u

The simulation exposes the high performance of the
controller in presence of, both, matched and unmatched
disturbances.

The following figures show how the integral terms of the
control u11, u21 and u31 reject the disturbances ∆̄i(x̄i, t)
with i = 1, 2, 3, respectively.
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Fig. 3. Disturbance ∆̄1(x1, t) (solid) and −u11 (dashed)
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Fig. 4. Disturbance ∆̄2(x̄2, t) (solid) and −u21 (dashed)
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Fig. 5. Disturbance ∆̄3(x, t) (solid) and −u31 (dashed)
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V. CONCLUSIONS

A robust controller for nonlinear systems in the NBC form
was presented. This proposal offers finite time exact rejection
of, both, matched and unmatched disturbances. Since this
robustness features are achieved, an exact exponentially
converge tracking is obtained by the closed loop system.

Numerical simulations show the effectiveness and
feasibility of the proposal.
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