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Abstract—The aim of this paper is to introduce a new
recurrent neural network to solve linear programming. The main
characteristic of the proposed scheme is its design based on
the predefined-time stability. The predefined-time stability is a
stronger form of finite-time stability which allows the a priori
definition of a convergence time that does not depend on the
network initial state. The network structure is based on the
Karush-Kuhn-Tucker (KKT) conditions and the KKT multipliers
are proposed as sliding mode control inputs. This selection yields
to an one-layer recurrent neural network in which the only
parameter to be tuned is the desired convergence time. With
this features, the network can be easily scaled from a small to a
higher dimension problem. The simulation of a simple example
shows the feasibility of the current approach.

I. INTRODUCTION

Optimization methods have been widely applied in science
and engineering. The optimization goal is to determine the
decision variables values, which maximize or minimize an
objective function, sometimes, subject to constraints. Some
of this problems are large-scale real-time linear programming
procedures. For such applications, sequential algorithms as
the classical simplex or the interior point methods are often
proposed. However, those traditional approaches may not be
efficient since the computing time required for a solution is
greatly dependent on the problem dimension and structure.

The use of dynamical systems which can solve real-
time optimization was introduced in [1] and arises as a
promising alternative. Extensions and new approaches were
presented for linear programming [2]-[4] and for nonlinear
programming [5]. For most of the cases, these systems are
presented as the solution to a controller design problem [6],
in the form of circuits [7], [8] or under the computational
paradigm of the artificial neural networks (ANN) where are
of the form of recurrent neural networks (RNN) [9]-[11].
Due to its inherent massive parallelism, those systems are
able to solve optimization problems in running time at the
orders of magnitude much faster than those of the most
popular optimization algorithms executed on general-purpose
digital computers [12], with unusual flexibility because the
system constantly seeks new solutions as the parameters of
the problem are varied [1]. Usually, the network structure is
proposed based on the Karush-Kuhn-Tucker (KKT) optimality
conditions [13], [14], by using the KKT multipliers as
activation functions.

A major contribution to this class of solutions is the use
of systems with motion on a sliding manifold, as proposed

in [15], that is an integral manifold with finite reaching
time [16], presented by some non-smooth systems, providing
finite time convergence to the problem solution. Usually,
those sliding modes appears when discontinuous activation
functions are used for RNN design exhibiting features such as
finite time convergence and insensitivity to external bounded
disturbances [17]. For this case, the sliding modes and
finite time convergence to sets defined by the optimization
constraints are desirable characteristics of the neural network
[18]. Taking advantage of these features presented by the
discontinuous systems, the RNN design has been stated as
sliding mode control problem [19] and several recurrent neural
networks have been proposed using different discontinuous
activation functions as hard-limiting [20]-[22], Heaviside [23]
and dead-zone [24], [25]. Further results on networks with
these dynamical properties were presented in [26]-[29], where
the analysis is based on the theory of differential inclusions and
differential equations with discontinuous right-hand [30]-[32].
In addition, a class of RNN with fixed time convergence have
been recently proposed [33], providing convergence in a finite
time that does not depends on the network initial condition
[34], [35].

Although the mentioned works exhibit high performance,
it is necessary to tune the network parameters such that the
optimizer trajectories converge to the optimization solution.
For most of the cases, the number of network parameters
increases linearly with the optimization problem dimension,
since for every decision variable there is an individual selection
of each activation function. In addition, the fixed time property
is not presented in most of the mentioned references. This last
desirable property allows the design of finite time convergent
systems with this time independent to initial conditions. The
reference [33] provides a fixed time design, however there is
not presented a straight method to select that time.

In this paper is proposed a RNN for the solution of linear
programming. Its design is considered as a sliding mode
control problem, where the network structure is based on the
Karush-Kuhn-Tucker (KKT) optimality conditions [13], [14]
and the KKT multipliers are regarded as control inputs. At
this point, to the best of the authors knowledge, a controller
with vector structure and predefined time stability is firstly
proposed. The predefined time stability refers to a particular
case of the fixed time stability where the convergence
time can be selected a priori. This structure allows the
problem to be solved without the individual selection of each
stabilizing input, instead a multivariable function, based on



the unit control [36], [37], is used. On the other hand, the
predefined time stability ensures the possibility to select a
time independent to the initial conditions in which the system
converges. This controller is used to the KKT multiplier
design, enforcing a sliding mode in which the optimization
problem is solved.

Thus, the proposed approach have very attractive features
as: predefined time of convergence to the optimization problem
solution and only a tuning parameter, namely the desired
convergence time, regardless of the optimization problem
dimension. Therefore, it offers the scalability characteristic,
that allows the on-line solution of problems with low and
higher dimension without major changes of the system.

In the following, Section II presents the mathematical
preliminaries and some useful definitions. Section III describes
the proposed system for the solution of linear programming,
including the stability analysis and an academic example which
illustrates the fixed time convergence feature of the system.
A simulation example id presented in Section IV. Finally, in
Section V the conclusions are presented.

II. MATHEMATICAL PRELIMINARIES

Consider the system

£=f(t,€) (1

where £ € R™ and f : Ry x R™ — R"™. For this system, its
initial conditions or initial state are £(to) where ¢ty € R. The
time variable ¢ is defined on the interval [tg, 00).

Definition 2.1 (Integral manifolds): Let o(§) a smooth
function R” — RF with k& < n, and let the manifold

M={E€R" : o(¢) = 0}

If for an initial condition £(tg) € M, the trajectory £(¢, &) €
M for all ¢, the manifold M is called an integral manifold.

Definition 2.2 (Sliding mode manifold [16]): If there is a
non-empty set

N CR*"\ M

such that for every initial condition £(tg) € N is a time
tp < ts < oo in which the system reaches the manifold M,
then the manifold M is called an sliding mode manifold.

Remark 2.1: A sliding mode on a certain sliding manifold
can only appears if f is a non-smooth (usually discontinuous)
function. For this case, the solutions of (1) are understood in
Filippov sense [30].

Now, consider the system (1) forced by an affine control
input

£=f(t,&) + B(u )

where u € R* and B(¢) is a full rank matrix for every £. For
this case it is assumed that o () has relative degree one, that
is

& = a(t,§) +b(&)u
where a(t,§) = g—g - f(t,€) and b(&) = g—g - B(&). In addition,
in contrast to (1), f(¢,£) is continuous, so it is a(£), and the

sliding mode on M is induced by means of a non-smooth u.
This is exposed in the following definition:

Definition 2.3 (Sliding mode control [16], [37]): If  for
the system (2) w is such that the system evolves on the
manifold M after a time ¢, v is a sliding mode control input.

Often, the sliding mode control input is discontinuous as

follows: o)
w0 = {16

where uT(£) and v~ () are continuous functions such that
ut(§) # u(§).

Defining f* = f(t,€) + B(§)u™(§) and f~ = f(t,&) +
B(g)u_ (£), the Filippov solution of (2) on the manifold M
is

ifo(§) >0
if 0(€) <0

E=pft+(1-pf”
where 0 < ¢ < 1 is solution to 6(§) = 0.

Similarly to the Filippov solutions on a sliding manifold
M, the concept of equivalent control is given in the following
definition:

Definition 2.4 (Equivalent control [37]): Let the system
(2) evolving on the sliding manifold M. The equivalent control
Ueq is the continuous solution to ¢(§) = 0 which results from
a(t> 5) + b(&)ueq =0.

With the definition of the equivalent control, the motion of
the system (2) on the sliding manifold M is given by

€= f(t,€) + B(&)ucq-

Remark 2.2: Note that for the affine control input case, the
Filippov solution results to the same motion on the manifold
M than that obtained with the equivalent control method [37].

The idea of the sliding mode control is highly related with
the finite- time stability. This time however often depends
on the system initial conditions. The case when convergence
time presents a class of uniformity with respect to the initial
conditions not depending on the initial conditions is known as
fixed time stability [34]. The following definition presents a
precise statement of the fixed time stability:

Definition 2.5 (Globally fixed-time attraction [35]): Let a
non-empty set M C R". It is said to be globally fixed-time
attractive for the system (1) if any solution £(t,&p) of (1)
reaches M in some finite time moment ¢ = T'(&y) and the
settling-time function 7'(§p) : R™ — R4 U {0} is bounded by
some positive number Ty, i.e. T(&y) < Thax for & € R™.

Note that for some systems Tp,x can be tuned by a
particular selection of the system parameters, this notion refers
to the predefined stability which is given in [38] and presented
in the following definition:

Definition 2.6 (Predefined-time attraction): For the case
of fixed-time attraction when the system parameters can be
selected such that the time T},,x can be predefined as desired,
it is said that M is predefined-time attractive.

III. A RNN FOR LINEAR PROGRAMMING PROBLEM

Before to present the predefined-time RNN, it will be
exposed novel control structures to be used in the optimizing
system design.



A. Preliminary Results

With the definition of a predefined-time attractive set, the
following lemma provides a Lyapunov characterization of a
class of these sets on the state space:

Lemma 3.1 (Lyapunov function): If  there exists a

continuous radially unbounded function
V:R" - Ry U{0}

such that V(¢) = 0 for £ € M and any solution &(¢) satisfies
V < —aexp(V(£(1)) 3)

for a > 0, then the set M is globally predefined-time attractive
for the system (1) and Tiax = é + to.

Proof The solution of (3) is

V(t)=1In <a(t —to) j exp(-%))

where VO = V(&) and & = £(to). Note that V(t) = 0 if
= 1, hence the settling-time function is

a(t— to)+exp( Vo)

T(&) =

From 0 < exp(—Vp) < 1, it follows that Ty = +

1-— %
7exp( 0) + 1o
o

+to. A

In order to apply the previous result to control design,
consider the dynamic system

E=AE) +u 4)

with £,u € R" and A : Ry x R™ — R". The main objective
is to drive the system (4) to the point & = 0 in a predefined
fixed time in spite of the unknown non-vanishing disturbance
A(&,t). A solution to this problem which does not requires an
individual selection of each of the n control variables based
on the unit control is presented in the following theorem:

Theorem 3.1 (Predefined-time multivariable control): Let
the function ¢(&,t) to be bounded as [|A(E,¢)|| < 6, with
0 < § < co a known constant. Then, by selecting the control
input

w=- <1+Qnﬂwmmw

with T, being a scalars the system (4) is globally predefined-
time stable with settling-time 7.

Proof: Let the Lyapunov function V' = |||, its derivative
is given by V = %5 Therefore

iﬂ{@> (1+®nmﬁﬂmw
g—%mmmm

that, by replacing the Lyapunov function reduces to vV <
_% exp(V) . Finally, by direct application of Lemma 3.1,
the ‘proof is finished. M

B. Linear Programming Problem Statement

Let the following linear programming problem:

min, clz
s.t. Ax=Db (6)
[ <x<h

where z = [ 231 T ]T € R™ are the decision variables,
c € R™ is a cost vector, A is an m X n matrix such that
rank(A) = m and m < mn; b is a vector in R™ and,
Let v = [y1 ... ym]T € R™ and 2z =

[ 21 ... 2z ]T € R”. Hence, the Lagrangian of (6) is
L(z,y,2)=cla+ T2 4+y" (Az —b). @)

The KKT conditions establish that z* is a solution for (6)

if and only if z*, y and z in (6)-(7) are such that
VoL (2*,y,2)=c+z+ATy=0 (8)
Az —b=0 ®
zizp =0if l; <af < h;, Yi=1,...,n. (10)

C. RNN Design with Predefined-Time Convergence

Following the KKT approach, a recurrent neural network
which solves the problem (6) in finite time is proposed.
For this purpose, let Q. {r eR": Az —b =0} and
Qg ={x eR": 1 <z < h}. According to (6), x* € Q where
Q=0Q4NQ.

From (8), let
i=—c+ATy+2, (11)

then, y and z must be designed such that ) is an attractive
set, fulfilling conditions (8)-(10). For this case, in addition to
condition (10), z is considered such that

- - 12
and the variable o € R™ is defined as
oc=Az—b. (13)

In order to obtain predefined-time stability to the solution
z*, the terms y and z are proposed in (11) as

y=(AAT)™! {Ac —Az+ Tigb (a)} (14)
and 1
= (Iell+ 72 ) o) 15

respectively, where T > 0.

For this case, the multivariable activation functigns are
(P(Z,l,h) - [ ¥1 (1.7117}1’1) Pn (xvlruhn) ] , with
@i (2,1;,h;) of the form

- \ﬁjﬁ exp([lz =1l)) if 2 <1
Pi (xallvhz) = 0 if li <z < hi

—ﬁ exp(|le — hl|) if x; > h;

(16)



and

¢ (0) = — 1 exp(o]). a7
ol
Therefore, with the structure given by (11) and the KKT
multiplier as in (14) and (15), with activation functions (16)
and (17), the following Theorem presents a RNN which solves
(6) in predefined-time.

Theorem 3.2 (Predefined-time RNN for linear programming):

For the RNN
1 1
T =—cA+ (||c|| + T) Ay (z,1,h) + ?Aﬂb(o) (18)

where A = I — AT(AAT)"TA, At = AT(AAT)~" and
Ts > 0, the point x* is globally predefined-time stable with
settling-time 7.

Proof: The dynamics of (13) is given by
c=A(-c+ATy+z). (19)

Therefore, with the selection of y as in (14), the system
(19) reduces to

1 o
& = ————=exp([|lo]).
T ||o||

Thus, from Theorem 3.1, a sliding mode is induced on the
manifold 0 = 0. Therefore, the set ). is predefined-time
attractive with settling-time 7.

On the manifold ¢ = 0, the equivalent value of ¢ is
the solution of ¢ = 0. Resulting to ¢oq = 0 or yoq =
(AAT)~1[Ac — Az]. Therefore, the dynamics of (11) on that
manifold is

i =—cA+Az. (20)

With the selection of z as in (15), the system (20) results
to

1
T=—-cA+A <||c|| + T) ¢ (z,1,h).

Consider the Lyapunov function V' = ||z||. Its derivative is
. T
given by V = ﬁx Therefore

. xT 1
V:7| —cA+A HcH—i—? o (x,l,h)

2] @1)
<X [1¢(a; ! h)]
Tl LTS
Replacing the Lyapunov function
1 .
. S—.T—Sexp(V) ifz<lorz>h 22)
=0ifl<zx<h

From Theorem 3.1, the set €, is predefined-time attractive
with settling-time T’.

In the set €2y the equivalent value of ¢, ¢4, is the
solution to # = 0. With the application of Theorem 3.1, the
conditions (9) and (10) are satisfied, providing predefined-time
convergence to the set (2. Now, by using the equivalent control

method, the solution of © = 0 and 6 = 0 in (11) for ¢t > T
has the form

Cc + ATyeq —+ Zeq = O

Therefore, the condition (8) is fulfilled, implying the point
x* € () is globally fixed-time stable. W

Remark 3.1: Note that, in contrast to the most of the RNN
presented in the literature, this scheme only needs the tuning
of one variable, namely T in spite of the problem dimensions.

IV. APPLICATION EXAMPLE

Let the following linear programming problem [24]:

min, 4z + rs + 223

S.t T — 2Ty +x3 =2
—X1 —|—25L‘2—|—$3:1 )
-5 S T1,T2,T3 § 5

(23)

The proposed neural network (18), with the parameter
Ts = 0.1, gives the results shown in Fig. 1.
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;
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Fig. 1. Transient behavior of the x variables.

Here, it can be observed that the network converges to the
optimal solution z* = [—5, —2.75, 1.5].

V. CONCLUSIONS

In this paper a novel optimization algorithm is proposed.
It can solve linear programming problems in a predefined
time. The convergence an optimality proofs were presented.
In addition, in order to illustrate the method, a simulation
example was given. As future work, the optimization algorithm
proposed will be extend to solve quadratic programming
problems, larger dimension problems and to other structures
which provide predefined time convergence.
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