
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS
SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

CLUSTER AUTOMOTRIZ RECONFIGURABLE

BASADO EN MICROPROCESADOR CON

ARQUITECTURA INTEL X86_64

Trabajo recepcional que para obtener el diploma de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: Adriana Lucía Moreno Vergel

Asesor: Raúl Campos Rodríguez
Asesor: Héctor Antonio Rivas Silva

Tlaquepaque, Jalisco. 15 de noviembre de 2016.

2

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS
SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

CLUSTER AUTOMOTRIZ RECONFIGURABLE

BASADO EN MICROPROCESADOR CON

ARQUITECTURA INTEL X86_64

Trabajo recepcional que para obtener el diploma de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: Adriana Lucía Moreno Vergel
Becario CONACYT No. 424478

Asesor: Raúl Campos Rodríguez

Asesor: Héctor Antonio Rivas Silva

Tlaquepaque, Jalisco. 15 de noviembre de 2016.

3

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS
SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

RECONFIGURABLE AUTOMOTIVE CLUSTER BASED

ON INTEL X86_64 MICROPROCESSOR

ARCHITECTURE

Final work that to obtain the diploma of

EMBEDDED SYSTEM SPECIALIST

Presents: Adriana Lucía Moreno Vergel

CONACYT Scholarship No. 424478

Advisor: Raúl Campos Rodríguez
Advisor: Héctor Antonio Rivas Silva

Tlaquepaque, Jalisco. 15 de noviembre de 2016.

4

AKNOWLEDGMENTS

First and above all, I praise God, the almighty for providing me this opportunity and

granting me his blessings to finish this thesis successfully.

The author wishes to express her appreciation to her advisors Dr. Raúl Campos and M.Sc.

Hector Rivas, who guided her during this thesis work. Also I would like to acknowledge

the support of Raul Camacho who guided me throughout this project.

I wish to extend my gratitude to Dr. Raúl Campos who helped me to review this work and

for providing me the necessary elements to successfully finish it. I’m also grateful to

ITESO who gave access to the laboratory and research facilities. Without their precious

support it would not be possible to conduct this research.

I place on record, my sincere thank you to CONACYT, for the received scholarship number

424478.

I am also grateful to my parents, brother and sister for always supporting me

unconditionally during this thesis development and my life in general. Also, Thanks to

Elias Reyes, for all his love and encouragement.

Last but not the least, I would like to thank Continental, the company where I current work,

for providing me the opportunity to grow both professionally and personally, also for the

valuable support they have offered me.

5

DEDICATION

To my parents, William and Marlene, for their love, effort and encouragement.

Thanks to you I have achieved one more of my aspirations.

6

RESUMEN

Los clusters automotrices reconfigurables ofrecen amplias posibilidades de funcionalidad y

personalización de contenido. Actualmente, una aplicación llamada CLUSTER_PI está

disponible y corre bajo la arquitectura ARM en una tarjeta Raspberry Pi. Las aplicaciones

configuradas en este microcontrolador requieren una gran demanda de procesamiento de

datos y no se le puede dar seguimiento debido a la limitada capacidad de memoria. Para

proyectos con mayor demanda de gráficos es necesario tener una arquitectura que permita

mayor procesamiento de información.

Debido a que los proyectos futuros necesitan más demanda de información, capacidad de

procesamiento y gráficos, se ha optado por cambiar a la plataforma Minnowboard Max la

cual ofrece más prestaciones que la Raspberry Pi. El objetivo principal de este trabajo es

migrar la aplicación CLUSTER_PI de la arquitectura ARM a x86_64. Para lograr este

objetivo, es necesario configurar un nuevo kernel de acuerdo a los requerimientos de la

aplicación y posteriormente compilarlo. Para la configuración y compilación del kernel con

los módulos, librerías y configuraciones necesarias se utiliza Buildroot. Esta herramienta

utiliza compilación cruzada y además permite la creación de un sistema embebido Linux, el

cual incluye: gestor de arranque, sistema de archivos raíz, imagen del kernel y herramienta

de compilación cruzada. En primer lugar se revisan los paquetes necesarios para ejecutar la

aplicación CLUSTER_PI tales como QT5 y SSH, con los cuales se procede a configurar el

Kernel.

Los componentes más importantes así como sus dependencias son explicados a detalle en la

Sección 4. Una vez guardada la configuración se crea el archivo Makefile, el cual se

encarga de: descargar los paquetes; configurar, construir e instalar las herramientas de

compilación; generar la imagen del kernel, el gestor de arranque y el sistema de archivos

raíz. Después de generar el sistema Linux, se procede a ejecutar la aplicación

CLUSTER_PI en la tarjeta Minnowboard Max obteniendo las mismas imágenes y

funcionalidades que en la Raspberry Pi.

Con el desarrollo de este trabajo se da oportunidad a que nuevos trabajos de investigación

surjan basados en la arquitectura x86_64, permitiendo así mayor soporte a otras

aplicaciones automotrices, mejor desempeño de gráficos y escalabilidad a sistemas

computacionales.

7

ABSTRACT

Reconfigurable automotive clusters offer extensive functionality and content customization

capabilities. An application called CLUSTER_PI is currently available and runs under the

ARM architecture on a Raspberry Pi board. Applications configured on this microcontroller

require a high demand for data processing and cannot be tracked due to limited memory

capacity. For projects with a greater demand for graphics, it is necessary to have an

architecture that allows more information processing.

Because future projects need more information demand, processing capacity and graphics,

Minnowboard Max is chosen over Raspberry Pi since it offers more features and

performance. The main objective of this work is to migrate CLUSTER_PI application from

ARM to x86_64 architecture, for this, a new kernel must be configured according to the

application’s requirements and then compiled. Buildroot is used to configure and compile

the Kernel with the necessary modules, libraries and configurations. This tool uses cross-

compilation and also allows the creation of a complete Linux embedded system, which

includes: bootloader, root filesystem, kernel image and cross-compilation toolchain. At

first, mandatory packages for CLUSTER_PI App like QT5 and SSH are selected in the

kernel configuration.

The most important components and their dependencies are explained in detail in Section 4.

Once the configuration is saved, the Makefile is created, which is responsible for:

downloading the packages; configure, build and install the compilation tools; generate the

kernel image, the bootloader, and the root filesystem. After generating the Linux system,

CLUSTER_PI application is run on the Minnowboard Max obtaining the same graphic

environment and functionalities as in the Raspberry Pi.

With the development of this work, it is possible that new research work will emerge based

on the x86_64 architecture, thus allowing greater support to other automotive applications,

better graphics performance and scalability to computer systems.

8

TABLE OF CONTENTS

AKNOWLEDGMENTS... 4

DEDICATION .. 5

RESUMEN .. 6

ABSTRACT .. 7

TABLE OF CONTENTS ... 8
LIST OF FIGURES .. 10
LIST OF TABLES.. 12
LIST OF ACRONYMS AND ABBREVIATIONS .. 13

1. INTRODUCTION .. 14

1.1. BACKGROUND .. 15
1.2. JUSTIFICATION .. 15
1.3. PROBLEM .. 16
1.4. OBJECTIVES .. 16
1.4.1. GENERAL OBJECTIVE: .. 16
1.4.2. SPECIFIC OBJECTIVES: .. 16

2. STATE OF THE ART ... 17

2.1. MENTOR GRAPHICS DIGITAL INSTRUMENT CLUSTER ... 18
2.2. LIBROW AUTOMOTIVE DIGITAL INSTRUMENT CLUSTER .. 18
2.3. NV IDIA DIGITAL INSTRUMENT CLUSTER ... 19
2.4. DAKOTA DIGITAL GAUGE CLUSTER ... 20

3. CONCEPTUAL FRAMEWORK ... 21

3.1. INTRODUCTION ... 22
3.2. BUILDROOT .. 22
3.2.1. QT .. 22
3.2.1. X WINDOW SYSTEM (X11)... 22
3.2.2. MESA3D... 22
3.2.3. OPENSSH ... 23
3.3. BOOTLOADER ... 23
3.4. KERNEL IMAGE... 23
3.5. ROOT FILESYSTEM ... 23
3.6. TOOLCHAIN .. 24
3.7. INTER-PROCESS COMMUNICATION (IPC) .. 24

4. METHODOLOGICAL DEVELOPMENT ... 26

4.1. INTRODUCTION ... 27
4.2. SYSTEM ATTRIBUTES ... 27
4.2.1. HARDWARE ATTRIBUTES ... 27

9

4.2.2. LINUX DISTRO AND KERNEL VERSION ... 31
4.3. CLUSTER_PI APP REQUIREMENTS ... 31
4.4. BUILDROOT CONFIGURATION (HOST) .. 33
4.4.1. GETTING AND BUILDING THE CLUSTER_MAX SDK .. 33
4.4.2. ADDING DLT-DAEMON PACKAGE TO BUILDROOT ... 34
4.4.3. GENERATING MAKEFILE .. 35
4.4.4. RUNNING MAKEFILE .. 36
4.5. BUILDING THE KERNEL .. 49
4.6. OUTPUT FILES AND BINARIES GENERATED AFTER THE BUILD PROCESS .. 50
4.7. WRITING IMAGE TO MSD CARD (HOST) ... 51
4.8. NETWORK CONFIGURATION AND TARGET SETUP ... 52
4.9. QT CREATOR CONFIGURATION (HOST) .. 57
4.10. CROSS-COMPILE “DASHBOARD” APPLICATION ON QT CREATOR (HOST) .. 60

5. RESULTS ... 62

5.1. RESULTS ... 63

6. CONCLUSIONS .. 66

6.1. CONCLUSIONS .. 67
6.2. FUTURE WORK ... 68
BIBLIOGRAPHY .. 69

10

LIST OF FIGURES

Figure 1. The shared memory segment is mapped by Process A and Process B [15] 25

Figure 2. MinnowBoard Max block diagram ... 29

Figure 3. Display Panel connected to MinnowBoard Max .. 29

Figure 4. MinnowBoard Max board layout [16] .. 30

Figure 5. Dashboard with initial values and warnings activated .. 32

Figure 6. TSW application (HMI test client) .. 32

Figure 7. Cloning Buildroot ... 33

Figure 8. Adding dlt-daemon to Buildroot ... 35

Figure 9. MinnowBoard Max default configuration .. 36

Figure 10. Target configuration .. 37

Figure 11. Build configuration ... 38

Figure 12. Toolchain configuration .. 39

Figure 13. System configuration .. 40

Figure 14. TTY port configuration ... 41

Figure 15. Kernel configuration ... 42

Figure 16. dlt-daemon package selection ... 43

Figure 17. Mesa3D configuration ... 44

Figure 18. QT5 configuration ... 45

Figure 19. Mesa3D configuration ... 46

Figure 20. Networking applications configuration ... 47

Figure 21. Filesystem images configuration... 48

Figure 22. Bootloader configuration .. 49

Figure 23. Saving configuration (“.config”) ... 49

Figure 24. End of Cluster_Max SDK compilation ... 50

Figure 25. Checking mSD card name ... 52

Figure 26. Wired configuration in host .. 54

Figure 27. Static IP address on host ... 54

Figure 28. Ping target from host ... 55

Figure 29. Connecting to target through SSH (Host) ... 55

Figure 30. “tsw” folder creation on target .. 55

Figure 31. Compiling “tsw” application in host ... 56

Figure 32. Copy executable file generated from compilation to target 56

Figure 33. “bin” and “qml” folder creation in target .. 56

Figure 34. Copy images, fonts and “main.qml” from host to target..................................... 57

11

Figure 35. QT Devices configuration ... 58

Figure 36. Remote connection to target is successful .. 59

Figure 37. QT Build & Run configuration ... 60

Figure 38. Deploy to remote Linux host (target) .. 61

Figure 39. “tsw” application is running on target ... 61

Figure 40. Dashboard with initial values running on target (MinnowMax) 63

Figure 41. Seatbelt warning was activated in remote “tsw” application 64

Figure 42. Speedometer was set to 140 km/h in remote “tsw” application 64

Figure 43. Dashboard with seatbelt warning activated and speedometer set to 140 km/h ... 65

12

LIST OF TABLES

Table 1. MinnowBoard Max technical features ... 28

Table 2. Host main technical features .. 30

13

LIST OF ACRONYMS AND ABBREVIATIONS

CAN Control Area Network.
CLUSTER_PI A previous project developed a reconfigurable automotive

cluster application, called “CLUSTER_PI App” in this
document for future references, based on ARM architecture and
deployed on Raspberry PI board.

Cross-compilation Process whereby compilation is done on a PC (host) with the
purpose to be executed on other system, called target (target).
When cross-compilation is done, executables for another system
are produced. This happens when the target does not have the
toolchain native compilation or when the host is faster and has
better resources (CPU, memory, etc.).

Distro Linux distribution.
DRI Direct Rendering Infrastructure.
EGL OpenGL ES Native Platform Graphics Interface
Host Laptop in charge of executing kernel and application cross-

compilation. It also is connected to the embedded platform
through Ethernet for sharing information.

GUI Graphical User Interface.
IPC Inter-process Communication.
HMI Human Machine Interface.
HW Hardware.
mSD Micro SD.
OpenSSH Open Secure Shell.
OpenGL Open Graphics Library.
OS Operative System.
RAM Random Access Memory.
Rootfs Root filesystem.
RTOS Real-Time Operating System
Toolchain A set of tools for software development, often used in sequence

so that the output of one tool comprises the input of the next.
SDK Software Development Kit.
SW Software.
X11 X Window System.

14

1. INTRODUCTION

Abstract: This chapter briefly presents the background of the object of study, problem

definition and justification.

15

1.1. Background

Digital instrumentation is trend in different industrial fields such as aeronautics and

automotive. A digital cluster offers great flexibility and a reach set of visualization

schemes. Visual effects such as 2D and 3D graphics are features to be included in the new

models of automobile industry. The digital instruments allow flexibility in the instrument

visualization, and a kind of driver personalization.

An embedded system for a reconfigurable automotive cluster is a demanding application,

which has to offer a maximum of flexibility of visualization, functionality and reach

information content. The digital instrumentation allow different configuration for the

instrument panel depending on the situations or driver needs. There are some intermediate

commercial solutions in the market, for example [1] and [2]. However it requires fast

initialization and response, thus a high performance embedded system must be considered

for this application.

The embedded system proposed in this work is based on the Intel Minnowboard Max,

which is intended to be used as the hardware platform in reconfigurable cluster application.

Since CLUSTER_PI application is going to be migrated from a different architecture, a

new Kernel needs to be compiled. It shall be configured according to the requirements of

the target the application.

In this project, Kernel will be built with just the required modules, libraries and

configurations. The Kernel can be configured through several tools, such as Buildroot,

Yocto, or OpenWRT, among others. This tools simplify and automate some the process of

building a complete Linux system for an embedded system, using cross-compilation [3],

[4], [5]. In this project, the Buildroot toolchain is chosen since it offers an easy to use

structure and a lot of documentation. Additionally, the target application CLUSTER_PI

was developed based on it.

1.2. Justification

The digital instrumentation is a trend in several fields of the industry. A digital cluster offer

a great flexibility in the presentation of the information in production lines, control panels,

airplanes and cars. Since most of the visual effects and flexibility is based on embedded

software, it is easy to develop one time and to program many times as needed. It simplifies

16

the development and deploy processes. Additionally, basic functionality could be delivered

at a first stage and further developments, updates and bug fixings are possible.

1.3. Problem

Several instrument clusters types have been developed in different industry fields. In this

work, an automotive digital cluster is implemented. An x86_64 development board is used

as hardware platform and a Linux distro as software supporting the development. The QT

framework is implemented as visualization framework.

1.4. Objectives

1.4.1. General Objective:

To develop a digital automotive cluster based on an x86_64 hardware platform and an

embedded Linux software platform.

1.4.2. Specific Objectives:

1. To develop a digital automotive cluster that represents basic instruments such as

odometer, velocimetry, temperature, and battery level, among others.

2. To use the Intel Minnowboard Max development board as the hardware platform

3. To use an embedded Linux distro as software platform

4. To use the QT cross development platform for the graphical representation of the

cluster instruments.

17

2. STATE OF THE ART

Abstract: This chapter briefly reviews some works that are relevant in the development of

this project.

18

2.1. Mentor Graphics Digital Instrument Cluster

Mentor Graphics has developed a flexible intermediate solution for the construction of

digital instrumentation cluster, allowing a reach and flexible set of tools for the presentation

of graphical instruments. The solution allows mixing critical instruments with non-critical

information in a smooth fashion.

The solution of Mentor Graphics provides a rich set of HMI 3D and 2D graphics, based on

embedded Linux and proprietary RTOS. It is compatible with the QT framework,

Socionext CGI Studio, and Altia, with a high performance graphics up to 120 fps. The

Figure 1 shows a layout of the Mentor Graphics’ instrument cluster [15].

Figure 1. The Mentor Graphics’ Automotive Instrument Cluster [15].

2.2. Librow Automotive Digital Instrument Cluster

Librow offers development and production of digital instruments cluster for automotive

applications. The company also provides a reengineering, virtualization, development and

manufacturing of existing mechanical and electromechanical clusters, including all the

graphical design, hardware customization and embedded software development.

The solution provided by Librow includes 2D and 3D graphics, user interface, RTOS and

low level drivers. The Figure 2 depicts a layout of the Librow’s digital instrument cluster

[16].

Figure 2. The Lib

2.3. NVidia Digital Instrument Cluster

NVidia addresses the high demanding cluster design of new car instruments by its NVIDIA

DRIV CX solution portfolio. It is an embedded solution empowering high demanding 3D

features for instrument visualization and advanced infotainment cluster, speech recognition

and image processing capabilities.

The NVIDIA Drive PX 2 is a single processor solution ideal for image processing, real time

applications and speech recognition, among othe

solutions includes a pipe line for neural network processing. The Figure 3 shows a layout of

the Drive PX 2 solution [17].

Figure 3. NVIDIA Drive PX 2 and Digital Navigation System [17]

. The Librow’s Digital Instrument Cluster [16].

NVidia Digital Instrument Cluster

NVidia addresses the high demanding cluster design of new car instruments by its NVIDIA

DRIV CX solution portfolio. It is an embedded solution empowering high demanding 3D

for instrument visualization and advanced infotainment cluster, speech recognition

and image processing capabilities.

The NVIDIA Drive PX 2 is a single processor solution ideal for image processing, real time

applications and speech recognition, among others. The architecture of the NVIDIA

solutions includes a pipe line for neural network processing. The Figure 3 shows a layout of

. NVIDIA Drive PX 2 and Digital Navigation System [17]

19

NVidia addresses the high demanding cluster design of new car instruments by its NVIDIA

DRIV CX solution portfolio. It is an embedded solution empowering high demanding 3D

for instrument visualization and advanced infotainment cluster, speech recognition

The NVIDIA Drive PX 2 is a single processor solution ideal for image processing, real time

rs. The architecture of the NVIDIA

solutions includes a pipe line for neural network processing. The Figure 3 shows a layout of

. NVIDIA Drive PX 2 and Digital Navigation System [17]

20

2.4. Dakota Digital Gauge Cluster

Dakota Digital offers a series of digital gauge cluster for almost every requirement in the

industry. The company provides complete clusters and individual instruments in different

shapes, such as round traditional instruments and rectangular shaped instruments. The

Figure 4 shows the layout of the Universal 5 Gage Cluster and the Round Digital

Instrument VFD3 [18].

Figure 4. Dakota Digital Dash Universal Design [18]

21

3. CONCEPTUAL FRAMEWORK

Abstract: Theoretical and conceptual framework are described in this chapter. Buildroot,

the tool used to build the embedded system is described here as well as most important

packages required to deploy CLUSTER_PI App.

22

3.1. Introduction

In this chapter theoretical and conceptual framework is provided, Buildroot and most

important packages are described in Section 3.2. Buildroot is a tool able to provide the

bootloader (Section 3.3Error! Reference source not found.), the kernel image (Section

3.4), the root filesystem (Section 3.5) as well as the cross-compilation toolchain (Section

3.6) for the embedded system. Also, CLUSTER_PI App makes use of shared memory and

it needs to be supported in the kernel (Section 3.3).

3.2. Buildroot

Buildroot is tool that automates the process to generate embedded Linux systems through

cross-compilation. It is able to generate bootloader, kernel image, root filesystem and cross-

compilation toolchain. Also, it provides a configuration environment similar to kernel

menuconfig, xconfig or gconfig and support several packages like QT5, X.org, OpenGL,

among others [3].

The basic commands that allow to generate kernel image fitting the user needs with all the

features and packages selected are: make menuconfig|nconfig|gconfig|xconfig and make

[3].

3.2.1. QT

QT is a cross-platform application framework used mainly for developing application SW

with GUI, it works on several platforms like X11 and EGLFS (Linux) [6].

QT5.4.1 was used in CLUSTER_PI App, so this or any QT version onwards will work. In

this project QT5.6.0 is used with EGLFS (EGL Full Screen) support.

3.2.1. X Window System (X11)

X11 is a graphical windowing system based on a client/server model. It provides the basic

framework for building GUI environments [7].

3.2.2. Mesa3D

Mesa3D is a graphics library that provides an open source implementation of OpenGL to

render graphics in several platforms. It provides the Direct Rendering Infrastructure (DRI),

which is a framework that allows direct access to graphics hardware under the X Window

System in a safe and efficient manner. [8][9].

23

3.2.3. OpenSSH

OpenSSH is a connectivity tool for remote login with the SSH protocol. It is a suite of

programs that can be used for remote operations and key management [10].

3.3. Bootloader

Bootloader or boot manager is a simple program designed to prepare what is needed to let

the operative system work, i.e. it is in charge of place OS into memory. It resides on the

master boot record (MBR) and it is called after basic input-output system (BIOS) performs

some test after a computer is powered-up or restarted [11].

3.4. Kernel Image

It is a compressed kernel file stored in /boot partition. In this project, bzimage (zimage

compressed to the max) is the kernel binary format selected in buildroot.

3.5. Root Filesystem

It is the filesystem contained in the same partition on which the root directory (/) is located;

all other file systems are mounted below it as the system boots up. Main subdirectories

under root filesystem are [12]:

/bin: Commands needed during bootup that might be used by normal users (probably after

bootup).

/sbin: Like /bin, but the commands are not intended for normal users, although they may

use them if necessary and allowed. /sbin is not usually in the default path of normal users,

but will be in root's default path.

/etc: Configuration files specific to the machine.

/root: The home directory for user root. This is usually not accessible to other users on the

system.

/lib: Shared libraries needed by the programs on the root filesystem.

/lib/modules: Loadable kernel modules, especially those that are needed to boot the system

when recovering from disasters (e.g., network and filesystem drivers).

24

/dev: Device files. These are special files that help the user interface with the various

devices on the system.

/tmp: Temporary files. Programs running often store temporary files in here.

/boot: Files used by the bootstrap loader, e.g., LILO or GRUB. Kernel images are often

kept here instead of in the root directory.

/mnt: Mount point for temporary mounts by the system administrator. Programs aren't

supposed to mount on /mnt automatically. /mnt might be divided into subdirectories.

/proc, /usr, /var, /home: Mount points for the other filesystems.

3.6. Toolchain

A toolchain is a set of development tools linked together used to build embedded software.

It may consist of a compiler, linker, libraries and debugger. In embedded development,

using a cross toolchain (cross compiler) is very common; host machine (e.g. x86_64)

produces binary code for the target (e.g. ARM) [13].

3.7. Inter-process Communication (IPC)

IPC allows the processes to communicate with each other, this is done by means of kernel.

It is requested to allocate the space which can be used to communicate between processes,

which can open, and read/write the file or variables. There are several IPC mechanisms,

below are described the ones used in CLUSTER_PI App [14]:

• Shared memory: Memory segment where values can be exchanged, a segment can

be created by one process, and subsequently written to and read from by any

number of processes. The information addressed by the calling process is mapped

directly from a memory segment (Figure 1).

25

Figure 1. The shared memory segment is mapped by Process A and Process B [15]

• Semaphores: When write access is allowed for more than one process, an outside

mechanism such as a semaphore can be used to prevent inconsistencies and

collisions (critical regions), so areas of critical code can only be executed by one

process at a time.

26

4. METHODOLOGICAL
DEVELOPMENT

Abstract: This chapter presents in detail the methodological development that includes

steps and process to follow in order to configure the Kernel to run the CLUSTER_PI App.

27

4.1. Introduction

In this chapter a methodological development is provided with the purpose of guide the

user with knowledge and experience in embedded systems, to follow the steps that allow to

configure the kernel in order to deploy CLUSTER_PI App in Minnowboard Max board.

Most of this chapter is provided as recipe instructions.

Buildroot is used to achieve this objective; it provides a simple structure that allows the

user to configure which packages are going to be built in the kernel. Also, the most

important packages are mentioned with their respective dependencies.

This chapter is organized in subsections, starting with system attributes description, then

requirements needed to run CLUSTER_PI App in x86_64 architecture and finally detailed

steps to configure and cross-compile the kernel are given.

4.2. System Attributes

The following requirements need to be fulfilled in other to successfully deploy

CLUSTER_PI App in x86_64 architecture.

4.2.1. Hardware Attributes

MinnowBoard Max is powered by Intel Atom Bay-Trail-I E3825 dual core processor with

2GB RAM, SATA II, USB 3.0/2.0, Gigabit Ethernet ports, etc. It supports operating

systems like Debian GNU, Ubuntu, Fedora, Linux Mint, Android 4.4 (Kitkat) and 5.0

(Lollipop), Microsoft Windows 8.1 and 10, see [16] and [17].

28

Table 1. MinnowBoard Max technical features

Category Feature

Core Logic

64-bit Intel®Atom™ Bay-Trail-I E3825 (dual-core, 1.33
GHz) processor
Integrated Intel HD Graphics with Open Source hardware-
accelerated drivers for Linux OS

Memory
DDR3 RAM System Memory
2 GB
8 MB SPI Flash System Firmware Memory

Video
Intel HD Graphics (1920x1080 max resolution)
HDMI 1.4a (micro HDMI connector)

Audio
Digital via HDMI
Analog available separately via MinnowBoard MAX Lure

I/O

Micro SD SDIO
SATA2 3Gb/sec
USB 3.0/2.0
Serial debug via FTDI cable
10/100/1000 Ethernet, RJ45 connector

Experimenter
Features

8 x Buffered GPIO pins (2 pins support PWM)
I2C & SPI bus
2 x 16550 HS UARTs, one with CTS/RTS
System Firmware Flash Programming Header

Board Dimensions 99 x 74mm (2.9 x 3.9in)
Temperature

Range
0 – 40 deg C

Power 5V DC (min 2.5 A)

OS (supported)
Debian, Ubuntu, Fedora, Linux Mint
Yocto Project Compatible, Android 4.4 and 5.0 System
Microsoft Windows 8.1 and 10

System Boot
Firmware

UEFI Firmware

The Figure 2 shows a conceptual diagram of the hardware of the main processor in the

MinnowBoard MAX development board.

29

Figure 2. MinnowBoard Max block diagram

CLUSTER_PI App is shown through a LCD TFT 10.1" display connected through HDMI

to MinnowBoard Max. The Figure 3 shows a conceptual diagram.

Figure 3. Display Panel connected to MinnowBoard Max

The Figure 4 shows the Minnowboard MAX development board and its principal pins and

connectors.

Figure 4

By the other hand, the host has the following technical features

Table

Category
Processor 64-

RAM DDR3 1600 MHz SDRAM, 8.00 GB
Video NVIDIA® GeForce® GT 635M with 2GB DDR3 VRAM

I/O
802.11 b/g/n, 10/100/1000 Ethernet, RJ45 connector
USB 3.0
SD card reader

OS (supported)
Kubuntu, Debian, Ubuntu, Fedora, Linux Mint, etc.
Windows 10

4. MinnowBoard Max board layout [16]

d, the host has the following technical features [18]:

Table 2. Host main technical features

Feature
-bit Intel® Core™ i7-3630QM CPU @ 2.40GHz

DDR3 1600 MHz SDRAM, 8.00 GB
NVIDIA® GeForce® GT 635M with 2GB DDR3 VRAM
802.11 b/g/n, 10/100/1000 Ethernet, RJ45 connector
USB 3.0
SD card reader
Kubuntu, Debian, Ubuntu, Fedora, Linux Mint, etc.
Windows 10

30

3630QM CPU @ 2.40GHz

NVIDIA® GeForce® GT 635M with 2GB DDR3 VRAM
802.11 b/g/n, 10/100/1000 Ethernet, RJ45 connector

Kubuntu, Debian, Ubuntu, Fedora, Linux Mint, etc.

31

4.2.2. Linux Distro and Kernel Version

The following Linux has been used in the development of this project:

• Distro installed in host is Kubuntu 14.04 LTS 64bits with kernel version 4.6.0.

• Distro installed in target is Buildroot x86_64 GNU/Linux with kernel version 4.4.0.

4.3. CLUSTER_PI App Requirements

Previously, CLUSTER_PI App, a reconfigurable automotive cluster application based on

ARM architecture was deployed on Raspberry PI board. This project migrates

CLUSTER_PI App to x86_64 architecture allowing scalability to computer systems, major

graphic performance and future support for other automotive applications.

CLUSTER_PI App consists of two applications communicated by means of shared

memory. The main application, “Dashboard”, is a GUI which displays the instrument

cluster (Figure 5), several warnings caused by open door, seat belt, unlocked car, etc. can

be shown to the user. Packages like X window system, QT and mesa3d and are used for

graphic rendering. Also OpenSSH is needed to transfer information between target and

host.

The second application, “tsw” (Figure 6), consist of HMI test client which handles an

option menu which allow the user to activate/deactivate warnings available on Dashboard,

it also allows to increase/decreases de speedometer and other elements in the instrument

cluster. In order to allow shared memory between the two applications, kernel shall support

Inter-process Communication (IPC).

Figure 5. Dashboard with initial values and warnings activated

Figure

. Dashboard with initial values and warnings activated

Figure 6. TSW application (HMI test client)

32

4.4. Buildroot Configuration (Host)

The objective of this project is to provide an SDK and root filesystem for the

MinnowBoard Max that is lightweight and takes full advantage of the hardware available.

The resulting image produced is small Linux distribution known as Cluster_Max.

The Cluster_Max SDK provides a GCC 4.9.x toolchain for building x86_64 binaries in

ELF format, as well as bootloader, kernel image, rootfs, and development sysroot for the

MinnowBoard Max.

4.4.1. Getting and building the Cluster_Max SDK

First of all enter into your directory

$ cd /home/nana/Thesis_ESE/

Create Cluster_Max directory:

$ mkdir Cluster_Max

In this project Buildroot-2016.08.1 release was used, its repository can be cloned inside

Cluster_Max directory by executing the following command into the Linux s

$ git clone git://git.buildroot.net/buildroot ./Cluster_Max/

Buildroot Configuration (Host)

objective of this project is to provide an SDK and root filesystem for the

MinnowBoard Max that is lightweight and takes full advantage of the hardware available.

The resulting image produced is small Linux distribution known as Cluster_Max.

ax SDK provides a GCC 4.9.x toolchain for building x86_64 binaries in

ELF format, as well as bootloader, kernel image, rootfs, and development sysroot for the

Getting and building the Cluster_Max SDK

First of all enter into your directory of interest:

$ cd /home/nana/Thesis_ESE/

Create Cluster_Max directory:

2016.08.1 release was used, its repository can be cloned inside

Cluster_Max directory by executing the following command into the Linux shell:

git clone git://git.buildroot.net/buildroot ./Cluster_Max/

Figure 7. Cloning Buildroot

33

objective of this project is to provide an SDK and root filesystem for the

MinnowBoard Max that is lightweight and takes full advantage of the hardware available.

The resulting image produced is small Linux distribution known as Cluster_Max.

ax SDK provides a GCC 4.9.x toolchain for building x86_64 binaries in

ELF format, as well as bootloader, kernel image, rootfs, and development sysroot for the

2016.08.1 release was used, its repository can be cloned inside

hell:

34

4.4.2. Adding dlt-daemon package to Buildroot

Dlt-Daemon needs to be added because it is not included by default in the Buildroot

packages and is requires to compile Cluster_Pi App, first enter into the following directory:

$ cd /home/nana/Thesis_ESE/Cluster_Max/package/

Then add a new folder and call it “dlt-daemon”:

$ mkdir dlt-daemon

$ cd dlt-daemon

Create two files: “Config.in” and “dlt-daemon.mk”. First one contains help about the

package that is going to show through Buildroot configuration options; second one contains

dlt-daemon version and URL to be downloaded:

$ nano Config.in

A copy the following information inside the nano editor and saving it is required:

config BR2_PACKAGE_DLT_DAEMON

 bool "dlt-daemon"

 help

 DLT_DAEMON receives log messages from DLT user applications and temporary

storage of log messages if DLT Client isn't available. Transmit log messages to DLT Client

and response to control messages.

 DLT is a reusable open source software component for standardized logging and

tracing in infotainment ECUs based on the AUTOSAR 4.0 standard.

 http://projects.genivi.org/diagnostic-log-trace/documentation

$ nano dlt-daemon.mk

Copy the following information inside it:

dlt-daemon

DLT_DAEMON_VERSION = v2.13.0

DLT_DAEMON_SITE = http://git.projects.genivi.org/dlt-daemon.git

DLT_DAEMON_SITE_METHOD = git

DLT_DAEMON_INSTALL_STAGING = YES

DLT_DAEMON_INSTALL_TARGET = YES

$(eval $(cmake-package))

Add dlt-daemon package inside “Config.in” file located in:

$ nano /home/nana/Thesis_ESE/Cluster_Max/package/Config.in

Copy the following information inside menu "Debugging, profiling and benchmark":

source "package/dlt-daemon/Config.in"

Figure

4.4.3. Generating Makefile

Create the directory where you want your SDK to be built and export its path:

$ cd /home/nana/Thesis_ESE/

$ mkdir Cluster_Max_Build

$ export Cluster_Max_DIR=/home/nana/Thesis_ESE/Cluster_Max_Build

Enter into Cluster_Max directory and generate a Makefile with Minnowboard Max default

configuration for SDK:

$ cd /home/nana/Thesis_ESE/Cluster_Max/

$ make minnowboard_max_defconfig O=$Cluster

DLT_DAEMON_SITE_METHOD = git

DLT_DAEMON_INSTALL_STAGING = YES

INSTALL_TARGET = YES

daemon package inside “Config.in” file located in:

$ nano /home/nana/Thesis_ESE/Cluster_Max/package/Config.in

Copy the following information inside menu "Debugging, profiling and benchmark":

daemon/Config.in"

Figure 8. Adding dlt-daemon to Buildroot

Generating Makefile

Create the directory where you want your SDK to be built and export its path:

$ cd /home/nana/Thesis_ESE/

export Cluster_Max_DIR=/home/nana/Thesis_ESE/Cluster_Max_Build

Enter into Cluster_Max directory and generate a Makefile with Minnowboard Max default

$ cd /home/nana/Thesis_ESE/Cluster_Max/

$ make minnowboard_max_defconfig O=$Cluster_Max_DIR

35

Copy the following information inside menu "Debugging, profiling and benchmark":

Create the directory where you want your SDK to be built and export its path:

Enter into Cluster_Max directory and generate a Makefile with Minnowboard Max default

Figure 9. MinnowBoard Max default configuration

4.4.4. Running Makefile

Change to your SDK directory and start Buildroot configuration:

$ cd $Cluster_Max_DIR

$ make xconfig

Note that some configurations are already selected b

minnowboard_max_defconfig was chosen to create the initial “.config” file. It contains all

the necessary information that is going to be compiled when “make” command is executed.

In the following subsections most relevant packages and conf

4.4.4.1. Target options

- BR2_x86_64

x86-64 is an extension of the x86 instruction set (Intel i386 architecture compatible

microprocessor).

- BR2_BINFMT_ELF

ELF (Executable and Linkable Format) is a format for libraries and executables

different architectures and operating systems.

- BR2_x86_atom: Atom is selected as the architecture variant.

. MinnowBoard Max default configuration

Running Makefile

Change to your SDK directory and start Buildroot configuration:

Note that some configurations are already selected by default, since

minnowboard_max_defconfig was chosen to create the initial “.config” file. It contains all

the necessary information that is going to be compiled when “make” command is executed.

In the following subsections most relevant packages and configurations are described.

Target options

64 is an extension of the x86 instruction set (Intel i386 architecture compatible

ELF (Executable and Linkable Format) is a format for libraries and executables

different architectures and operating systems.

BR2_x86_atom: Atom is selected as the architecture variant.

36

y default, since

minnowboard_max_defconfig was chosen to create the initial “.config” file. It contains all

the necessary information that is going to be compiled when “make” command is executed.

igurations are described.

64 is an extension of the x86 instruction set (Intel i386 architecture compatible

ELF (Executable and Linkable Format) is a format for libraries and executables used across

4.4.4.2. Build Options

- BR2_STRIP_strip

Binaries and libraries in the target files

command. This allows to save space, mainly by removing debugging symbols.

- BR2_OPTIMIZE_S

Optimize for size.

- BR2_SHARED_LIBS

Build and use only shared libraries. This is the recommended solution as it sa

builds time.

Figure 10. Target configuration

Build Options

Binaries and libraries in the target filesystem will be stripped using the normal 'strip'

command. This allows to save space, mainly by removing debugging symbols.

Build and use only shared libraries. This is the recommended solution as it sa

37

ystem will be stripped using the normal 'strip'

command. This allows to save space, mainly by removing debugging symbols.

Build and use only shared libraries. This is the recommended solution as it saves space and

4.4.4.3. Toolchain

- BR2_TOOLCHAIN_BUILDROOT

Buildroot toolchain is selected.

- BR2_KERNEL_HEADERS_AS_KERNEL

Kernel headers are the same version as the kernel being built.

- BR2_PACKAGE_HOST_LINUX_HEADERS_CUSTOM_4_6

Custom kernel header series.

- BR2_TOOLCHAIN_BUILDROOT_GLIBC

This option selects glibc as the C library for the cross

- BR2_GLIBC_VERSION_2_23

Glibc version 2.23

- BR2_BINUTILS_VERSION_2_26_X

The GNU Binutils (v2.26.1) are a collection of binary tools. The main ones are:

GNU linker, and as - the GNU assembler.

- BR2_GCC_VERSION_4_9_X

GCC compiler version 4.9.X

- BR2_TOOLCHAIN_BUILDROOT_CXX

This option is enabled in order to have C++ l

libraries are going to be installed on your target system.

Figure 11. Build configuration

Toolchain

BR2_TOOLCHAIN_BUILDROOT

Buildroot toolchain is selected.

BR2_KERNEL_HEADERS_AS_KERNEL

Kernel headers are the same version as the kernel being built.

BR2_PACKAGE_HOST_LINUX_HEADERS_CUSTOM_4_6

BR2_TOOLCHAIN_BUILDROOT_GLIBC

This option selects glibc as the C library for the cross-compilation toolchain.

BR2_GLIBC_VERSION_2_23

BR2_BINUTILS_VERSION_2_26_X

The GNU Binutils (v2.26.1) are a collection of binary tools. The main ones are:

the GNU assembler.

BR2_GCC_VERSION_4_9_X

BR2_TOOLCHAIN_BUILDROOT_CXX

This option is enabled in order to have C++ language support in the toolchain, also C++

libraries are going to be installed on your target system.

38

The GNU Binutils (v2.26.1) are a collection of binary tools. The main ones are: ld - the

anguage support in the toolchain, also C++

Figure

4.4.4.4. System Configuration

- BR2_ROOTFS_SKELETON_DEFAULT

Use default target skeleton.

- BR2_TARGET_GENERIC_HOSTNAME [=Cluster_Max]

System hostname to be stored in /etc/hostname.

- BR2_TARGET_GENERIC_ISSUE [=Welcome to Cluster_Max]

System banner (/etc/issue) to be displayed at login.

- BR2_TARGET_GENERIC_PASSWD_MD5

Use MD5 to encode passwords.

- BR2_INIT_BUSYBOX

Busybox is used to init system.

- BR2_ROOTFS_DEVICE_CREATION_DYNAMIC_DEVTMPFS

/dev management dynamic using devtmpfs only.

- BR2_TARGET_ENABLE_ROOT_LOGIN

Allow root to log in with a password.

- BR2_SYSTEM_BIN_SH_BASH

/bin/sh bash (Bourne again shell) is selected as command processor.

Depends on: BR2_PACKAGE_BUSYBOX_SHOW_OTHERS (Section

- BR2_TARGET_GENERIC_REMOUNT_ROOTFS_RW

Figure 12. Toolchain configuration

System Configuration

BR2_ROOTFS_SKELETON_DEFAULT

ET_GENERIC_HOSTNAME [=Cluster_Max]

System hostname to be stored in /etc/hostname.

BR2_TARGET_GENERIC_ISSUE [=Welcome to Cluster_Max]

System banner (/etc/issue) to be displayed at login.

BR2_TARGET_GENERIC_PASSWD_MD5

Use MD5 to encode passwords.

Busybox is used to init system.

BR2_ROOTFS_DEVICE_CREATION_DYNAMIC_DEVTMPFS

/dev management dynamic using devtmpfs only.

BR2_TARGET_ENABLE_ROOT_LOGIN

Allow root to log in with a password.

BR2_SYSTEM_BIN_SH_BASH

shell) is selected as command processor.

BR2_PACKAGE_BUSYBOX_SHOW_OTHERS (Section 4.4.4.6

BR2_TARGET_GENERIC_REMOUNT_ROOTFS_RW

39

4.4.4.6).

The root filesystem is typically mounted read

it in read-write mode early during the boot process.

- BR2_ENABLE_LOCALE_PURGE

Explicitly specify what locales to install on target.

Figure

- BR2_TARGET_GENERIC_GETTY_PORT [=tty1]

tty1 is specified as port to run a getty on.

- BR2_TARGET_GENERIC_GETTY_BAUDRATE_KEEP

Keep kernel default baud rate.

is typically mounted read-only at boot. By default, Buildroot remounts

write mode early during the boot process.

BR2_ENABLE_LOCALE_PURGE

Explicitly specify what locales to install on target.

Figure 13. System configuration

BR2_TARGET_GENERIC_GETTY_PORT [=tty1]

tty1 is specified as port to run a getty on.

BR2_TARGET_GENERIC_GETTY_BAUDRATE_KEEP

Keep kernel default baud rate.

40

only at boot. By default, Buildroot remounts

Figure

4.4.4.5. Kernel

- BR2_LINUX_KERNEL_CU

This option allows to use a specific official version from kernel.org.

- BR2_LINUX_KERNEL_CUSTOM_VERSION_VALUE [=4.6.1]

Kernel version used is 4.6.1.

- BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG

Using a custom (def) config file.

- BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE [=board/minnowboard/linux

4.6.config]

Path to the kernel configuration file.

- BR2_LINUX_KERNEL_BZIMAGE

Kernel binary format is bzimage.

- BR2_LINUX_KERNEL_GZIP

gzip kernel compression format.

Figure 14. TTY port configuration

BR2_LINUX_KERNEL_CUSTOM_VERSION

This option allows to use a specific official version from kernel.org.

BR2_LINUX_KERNEL_CUSTOM_VERSION_VALUE [=4.6.1]

BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG

Using a custom (def) config file.

BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE [=board/minnowboard/linux

Path to the kernel configuration file.

BR2_LINUX_KERNEL_BZIMAGE

Kernel binary format is bzimage.

BR2_LINUX_KERNEL_GZIP

gzip kernel compression format.

41

BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE [=board/minnowboard/linux-

4.4.4.6. Target Packages

- BR2_PACKAGE_BUSYBOX_SHOW_OTHERS

Show packages in menuconfig that are also provided by busybox.

Development tools

- BR2_PACKAGE_BINUTILS

Install binutils on the target (this includes zlib).

Hardware handling

- BR2_PACKAGE_DBUS

The D-Bus message bus system.

Text and terminal handling

- BR2_PACKAGE_NANO

A nice ncurses-based editor. Started out as a clone of pico. Great editor for new users.

-BR2_PACKAGE_NANO_TINY

Figure 15. Kernel configuration

Target Packages

BR2_PACKAGE_BUSYBOX_SHOW_OTHERS

Show packages in menuconfig that are also provided by busybox.

BR2_PACKAGE_BINUTILS

Install binutils on the target (this includes zlib).

Bus message bus system.

based editor. Started out as a clone of pico. Great editor for new users.

BR2_PACKAGE_NANO_TINY

42

based editor. Started out as a clone of pico. Great editor for new users.

Disable all features for the sake of

Debugging, profiling and benchmark

- BR2_PACKAGE_DLT_DAEMON

DLT_DAEMON receives log messages from DLT user applications and temporary storage

of log messages if DLT Client isn't available. Transmit log messages to DLT Client and

response to control messages. This package was added to Buildroot as explained in Section

4.4.2.

Figure

Graphic libraries and applications (graphic/text)

- BR2_PACKAGE_MESA3D

Mesa 3D, an open-source implementation of the OpenGL specification.

- BR2_PACKAGE_MESA3D_GALLIUM_DRIVER_SWRAST

This is a software opengl implementation using the Gallium3D infrastructure.

- BR2_PACKAGE_MESA3D_OPENGL_EGL

Use the Khronos EGL APIs. EGL is a window manager for OpenGL applications similar to

GLX, for X, and WGL, for Windows.

- BR2_PACKAGE_MESA3D_OPENGL_ES

Disable all features for the sake of size.

Debugging, profiling and benchmark

BR2_PACKAGE_DLT_DAEMON

DLT_DAEMON receives log messages from DLT user applications and temporary storage

of log messages if DLT Client isn't available. Transmit log messages to DLT Client and

messages. This package was added to Buildroot as explained in Section

Figure 16. dlt-daemon package selection

and applications (graphic/text)

BR2_PACKAGE_MESA3D

source implementation of the OpenGL specification.

BR2_PACKAGE_MESA3D_GALLIUM_DRIVER_SWRAST

This is a software opengl implementation using the Gallium3D infrastructure.

MESA3D_OPENGL_EGL

Use the Khronos EGL APIs. EGL is a window manager for OpenGL applications similar to

GLX, for X, and WGL, for Windows.

BR2_PACKAGE_MESA3D_OPENGL_ES

43

DLT_DAEMON receives log messages from DLT user applications and temporary storage

of log messages if DLT Client isn't available. Transmit log messages to DLT Client and

messages. This package was added to Buildroot as explained in Section

This is a software opengl implementation using the Gallium3D infrastructure.

Use the Khronos EGL APIs. EGL is a window manager for OpenGL applications similar to

Use the Khronos OpenGL ES APIs. This is commonly used on embedded systems and

represents a subset of the OpenGL API.

Figure

- BR2_PACKAGE_QT5

This option enables the Qt5 framework. Sub

be built.

- BR2_PACKAGE_QT5BASE

Qt is a cross-platform applic

package corresponds to the qt5base module, which contains the base Qt libraries: QtCore,

QtNetwork, QtGui, QtWidgets, etc.

- BR2_PACKAGE_QT5BASE_LICENSE_APPROVED

Select this if you approve one of the

this you will not be asked while the library is compiled.

- BR2_PACKAGE_QT5BASE_SQLITE_NONE

Do not compile any kind of SQLite support.

- BR2_PACKAGE_QT5BASE_OPENGL_ES2

Use OpenGL ES 2.0 and later versio

BR2_PACKAGE_QT5BASE_OPENGL_LIB:

This option enables the Qt5OpenGL library. This library includes OpenGL support classes

provided to ease porting from Qt 4.x.

- BR2_PACKAGE_QT5BASE_EGLFS

Use the Khronos OpenGL ES APIs. This is commonly used on embedded systems and

a subset of the OpenGL API.

Figure 17. Mesa3D configuration

This option enables the Qt5 framework. Sub-options allow to select which modules should

BR2_PACKAGE_QT5BASE

platform application and UI framework for developers using C++. This

package corresponds to the qt5base module, which contains the base Qt libraries: QtCore,

QtNetwork, QtGui, QtWidgets, etc.

BR2_PACKAGE_QT5BASE_LICENSE_APPROVED

Select this if you approve one of the available free licenses for the Qt5 library. By doing

this you will not be asked while the library is compiled.

BR2_PACKAGE_QT5BASE_SQLITE_NONE

Do not compile any kind of SQLite support.

BR2_PACKAGE_QT5BASE_OPENGL_ES2

Use OpenGL ES 2.0 and later versions.

BR2_PACKAGE_QT5BASE_OPENGL_LIB:

This option enables the Qt5OpenGL library. This library includes OpenGL support classes

provided to ease porting from Qt 4.x.

BR2_PACKAGE_QT5BASE_EGLFS

44

Use the Khronos OpenGL ES APIs. This is commonly used on embedded systems and

options allow to select which modules should

ation and UI framework for developers using C++. This

package corresponds to the qt5base module, which contains the base Qt libraries: QtCore,

available free licenses for the Qt5 library. By doing

This option enables the Qt5OpenGL library. This library includes OpenGL support classes

Enable eglfs support.

- BR2_PACKAGE_QT5BASE_FONTCONFIG:

This option enables Fontconfig and Freetype support using the system fontconfig and

freetype2 libraries.

- BR2_PACKAGE_QT5BASE_GIF:

This compiles and installs the plug

 -BR2_PACKAGE_QT5BASE_JPEG:

This option enables JPEG support using the

BR2_PACKAGE_QT5BASE_PNG:

This option enables PNG support using the system libpng library.

BR2_PACKAGE_QT5BASE_DBUS:

This option enables the D-Bus module.

- BR2_PACKAGE_QT5DECLARATIVE

- BR2_PACKAGE_QT5DECLARATIVE_QUICK

- BR2_PACKAGE_XTERM

BR2_PACKAGE_QT5BASE_FONTCONFIG:

n enables Fontconfig and Freetype support using the system fontconfig and

BR2_PACKAGE_QT5BASE_GIF:

This compiles and installs the plug-in for GIF reading support.

BR2_PACKAGE_QT5BASE_JPEG:

This option enables JPEG support using the system libjpeg library.

BR2_PACKAGE_QT5BASE_PNG:

This option enables PNG support using the system libpng library.

BR2_PACKAGE_QT5BASE_DBUS:

Bus module.

BR2_PACKAGE_QT5DECLARATIVE

BR2_PACKAGE_QT5DECLARATIVE_QUICK

Figure 18. QT5 configuration

45

n enables Fontconfig and Freetype support using the system fontconfig and

Xterm terminal emulator.

- BR2_PACKAGE_XORG7:

Support for X11R7 libraries, servers, drivers, and/or applications in the target.

- BR2_PACKAGE_XSERVER_XORG_SERVER

X.Org X server.

- BR2_PACKAGE_XAPP_TWM

-BR2_PACKAGE_XAPP_XAUTH

X authority file utility.

- BR2_PACKAGE_XAPP_XCLOCK

Analog / digital clock for X.

- BR2_PACKAGE_XAPP_XHOST

Controls host and/or user access to a running X server.

- BR2_PACKAGE_XAPP_XINIT

X Window System initializer.

- BR2_PACKAGE_XDRIVER_XF86_VIDEO_INTEL

Intel video driver.

Figure

4.4.4.7. Networking Applications

- BR2_PACKAGE_DHCP

DHCP relay agent from the ISC DHCP distribution.

Support for X11R7 libraries, servers, drivers, and/or applications in the target.

BR2_PACKAGE_XSERVER_XORG_SERVER

BR2_PACKAGE_XAPP_TWM

BR2_PACKAGE_XAPP_XAUTH

BR2_PACKAGE_XAPP_XCLOCK

BR2_PACKAGE_XAPP_XHOST

Controls host and/or user access to a running X server.

BR2_PACKAGE_XAPP_XINIT

BR2_PACKAGE_XDRIVER_XF86_VIDEO_INTEL

Figure 19. Mesa3D configuration

Networking Applications

DHCP relay agent from the ISC DHCP distribution.

46

Support for X11R7 libraries, servers, drivers, and/or applications in the target.

- BR2_PACKAGE_DHCP_CLIENT

DHCP client from the ISC DHCP distribution.

- BR2_PACKAGE_OPENSSH

A free version of the SSH protocol suite of network connectivity tools. The standard 'ssh',

'sshd', 'scp', and friends.

- BR2_PACKAGE_PORTMAP

The standard portmapper for Remote Procedure Call (RPC) serv

Figure 20

4.4.4.8. Filesystem Images

- BR2_TARGET_ROOTFS_EXT2_4

Build an ext4 rootfs.

- BR2_TARGET_ROOTFS_TAR

Build a tar archive of the root filesystem

BR2_PACKAGE_DHCP_CLIENT

from the ISC DHCP distribution.

BR2_PACKAGE_OPENSSH

A free version of the SSH protocol suite of network connectivity tools. The standard 'ssh',

BR2_PACKAGE_PORTMAP

The standard portmapper for Remote Procedure Call (RPC) services.

20. Networking applications configuration

Filesystem Images

BR2_TARGET_ROOTFS_EXT2_4

BR2_TARGET_ROOTFS_TAR

Build a tar archive of the root filesystem

47

A free version of the SSH protocol suite of network connectivity tools. The standard 'ssh',

Figure

4.4.4.9. Bootloader

- BR2_TARGET_GRUB2

GNU GRUB is a Multiboot boot loader. It was derived from GRUB, the GRand Unified

Bootloader, which was originally designed and implemented by Erich Stefan Boleyn.

GRUB 2 has replaced what was

turn, become GRUB Legacy.

- BR2_TARGET_GRUB2_X86_64_EFI

Select this option if the platform you're targeting has a 64 bits EFI BIOS.

Figure 21. Filesystem images configuration

Bootloader

GNU GRUB is a Multiboot boot loader. It was derived from GRUB, the GRand Unified

Bootloader, which was originally designed and implemented by Erich Stefan Boleyn.

GRUB 2 has replaced what was formerly known as GRUB (i.e. version 0.9x), which has, in

BR2_TARGET_GRUB2_X86_64_EFI

Select this option if the platform you're targeting has a 64 bits EFI BIOS.

48

GNU GRUB is a Multiboot boot loader. It was derived from GRUB, the GRand Unified

Bootloader, which was originally designed and implemented by Erich Stefan Boleyn.

formerly known as GRUB (i.e. version 0.9x), which has, in

Figure

4.5. Building the Kernel

Proceed to save the configuration (Ctrl + s)

Figure

Start the build (this can take a few hours the first time):

Figure 22. Bootloader configuration

uilding the Kernel

Proceed to save the configuration (Ctrl + s)

Figure 23. Saving configuration (“.config”)

Start the build (this can take a few hours the first time):

49

$ cd $Cluster_Max_DIR

$ make

Figure 24

The “make” command executes the following sequence

1. Download source files.

2. Configure, build and install the cross

external toolchain.

3. Configure, build and install selected target packages.

4. Build a kernel image, if selected.

5. Build a bootloader image, if selected.

6. Create a root filesystem in selected formats.

4.6. Output Files and Binaries Generated after the Build
Process

Buildroot output is stored in a single directory,

several subdirectories [3]:

images/ Kernel image, bootloader and root filesystem are stored here. These are intended to

be put on target system (Minnowboard Max).

24. End of Cluster_Max SDK compilation

The “make” command executes the following sequence [3]:

Download source files.

Configure, build and install the cross-compilation toolchain, or simply import an

nfigure, build and install selected target packages.

Build a kernel image, if selected.

Build a bootloader image, if selected.

Create a root filesystem in selected formats.

Output Files and Binaries Generated after the Build

Buildroot output is stored in a single directory, $Cluster_Max_DIR. This directory contains

Kernel image, bootloader and root filesystem are stored here. These are intended to

et system (Minnowboard Max).

50

compilation toolchain, or simply import an

Output Files and Binaries Generated after the Build

. This directory contains

Kernel image, bootloader and root filesystem are stored here. These are intended to

51

build/ The tools needed by Buildroot on the host and packages compiled for the target are

built. This directory contains one subdirectory for each of these components.

staging/ Contains a hierarchy similar to a root filesystem. This directory contains the

headers and libraries of the cross-compilation toolchain and all the userspace packages

selected for the target. It contains several files, unstripped libraries and binaries used to

compile programs that depends on other libraries (this is not the root filesystem).

target/ Contains almost the complete root filesystem for the target except the device files in

/dev/ (this is not the root filesystem).

host/ Contains the installation of tools compiled for the host that are needed for the proper

execution of Buildroot, including the cross-compilation toolchain.

4.7. Writing Image to mSD Card (Host)

After the build process is done, “sdcard.img” is generated inside

/home/nana/Thesis_ESE/Cluster_Max_Build/images/.

Insert an empty mSD card (at least 2Gb is recommended) inside host slot and proceed to

burn “sdcard.img” into it.

Find the /dev/ name corresponding to the mSD card by typing the following command:

$ ls /dev/sd*

Or

$ df -l

In this case mSD card name corresponds to “sdb”, proceed to execute the following

command:

$ sudo dd if=/home/nana/Thesis_ESE/Cluster_Max_Build/images/sdcard.img of=/dev/sdb;

sync

“dd” command assign size partition by default, and it is not enough to run application and

saving the images. With the help of GParted or any similar program, partition capacity can

be increased.

Check again /dev/ names (execute command: $ ls /dev/sd*) and the two new partitions,

boot (/dev/sdb1) and rootfs (/dev/sdb2), shall be shown.

Figure

Remove mSD card from host, then insert into the MinnowBoard Max and power the board

on.

4.8. Network Configuration and Target Setup

In order to connect target and host through SSH the following steps need to be done:

Target
Set static IP address on MinnowBoard Max

nano /etc/network/interfaces

Edit the file with the following content:

auto lo eth0

iface lo inet loopback

iface eth0 inet static

 address 192.168.10.100

 netmask 255.255.255.0

Save the file and restart MinnowBoard Max:

halt

Then, power off and power on board again.

Verify ethernet configuration:

ifconfig -a

Command response must show eth0 inet address as 192.168.10.100.

Further configuration is needed to establish connection through SSH with host.

To get target username:

Figure 25. Checking mSD card name

Remove mSD card from host, then insert into the MinnowBoard Max and power the board

Network Configuration and Target Setup

In order to connect target and host through SSH the following steps need to be done:

IP address on MinnowBoard Max

nano /etc/network/interfaces

Edit the file with the following content:

Save the file and restart MinnowBoard Max:

Then, power off and power on board again.

Verify ethernet configuration:

Command response must show eth0 inet address as 192.168.10.100.

Further configuration is needed to establish connection through SSH with host.

52

Remove mSD card from host, then insert into the MinnowBoard Max and power the board

In order to connect target and host through SSH the following steps need to be done:

Further configuration is needed to establish connection through SSH with host.

53

whoami

Command response is: root.

To change target password:

passwd

Set it to root.

Generate and add SSH key:

ssh-keygen

Let the default options by typing intro.

cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys

Edit file “sshd_config” in target:

nano /etc/ssh/sshd_config

The following options are mandatory in SSH target configuration:

Port 22 (uncommented)

PermitRootLogin yes (uncommented)

RSAAuthentication no (uncommented)

PubkeyAuthentication no (uncommented)

AuthorizedKeysFile .ssh/authorized_keys (uncommented)

Save the file and restart MinnowBoard Max:

halt

Then, power off and power on board again.

Host
Connect target and host through ethernet cable and set static IP address on host, for that

select wired connection, then under “IPV4” tab set the following information:

Method: Manual

Address: 192.168.10.101

Netmask: 255.255.255.0

Figure

Press “OK” button and verify ethernet configuration:

$ ifconfig -a

Figure

Test the connection by pinging target:

$ ping 192.168.10.100

Figure 26. Wired configuration in host

Press “OK” button and verify ethernet configuration:

Figure 27. Static IP address on host

Test the connection by pinging target:

54

Since target name (root) and its IP address (192.168.10.100) are already known,

connect to target through SSH:

$ ssh root@192.168.10.100

Figure 29. Connecting to target through SSH (Host)

Create “tsw” folder inside /root which is going to contain the Da

file:

Target
cd /root

mkdir tsw

Figure

Host
Since host and target has the same architecture, just compile “tsw” application with gcc:

Figure 28. Ping target from host

Since target name (root) and its IP address (192.168.10.100) are already known,

connect to target through SSH:

. Connecting to target through SSH (Host)

Create “tsw” folder inside /root which is going to contain the Dashboard menu executable

Figure 30. “tsw” folder creation on target

Since host and target has the same architecture, just compile “tsw” application with gcc:

55

Since target name (root) and its IP address (192.168.10.100) are already known, proceed to

shboard menu executable

Since host and target has the same architecture, just compile “tsw” application with gcc:

$ cd ../tsw/hmi_test_client

$ gcc menu_options.c shared_memory.c main.c

Figure 31

After compilation is done, copy “a.out” executable file from host to target:

Host
$ scp -r ./a.out root@192.168.10.100:/root/tsw

Figure 32. Copy executable file generated from compilation to target

Create the following folder in target:

Target
cd /opt/

mkdir Dashboard

cd Dashboard

mkdir bin

Also, create “qml” folder which is going to contain the qml

by the Dashboard interface application

$ mkdir qml

Figure 33

In host copy “qml” folder that is located inside “Dashboard” folder and paste them into

target “qml” folder:

$ gcc menu_options.c shared_memory.c main.c

31. Compiling “tsw” application in host

After compilation is done, copy “a.out” executable file from host to target:

r ./a.out root@192.168.10.100:/root/tsw

. Copy executable file generated from compilation to target

Create the following folder in target:

Also, create “qml” folder which is going to contain the qml file, images and fonts needed

by the Dashboard interface application

33. “bin” and “qml” folder creation in target

In host copy “qml” folder that is located inside “Dashboard” folder and paste them into

56

. Copy executable file generated from compilation to target

file, images and fonts needed

In host copy “qml” folder that is located inside “Dashboard” folder and paste them into

Host
$ cd ../Dashboard

$ scp –r ./qml/Dashboard/* root@192.168.10.100:/opt/Dashboard/qml

Figure 34. Copy images, fonts and “main.qml” from host to target

4.9. QT Creator Configuration (Host)

The QT Creator and QT Libraries have been downloaded from the following web site:

https://www.qt.io/download-op

Proceed to install it and open QT Creator. Then configure it:

Select Tools → Options.

Since host and target have the same architecture, x86_64, GCC compiler and QT Libraries

used for cross-compiling are the same ones than installed on host

Then select “Build & Run” menu

Name: MinnowMax

Device type: Generic Linux Device

Press “Manage” button

Press “Add” button

 Select “Generic Linux Device”

 Press “Start Wizard” button and set the following value

 The name to identify this configuration: MinnowMax

 The device's host name or IP address: 192.168.10.100 (Section

 The user name to log into the device

 The authentication type: Password

 The user's password: root

root@192.168.10.100:/opt/Dashboard/qml

Copy images, fonts and “main.qml” from host to target

QT Creator Configuration (Host)

The QT Creator and QT Libraries have been downloaded from the following web site:

open-source/

Proceed to install it and open QT Creator. Then configure it:

Since host and target have the same architecture, x86_64, GCC compiler and QT Libraries

compiling are the same ones than installed on host machine.

Then select “Build & Run” menu → “Kits” tab and press “Add” button:

Device type: Generic Linux Device

Select “Generic Linux Device”

Press “Start Wizard” button and set the following values:

The name to identify this configuration: MinnowMax

The device's host name or IP address: 192.168.10.100 (Section

The user name to log into the device: root

The authentication type: Password

The user's password: root

57

Copy images, fonts and “main.qml” from host to target

The QT Creator and QT Libraries have been downloaded from the following web site:

Since host and target have the same architecture, x86_64, GCC compiler and QT Libraries

The device's host name or IP address: 192.168.10.100 (Section 4.8)

 Press “Next” button.

 Press “Finish” button

 Press Close button

Press Apply button

Figure

Check that target is properly connected to host by pressing “Test” button:

Press “Next” button.

Press “Finish” button - Verify that the Device was successfully tested.

Figure 35. QT Devices configuration

Check that target is properly connected to host by pressing “Test” button:

58

Verify that the Device was successfully tested.

Figure 36. Remote connection to target is successful

Return to “Build & Run” menu

Select “MinnowMax (default)” under “Manual” sub

Sysroot: /.../Cluster_Max_Build/staging

Compiler: GCC (x86 64 bit in /usr/bin)

Qt version: Qt 5.4.2 GCC 64 bit

. Remote connection to target is successful

Return to “Build & Run” menu -> Kits tab in order to finish the kit configuration

ect “MinnowMax (default)” under “Manual” sub-menu and set the following options:

Sysroot: /.../Cluster_Max_Build/staging

Compiler: GCC (x86 64 bit in /usr/bin)

Qt version: Qt 5.4.2 GCC 64 bit

59

> Kits tab in order to finish the kit configuration

menu and set the following options:

Figure

Finally, Qt Creator is configured to program on a remote device using the Qt Libraries.

4.10. Cross-Compile “Dashboard” Application on QT Creator
(Host)

After configuring QT Creator as mentioned on Section

application:

1. Host: Open “Dashboard.pro” file with QT Creator. This file is provided along with

this document.

2. Host: After Dashboard project is open, select MinnowMax

option (Figure 38).

Figure 37. QT Build & Run configuration

Finally, Qt Creator is configured to program on a remote device using the Qt Libraries.

Compile “Dashboard” Application on QT Creator

After configuring QT Creator as mentioned on Section 4.9, proceed to open “Dashboard”

Host: Open “Dashboard.pro” file with QT Creator. This file is provided along with

Host: After Dashboard project is open, select MinnowMax kit and release in build

60

Finally, Qt Creator is configured to program on a remote device using the Qt Libraries.

Compile “Dashboard” Application on QT Creator

, proceed to open “Dashboard”

Host: Open “Dashboard.pro” file with QT Creator. This file is provided along with

kit and release in build

Figure 38

3. Host: Execute remote console for target (SSH

4. Target: Execute “xinit” command (press Ctrl + c to exit X11).

5. Host: Build (Ctrl + b) and run (Ctrl + r).

6. Host: Execute remote another console for target (SSH).

7. Target: Run “tsw” application (

./a.out

Figure 39

8. Target: After selecting and modifying values in the option menu from remote

connection, changes shall be reflected in Dashboard GUI. Results are shown in

Section 5.1.

38. Deploy to remote Linux host (target)

Host: Execute remote console for target (SSH).

Target: Execute “xinit” command (press Ctrl + c to exit X11).

Host: Build (Ctrl + b) and run (Ctrl + r).

Host: Execute remote another console for target (SSH).

Target: Run “tsw” application (Figure 39):

39. “tsw” application is running on target

Target: After selecting and modifying values in the option menu from remote

connection, changes shall be reflected in Dashboard GUI. Results are shown in

61

Target: After selecting and modifying values in the option menu from remote

connection, changes shall be reflected in Dashboard GUI. Results are shown in

62

5. RESULTS

Abstract: In this chapter, the results obtained after executing CLUSTER_PI App in

MinnowBoard Max are shown.

63

5.1. Results

Results obtained from the procedure detailed in Section 4 are described below:

After executing step 5 in the Section 4.10, Dashboard with initial values is shown in

MinnowBoard Max display connected through the Micro-HDMI:

Figure 40. Dashboard with initial values running on target (MinnowMax)

In step 8, seatbelt warning and speedometer are set as follows:

Figure 41. Seatbelt warning was activated in remote “tsw” applicatio

Figure 42. Speedometer was set to 140 km/h in remote “tsw” application

Commanded options by “tsw” application are applied to Dashboard GUI by pressing intro.

Then, changes are refreshed into the image:

. Seatbelt warning was activated in remote “tsw” applicatio

. Speedometer was set to 140 km/h in remote “tsw” application

Commanded options by “tsw” application are applied to Dashboard GUI by pressing intro.

Then, changes are refreshed into the image:

64

. Seatbelt warning was activated in remote “tsw” application

. Speedometer was set to 140 km/h in remote “tsw” application

Commanded options by “tsw” application are applied to Dashboard GUI by pressing intro.

65

Figure 43. Dashboard with seatbelt warning activated and speedometer set to 140 km/h

Notice that the speed reported for the cluster is now 140 km/h and also the seat-belt is on,

as expected.

66

6. CONCLUSIONS

Abstract: In this chapter, some conclusions and future work related with this project are

presented.

67

6.1. Conclusions

This work described the implementation of a digital automotive cluster based on an Intel

X86_64 microprocessor architecture. A brief review of the industrial trend on digital

clusters has been presented. The MinnowBoard MAX architecture has been reviewed, as

well as the software architecture based on a Linux distro. The Buildroot tool has been

considered for the customization of the Linux kernel and the construction of a bootable

image suitable for the Minnowboard MAX board.

A cross platform development environment based on the QT framework has been

configured for the compilation of the CLUSTER_PI application, which is the responsible of

the visual representation of the instruments of the cluster.

A shared memory mechanism in the Linux kernel has been used for the inter process

communication between the low level drivers, such as CAN and UART, and the

CLUSTER_PI application. In this way, the development of the solution can be

modularized.

This work is based on the CLUSTER_PI App, which was previously executed on an

architecture ARM (Raspberry PI). Buildroot was used to migrate the application to x86_64

architecture. Necessary packages used in CLUSTER _PI, such as: QT5, SSH, etc. were

taken as initial requirement. With this information the kernel is configured and then

compiled. As a final result of the building a complete Linux Embedded System (bootloader,

root filesystem, Kernel image and cross-compilation toolchain) is generated. CLUSTER_PI

App was successfully deployed in Minnowboard Max, showing the same graphic

environment and functionality than Raspberry PI. Due to this work is focused on kernel

configuration, the cluster application was not optimized enough; further analysis needs to

be done especially in the graphic related section.

Since both Host machine and target has the x86_64 architecture, cross compilation

toolchain is not mandatory to be selected when compiling application since the toolchain

available in host can be used (gcc, qmake, etc) allowing more reusability and scalability in

more platforms than ARM architecture.

With this work results it is demonstrated than tools like Buildroot allows to user fully

personalization of packages, kernel version, binary output format, etc. Also, this tool makes

use of several scripts which automates the building process.

68

Finally, architecture migration was deployed successfully since the Dashboard’s graphics

were updated after a commanded input was sent from host to target through SSH. However,

this work offers many possibilities for cluster reconfiguration and extra functionality, as

well as further improvement as mentioned in the following section.

6.2. Future Work

The future work of this development includes an optimization process to speed up the

responsiveness of the virtual digital instruments in the cluster. Additionally, further

development of low-level driver for its integration within the automotive network is

considered. This includes drivers for CAN, Flex-Ray, CAN-FD and Ethernet, among

others.

It is highly recommendable to use tools like Buildroot since it allows to user fully

personalization of packages, kernel version. However, the use of Yocto for the

configuration of the Linux kernel for the MinnowBoard MAX board is considered as future

trend in this work.

Besides, the integration of sensors to the cluster, such as Leap motion or Intel RealSense, is

considered in future versions of this technological development.

This lead to propose future work focused on:

• Improve Dashboard response time.

• Add CAN driver support to Kernel.

• Include extra functionality with Leap Motion.

In addition, OpenGL can be used along with QT to allow more versatility and

customization for future projects.

69

BIBLIOGRAPHY

[1] Delphi, «Delphi Reconfigurable Displays,» © Delphi Automotive LLP, [En línea].

Available:

http://www.delphi.com/manufacturers/auto/controls/displays/reconfigurable_displays.

[Último acceso: 27 08 2016].

[2] Magneti Mirelli, «Instrument Clusters,» © Magneti Marelli S.p.A. , [En línea].

Available: http://www.magnetimarelli.com/excellence/technological-

excellences/instrument-clusters. [Último acceso: 27 08 2016].

[3] Buildroot, «The Buildroot user manual,» Buildroot, [En línea]. Available:

https://buildroot.org/downloads/manual/manual.html. [Último acceso: 27 08 2016].

[4] Yocto Project, «MinnowBoard,» © Yocto Project, A Linux Foundation Collaborative

Project., [En línea]. Available: https://www.yoctoproject.org/product/minnowboard.

[Último acceso: 27 08 2016].

[5] OpenWrt, «OpenWrt,» OpenWrt, [En línea]. Available: https://openwrt.org. [Último

acceso: 27 08 2016].

[6] QT, «QT for Application Development,» © 2016 The Qt Company, [En línea].

Available: https://www.qt.io/qt-for-application-development/. [Último acceso: 05 09

2016].

[7] Indiana University, «What is the X Window System?,» © 2016 The Trustees of

Indiana University, 20 08 2015. [En línea]. Available: https://kb.iu.edu/d/adnu.

[Último acceso: 05 09 2016].

[8] freedesktop.org, «DRI Wiki,» freedesktop.org, 11 04 2014. [En línea]. Available:

https://dri.freedesktop.org/wiki/. [Último acceso: 10 09 2016].

[9] Mesa3D, «The Mesa 3D Graphics Library,» Mesa3D, [En línea]. Available:

http://www.mesa3d.org/intro.html. [Último acceso: 09 10 2016].

[10] OpenBSD Project, «OpenSSH,» © 1999-2016 OpenBSD, [En línea]. Available:

http://www.openssh.com/. [Último acceso: 11 09 216].

[11] M. Rouse, «Bootloader,» TechTarget, 2016. [En línea]. Available:

http://searchenterpriselinux.techtarget.com/definition/boot-loader. [Último acceso: 18

09 2016].

[12] J. O. S. S. A. W. Lars Wirzenius, «Chapter 3. Overview of the Directory Tree,» de The

Linux System Administrator's Guide, The Linux Documentation Project.

[13] eLinux, «Toolchains,» eLinux, 22 07 2016. [En línea]. Available:

70

http://elinux.org/Toolchains. [Último acceso: 15 11 2016].

[14] David A Rusling, «Interprocess Communication Mechanisms,» de The Linux Kernel,

Wokingham, David A Rusling, 1999, pp. 51-58.

[15] M. Streicher, «Speaking UNIX: Interprocess communication with shared memory,»

IBM, 28 09 2010. [En línea]. Available:

https://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemory/. [Último

acceso: 26 10 2016].

[16] MinnowBoard MAX, «MinoowBoard MAX,» MinnowBoard MAX, 29 03 2016. [En

línea]. Available: http://wiki.minnowboard.org/MinnowBoard_MAX. [Último acceso:

03 09 2016].

[17] MinnowBoard Max, «Minnow2 Board,» CircuitCo LLC., 25 08 2014. [En línea].

Available: http://www.elinux.org/images/f/fd/MinnowMax_RevA1_sch.pdf. [Último

acceso: 04 09 2016].

[18] ASUS, «N56VZ,» ©ASUSTeK Computer Inc., [En línea]. Available:

https://www.asus.com/latin/Notebooks/N56VZ/specifications/. [Último acceso: 03 09

2016].

[19] J. O. S. S. A. W. Lars Wirzenius, «Chapter 3. Overview of the Directory Tree,» de

Linux System Administrators Guide, The Linux Documentation Project.

