Enhancement and Edge-Preserving Denoising:
An OpenCL-Based Approach for Remote
Sensing Imagery

Jaime Ortegén Aguilar, Senior Member, IEEE, Alejandro Castillo Atoche, Member, IEEE, Roberto Carrasco Alvarez,
Javier Vazquez Castillo, Member, IEEE, Ivan Villalon—Turrubiates, Senior Member, IEEE,
and Omar Pérez-Martinez, Student Member, IEEE

Abstract—Image enhancement and edge-preserving denoising
are relevant steps before classification or other postprocessing
techniques for remote sensing images. However, multisensor array
systems are able to simultaneously capture several low-resolution
images from the same area on different wavelengths, forming
a high spatial/spectral resolution image and raising a series of
new challenges. In this paper, an open computing language based
parallel implementation approach is presented for near real-time
enhancement based on Bayesian maximum entropy (BME),
as well as an edge-preserving denoising algorithm for remote
sensing imagery, which uses the local linear Stein’s unbiased
risk estimate (LLSURE). BME was selected for its results on
synthetic aperture radar image enhancement, whereas LLSURE
has shown better noise removal properties than other commonly
used methods. Within this context, image processing methods
are algorithmically adapted via parallel computing techniques
and efficiently implemented using CPUs and commodity graphics
processing units (GPUs). Experimental results demonstrate the
reduction of computational load of real-world image processing
for near real-time GPU adapted implementation.

Index Terms—Image enhancement, image processing, parallel
processing, remote sensing, unmanned aerial vehicles.

I. INTRODUCTION

INCE the advent of remote sensing (RS) technology, there

have been great changes in earth observation theory and
technology. One of these is particularly related to the extrac-
tion of physical characteristics of a geographical region, such
as water, land cover, vegetation, soil, and others. In this regard,
the understanding of geospatial RS imagery, as well as the so-
lution of diverse pattern recognition tasks, drastically depends
on the provided RS image quality, acquired from multisensor

array systems, such as radar/synthetic aperture radar (SAR) or
unmanned aerial vehicles (UAVs) [1]-[3]. The enhancement of
noise-corrupted RS imagery before classification analysis is a
crucial information processing task that could substantially im-
prove decision making results.

In this study, the enhancement approach is stated and treated
as an uncertain ill-posed inverse problem of nonparametric esti-
mation of the power spatial spectrum pattern (SSP) of the wave-
field scattered from a remotely sensed scene. These operational
uncertainties are associated with the unknown statistics of per-
turbations of the adjoint signal formation operator (SFO) of the
recorded data in the turbulent medium, finite dimensionality of
measurements, uncontrolled UAV vibrations, and random car-
rier trajectory deviations in the case of SAR. Moreover, speckle
noise and possible calibration errors constitute additional mul-
tiplicative sources of data degradations that inevitably aggra-
vate the inconsistency problem resulting in heavily distorted
speckle-corrupted scene images. To derive the estimate of the
SSP, the Bayesian maximum entropy (BME) strategy is applied
for maximization of the a posteriori probability density func-
tion (pdf) of the randomized maximum entropy (ME) model
of the SSP[4]. The BME is a statistical optimization method
algorithmically adapted for RS systems with robust a priori in-
formation about the statistics of noise. The development of this
method employs the ME robust regularization of the nonlinear
multispectral imagery. The estimator is a nonlinear adaptive al-
gorithm that permits a concise and robust implementation. How-
ever, high-frequency image components and the current image
enhancement/reconstruction techniques oriented for large-scale
RS imaging do not work well for edge-preserving smoothing
of images corrupted with additive and speckle noise. To reduce
these effects, a postprocessing framework is proposed with the
local linear Stein’s unbiased risk estimate (LLSURE) based
edge-preserving image filtering technique, which preserves im-
age details and local geometries while removing undesirable
noise [5]. The LLSURE is a filter based on Stein’s unbiased
risk estimate (SURE); Jain and Tyagi [6] carried out several test
confirming it to be among the best edge-preserving methods for
removing noise.

Additionally, another scientific challenge of this study con-
sists of how to implement the enhancement and edge-preserving
denoising tasks on large-scale multispectral images. In this
sense, recent research efforts have been directed toward the in-
corporation of parallel computing techniques and the design of

specialized high-performance computing (HPC) architectures
for intelligent processing of remotely sensed images with a high
spatial-spectral resolution. A good review on HPC applied to
RS is presented in [7], where its potential and challenges are
analyzed. Other implementations of RS image processing us-
ing low-cost graphics processing units (GPUs) are presented
in [8]-[10]. A framework for GPU adaptation of image pro-
cessing algorithms is presented in [11], where Christophe et al.
consider issues arising from hardware restrictions. On the other
hand, the open computing language (OpenCL) is used for tack-
ling highly demanding data processing, either with a parallel
data processing approach, such as satellite image segmentation
[12], spatial data interpolation [13], vertex component analysis
[14], or parallel task scheduling approach[15]. However, theo-
retical and practical data-processing challenges to developing
HPC solutions based on massively parallel hardware accelera-
tors remain unsolved in many applications. Therefore, a novel
OpenCL-based approach for near real-time enhancement and
edge-preserving denoising has been developed in this study.
OpenCL provides an industry standard for parallel program-
ming of heterogeneous computing platforms, and is designed
to exploit the compute capability of devices, such as CPUs
(central processing units), FPGAs (field programmable gate ar-
rays), GPUs, ARM SoC [advanced RISC (reduced instruction
set computer) machines system on a chip] with general-purpose
GPUs, and others. The approach introduced in this paper is
based on the use of image enhancement and edge-preserving
denoising techniques with the following design flow: 1) im-
age reconstruction via BME algorithm, and 2) postprocessing
edge-preserving denoising filtering through the principle of LL-
SURE. Moreover, this approach is also related to the efficient
implementation of the presented framework using multi-GPU
devices with the aim of accelerating high demand operations
embedded in the analysis of a particular geographical region.
Thus, although different high-performance computing systems
have been proposed for RS multispectral imagery via algorithm
implementation in commodity clusters, FPGA-based systems,
or digital signal processor systems; the authors consider that the
presented approach based on the unification of the aforemen-
tioned techniques and the use of the parallel OpenCL-based
standard will provide high accuracy in the enhancement and
edge-preserving denoising process, allowing a near real-time
data processing.

The rest of the paper is organized as follows. In Section II, the
problem statement and the algorithm description are presented.
The GPU implementation of the multispectral image system is
described in Section III. Next, the implementation and perfor-
mance analysis are discussed in Section IV; one synthetic and
two real-world case study scenarios are presented to show the
reduction in the processing time of the proposed enhancement
and edge-preserving denoising algorithm. Finally, the conclud-
ing remarks are presented in Section V.

II. RS IMAGING PROBLEM MODEL

In this section, a brief description of the general formalism
of the RS problem and the proposed design flow is presented.

Unmanned Aerial Vehicle
(UAV) Band Muitple cevice

Hexacopter DJI F550
with

Tetracam multispectral
camera
Original scene
(Multispectral image)

Local Linear Stein's|
UAV-based data | _| Image Unbxas:li :{j‘;e)
acquisition system > Borebiad Makai »Es _-preservmg
(Muilti-sensor Entropy (BME) m:enmsmg
imaging)
7« I, —
A-priory
information [
Output enhanced
image

Fig. 1. Multispectral RS imaging problem model.

A complete study related to this relevant topic can be found in
[16] and [17].

A. Problem Formulation

This subsection is focused on the modeling of the multispec-
tral RS imaging problem. Fig. 1 illustrates the RS problem model
particularly oriented to the extraction, reconstruction, and post-
processing analysis of environmental features for applications
in natural resources management.

Considering the analysis of Fig. 1, the results are adopted from
previously developed data acquisition and image enhancement
techniques [4], [18]-[20], for high-resolution reconstruction of
the power SSP of the wavefield scattered from the remotely
sensed scene (that is referred to as the desired RS image B [4D)
given a finite set of multispectral UAV signal recordings.

In this particular study, the challenge is to implement the
unified enhancement and edge-preserving denoising algorithms
from the UAV-based multispectral scene using GPU computing.
The proposed OpenCL parallel design enables us to enhance the
corrupted scene with additive and speckle noise in near real time.

B. Theoretical Background

Following the multispectral RS imaging problem of Fig. 1, the
data processing blocks (referred to RS acquisition system, im-
age reconstruction, and edge-preserving denoising) are briefly
described.

1) RS Data Acquisition System: Multispectral sensors
acquire image data, allowing physical measurements. These sen-
sors collect image data simultaneously in the visible and near-
infrared (NIR) radiation reflected from the earth’s surface. In this
paper, the multispectral images are acquired with an ADC-lite
(analog-to-digital converter) Tetracam camera integrated in a
UAV system with high spatial resolution images [3.2 megapixel
CMOS (complementary metal-oxide-semiconductor) sensor]
with green, red, and NIR bands comparable to Landsat bands 2,
3, and 4 [21]. This particular image has a spatial resolution of
685 mm? per pixel when acquired at an altitude of 83 m.

2) Image Reconstruction: Once the multispectral image is
acquired, the measurement data wavefield u(y) = s(y) + n(y)
of each band is modeled as a superposition of the echo
signals s and additive noise n, assumed to be available for
observations and recordings within the prescribed time-space
observation domain Y >y, where y = (¢, y)T defines the
time-space points in the observation domain. The conventional
finite-dimensional vector-form approximation of the RS data
observation is given by

u==Se+n)

where u, n, and e are composed vectors of the finite dimensional
approximations of the measurement field u, the observation
noise n, and the scene scattered field e, respectively, and S is
the matrix-form approximation of the SFO S, specified by the
particular modulation format employed in the RS system in
[18] and [4].

The RS imaging problem is now stated as follows: to find
an estimate of each band of the scene pixel frame B via lexi-
cographical reordering B= L{b} of the estimated SSP vector
b, which is reconstructed from the available measurements of
independent realizations {u;);j = 1,...,J} of the recorded
data vector. The lexicographical reordering L{-} is a reshaping
of a vector into a matrix. Here, b is referred to the SSP, which
represents the brightness reflectivity of the RS scene [18]. This
image reconstruction is achieved using the BME algorithm. The
following assumptions are considered: vector b is viewed as an
element of the K-D vector space B(x) > B with the squared
norm imposed by the inner product || B H(2 k) = [B, MB], where
M is a positive definite weighting matrix. Usually, M is selected
as the matrix-form approximation of some differential operator,
in which case, prior information about the smoothness proper-
ties of the desired SSP is embedded in M. The metrics structure
in B[is determined by this weighting matrix M; hence, its
selection provides the additional degrees of freedom of the prob-
lem model. According to the ME principle of information theory
[3], the a priori pdf p(B) is employed, inserting the minimum
amount of information about the SSP, but taking into account
the nontrivial model knowledge, formalized as follows:

/ B, MBJp(B)dB < c; @
B¢

where the normalized constant ¢y is usually unknown.

Following the ME model, p(B) is found, maximizing the
entropy integral — [In p(B) p(B)dB, where the maximization
must be found as a solution to the Lagrange maximization prob-
lem as follows:

max —
p(B) Be

—a </B B, MB|p(B)dB — CO)

Y (/B p(B)dB — 1) 3)

with the Lagrange multipliers «, A. Performing the maximiza-
tion described in (3) and following the Gibbs a priori pdf, the

Inp(B) p(B)dB

solution to the Lagrange problem is
p(Bla) = exp (fan(a) —alB, MB]), B e Be (4)

with the scalar o dependent on the constant ¢y and > («) is the
Boltzmann statistical sum [3].

Now, let us define the log likelihood function A(B|U) of
vector B oriented to solve the BME, estimating the SSP as
follows:

B = argmin{—A(B|U) — Inp(B|a)} Q)
B«
where the Gibbs prior distribution p(B|«) is defined by (4).
Applying the standard gradient method to minimize (5), the
desired BME of the SSP can be found as a solution of the
nonlinear equation

B = W(B)[V(B) - Z(B)] 6)

where V(B) is a vector that represents the sufficient statistics

(SS) for the Bayesian estimator of the SSP; vector Z(B) has
the statistical meaning of a shift or bias vector; and W(]:%) has
the statistical meaning of a solution-dependent (i.e., adaptive)
window operator. Note that the derivation of this SSP estimator
is detailed in [3], and references therein.

Nonlinearity of (6) also implies the dependence of V,Z,
and W on the desired estimate B, and thus, no unique regular
method for solving (6) exists. This means that implementation
of the optimal estimator inevitably requires solution-dependent
processing, which is referred to as adaptive with respect to
the desired estimate. Nevertheless, it is possible to perform the
robustification (nonadaptive approximation) of the BME algo-
rithm. Following the robust regularization idea of [22], the al-
gorithm is adapted, reducing the computational load of some
relevant expressions of the BME estimator. In this sense, the
robust SS vector is now computed as

V= {:FUIJ+]’F‘+ }diag (7)

where F = (S*S + « 'I)S*, with regularization parameter
w = Vi, which represents the signal-to-noise ratio. The robust
smoothing window

W = (wy I+ M)™! ®)

is completely defined by the matrix IV, which induces the met-
rics structure in the solution space with the scaling factor wy =
tr{S; F, FS}/K, and the bias vector W = {FRNF }ise can
be neglected, as it does not affect the pattern of the SSP estimate
(it influences only the constant gray level in the resulting solu-
tion). Here, Ry = Nyl represents the adopted observation white
noise model. Thus, in the framework of the Bayesian inference
based approach to estimating the wavefield power distribution
in the remotely sensed environment, the estimator

B=WV 9

may be viewed as a rough simplified version of the BME method
developed above. However, the computational complexity of the
BME rough simplified version still represents a challenge in this
study.

C. Local Linear Stein’s Unbiased Risk Estimate (LLSURE)

The LLSURE [5] is a filter based on SURE. To understand
how it works, we first need to know Stein’s lemma, which could
be classified in two variants: the univariate and the multivariate
lemma [23]. We will explain the multivariate variant, consider-
ing n = 2, since images are two-dimensional (2-D) signals.

Lemma Let X ~ N(p,0%I) , a 2-D normal variate, with a
mean of y € R? and a spherical covariance matrix of 021 €
R2*2, and let f:R? — R be a function such that for each
i = 1,2, and almost every z_; € R, the function

fC,zo):R—R (10)

is absolutely continuous and is known as almost differentiable.
It is important to note that this function has partial derivatives
almost everywhere, and their collection is denoted with V f =

(Of)0z, ..., 0f/0x,). Stein’s result with such X, and almost
differentiable f, is
1
SE(X - fX]=E[Vf(X)]. (11)
If f=(fi,...,fn),ie., the coordinate functions, then for
eachi=1,...,n

[Vfi (X)]. (12)

SE[X) f; (X)) =E

Summing 7 = 1,...,n gives

% ZCOV (thl (X)) =
i=1

_pls-on
_E[on

Now, considering [as an estimate of mean yu, the risk is
computed as

%ZE [(Xi — pi) f1 (X))

(X)] (13)

R=E|p—p|* = —no® +E |y — al* + 20°dof () (14)

where E ||y — ji||® is the expected training error of /i and its
degrees of freedom are defined as

ZCOV Yiy i) -

Stein’s lemma provides an explicit estimation of the degrees
of freedom term dof (/1) and also the risk of R. Knowing that /i
is almost differentiable as a function of f, we have

dof (1 (15)

fm

R=—no’ +|ly — af)” +2022

(16)

This expression is known as SURE. In the case of the estima-
tor depending on a tuning parameter A € A, it is denoted /i, and
it is possible to choose this parameter to minimize SURE

Ofis.i
NS

A= argmm ly — fall® + 2022 (17)

i=1

The mean-squared error of the denoised image with respect
to its noise-free version is

N

1 21 N2
<l =l = =37 (@i — 1)

i=1

MSE (2) = (18)

where || - || is the Euclidean norm. Now, applying the SURE,
we have

1 Y 03,

SURE (#) = + (IIy —2|* +20° 2; ZTJZ (&) — N02>
19)

In a local linear model, it is assumed that a filtered output
image patch is an affine transformation of an input image patch
in the same position. The latter is true for a local neighborhood
around every pixel. It is possible to determine the optimal
transform coefficients by minimizing the MSE estimate with
SURE. Therefore, let w; be a local window around the ith
position, and ¥, and &, be an input and filtered output image
patch, respectively, corresponding to window w;, then

Tw, = Yo, +bi, a;,bi€ R, a; >0 (20)

where a; and b; are the affine coefficients assumed to be
constants in window w;, thus

Vj € wi,&j = a;y; +b;. (1)

Using (20) in (19), we have

2

20
— (@i, +b) | + —a;N, — o*

SURE (a;, b
(@, N,

1
i) = E‘lyw’

= llge, — G, + B +20%0; — 0 @2)
N

where N, = (2r + 1) (2r 4 1) is the pixel number in window

w;, and 7 is the window radius.

To compute the optimal affine transform coefficients a; and b;
of local window wj, it is necessary to take the first derivatives of
(22) with respect to a; and b; and to consider that a; is restricted
as nonnegative. The resulting optimal affine coefficients are

max(o} —02,0)/ (07 +¢)
(1—a)mi

where 77 and o2 are the mean and variance, respectively, of the
input data in local window w;, and ¢ is a small constant to avoid
division by zero.

Moving local window w; over the entire image, it is possible
to compute the corresponding affine coefficients. However, each
pixel may be included in several windows, due to the overlap
of each moved window. Hence, considering that pixels x; in
overlapping regions have multiple estimates 27, it is necessary
to add them into the final estimate

N Y
T = E)\,,xj

1EW

(23)
(24)

a; =

b =

(25)

where A; is the weight for the ith estimate. As in [5], to compute
A;, we use the following equation, inspired by the variance-based

Original scene

(Multispectral
image)
Window w;
centered in pixel y;
‘xw, = aiyw‘ + bi
” Compute the Variance o,
X;,=4d;y,;+b,
where
~ 1 1 ~ 1 1 1
i = 70'“, g‘;?a‘, b, = 70"4. ; ?b‘, and o, = ;?
Apply the edge-

4

yo=y+aly-%)

preserving rule

Fig. 2. Algorithm to estimate Z and the final y. .

weighted average

-2

o
A= T (26)
Zkewl Ok ’
The final LLSURE filter is
. 0'._2
Ty = Z A&y = Z ﬁ(aiw +bi) (@27)
i€w; icw; kewjo,~
1 -2 -2
= 7,22 (0, “aiy; + 0, "bi)
Zke“’i Tk icw;
where a; = 3. 07%a;, bj=-3._ 072b, and
] o 1Ew 1 v J o 1ew Tt v

w j wj
ij = Ziew 0;2'

The LLSURE filter can be used for several purposes, such as
image denoising, joint denoising, detail smoothing and enhance-
ment, high dynamic compression, and others. In this study, we
will use it for edge preserving and enhancement. To do so, the

achieved detail level is obtained as
d=y—1= 29)

where y is the original image, y, is the output filtered image
by LLSURE, and § is the difference between the images. The
detail enhanced image measurement is finally computed as

Ye =Y + ad (30)

where « is the scale factor. The algorithm followed to compute
the estimated % and the final y,. is depicted in Fig. 2.

TABLE I
OPENCL SETUPPROCEDURE EXECUTED IN THE HOST

1. Initialization

Obtain a list of available platforms and devices
Create context, command queue and memory objects
Read kernel file

Create program object

Compile kernel

Create kernel object

Set kernel arguments

2. Execution

Enqueue task, i.e., tell device to execute kernel instance
If necessary, wait for previous events to complete

3. Finalization

Read memory object
Free objects

III. EFFICIENT OPENCL-BASED IMPLEMENTATION

In this section, the methodology of the efficient BME and
LLSURE algorithm’s implementation are presented. Therefore,
considering the proposed aggregation of parallel techniques with
multi-GPU computing, we distinguish four stages in the design
methodology for the objective of this paper:

1) OpenCL setup procedures;

2) OpenCL implementation of BME;

3) OpenCL implementation of LLSURE method;

4) Multidevice BME-LLSURE implementation (optional).

A. OpenCL Setup

OpenCL is an open standard for cross-platform, heteroge-
neous parallel programming [24]. It is supported in several pro-
cessors, such as CPU, GPU, FPGA, and ARM. The OpenCL
execution model is based on concurrent execution of kernel in-
stances over a virtual grid defined by the host. OpenCL defines a
context, i.e., a space, where devices receive kernels and transfer
data; a context may include more than one device. Each de-
vice has one or more compute units composed of one or more
processing elements and local memory. The virtual grid is a
collection of work groups, which are collections of work items
that execute on a single compute unit. The work items in the
group execute the same kernel and share local memory and
work-group barriers. OpenCL uses commands to execute ker-
nels, reading and writing memory objects. A kernel is a function
implementing the “parallel” code to be executed on an OpenCL
device. An instance of a kernel to be executed is a task.

Setup procedures: As with other massively parallel hardware
accelerators platforms, an OpenCL program requires working
on both, the host side and the device side. The host program
selects the device, and allocates and frees resources for it; the
device executes the parallel program (kernel) using the OpenCL
runtime API (application programming interface). Usually, the
host is programmed in C/C++ using an OpenCL runtime API,
and the device is programmed in OpenCL C. The setup pro-
cedure, which is executed in the host, includes initialization,
execution, and finalization. This involves several steps, which
are listed in Table L.

TABLE I
ALGORITHMIC SUMMARY OF THE BME METHOD

1. Mathematical problem model

Equation of observation u=Se+n (1)
Maximum entropy strategy B = arg ming , {~A(B|U) —Inp(Bla)} (5)
BME adopted model B = W(B)[V(B) - Z(B)] ©)
2. A priori information
1 0 00
Metrics inducing operator M = Bl jl (1) 8 (8)
0 0 —-11
‘White observation noise Ry (8)
Regularization parameter w (8)

3. Robust BME strategy
V = {FUU"F7 }g, with

Robust SS vector F—(S'S+m lI)S*

)

! . . W = (woI+ M) and
Robust smoothing window wo = {8, F, FS}/K)
4. BME approach
BME robustified model B=wWV ©9)

All steps are required, but some may be implicit, e.g., if
available platforms and devices are known or there was an offline
compilation. The selection of device is carried out when the
context is created; it is at this point that the user decides to
use one of the different types of hardware accelerators, such as
single or multicore CPU, GPU, or other OpenCL accelerators.

B. OpenCL Implementation of BME

In this stage, the desired BME implementation of the SSP
estimation is performed as a solution of the nonlinear equation
presented in (6). This massively parallel approach is designed
to speed up the complex reconstructive signal processing opera-
tions of the algorithm aimed to meet the near real-time imaging
system requirements. From the analysis of (6) and (9), system-
level partitioning functions are specified with the OpenCL-based
paradigm implemented in a parallel form.

The design methodology is the following, according to Ta-
ble II: In order to solve the linear inverse problem of the model
given in (9), and according to the ME principle of information
theory, the data observations u, and the additive white Gaussian
noise n, a solution operator W : U — V can be derived as an
optimal estimate of the SSP. In this regard, the SFO S is con-
structed first to proceed with this regularization technique using
the BME method. Next, the metric inducing matrix operator M,
the white observation noise model Ry, and the regularization
parameter wo, provide additional knowledge about the problem.
Now, the robust SS vector V and the robust smoothing window
‘W with the scaling factor wy are implemented in parallel. In the
robust smoothing window, the matrix inversion operation based
on the block-Lower-Upper matrix decomposition (LU) decom-
position is employed to solve the robustified BME approach.

The OpenCL implementation of the robustified BME strategy
considers using both CPU and GPU architectures in a massively
parallel scheme. A serial host code in the CPU runs in the host
and a parallel kernel code runs in several device threads across
multiple GPU cores. As can be deduced from Algorithm 1, the
estimator is constructed while simultaneously leveraging the

GPU hardware features. The image is divided and distributed
between GPU and CPU processor cores using the partitioning
criteria of Section III-D, and the threads within a block work
together efficiently, exchanging data via a local-shared memory.
The header of kernel is

_ _kernel void BME (__global const uchar*
restrict inputImage, const int width,
const int height, const int omega,

_ _global float* restrict F, __global
float* restrict S, _ global float*
restrict outputImage) ;

C. OpenCL Implementation of LLSURE Method

In this stage, OpenCL kernels are implemented to compute
the LLSURE of each pixel of the multispectral image. This
processing stage is highly improved due to its potential for
parallelization in a massively parallel scheme. Based on Fig. 2,
we decided that LLSURE kernels would be launched once for
each band, with as many threads as rows in the multispectral
image, where each thread executes the corresponding operation
of the LLSURE method.

It is necessary to use three kernels; the first one, “LL-
SURE_sigma,” computes the variance for each window and
an initial value of a; and b; to apply (22). The second one, “LL-
SURE_lambda,” is used to compute weights A; and final values
a@; and b;. The last is used to normalize the resulting image, so
pixels are integers in the 0-255 range.

1) LLSURE_sigma: This kernel is used to compute the mean
and variance of image window wj; this can be carried out with a
convolution implementing a well-known parallelization scheme.
Afterward, a; and b; are computed with (23) and (24), respec-
tively. In order to preserve values for the next kernel, the memory
is allocated on a device and the pointers are sent as arguments
to the kernel. The header of the kernel is

_ _kernel void LLSURE_sigma(__global const
uchar* restrict inputImg, const int width,
const int height, _ _global float* restrict
a, __global float* restrict b, _ global
float* restrict sigma);

It is important to mention that it is necessary that ker-
nel LLSURE_sigma finish before starting the next kernel LL-
SURE_lambda, in order to use the correct o;, a;, and b; values;
this is done by means of barriers or events. Barriers are OpenCL
functions to synchronize work-item execution, which require
that all work items in the same work group execute before con-
tinuing beyond the barrier; they are useful in the event that a
single accelerator device is used. However, in the case of two
or more devices, it is necessary to use events, which follow a
consumer—producer pattern where each task produces an event
and the consumer waits until all events are completed before
starting its own execution. Both synchronization methods are
used in the proposed implementation.

2) LLSURE lambda: This kernel is used to apply the
weights A; of (26); this is done by implementing (28). First,
the sums Y., 07 %a;, > i, 07 2bi, and w; =Y. 077 are

computed using a convolution parallelization scheme. After-
ward, the first two sums are divided by the last to obtain a and
b, respectively. Finally, the final estimation is computed using
(28). Again, it is necessary to synchronize the execution of work
items before continuing to the next kernel. This kernel uses the
previously computed a, b, and o, and returns a new array of
values outputlmage. The kernel’s header is

int
const

__kernel void LLSURE_lambda (const
width, const int height, _ _global
float* restrict a, _ global const float*
restrict b, _ global const float* restrict
sigma, _ _global float* restrict outputIm-
age) ;

3) LLSURE normal: This kernel is used to normalize the
estimated values to an interval meaningful for unsigned char
data. It is required to compute minimum and maximum values,
which could be performed with a “parallel reduction” scheme
[25]. Finally, a simple normalization formula, finallmage; =
(outpulmage; — min)/(max — min), is applied. Again, it is
necessary to synchronize the execution of work items before
continuing to the next kernel. This kernel uses the previously
computed outputlmage, returning the finallmage. The header of
the kernel is

_ _kernel void LLSURE_normal (const int
width, const int height, _ global const
float* restrict outputImage, _ global
uchar* restrict finalImage);

4) LLSURE_edges: The LLSURE filter can be edge preserv-
ing with the use of (30). This can be done using a naive parallel
scheme, sending each pixel to a work item. The header of the
kernel is

_ _kernel void LLSURE_edges (const int
width, const int height, const int factor,
__global const uchar* restrict inputImage,
__global const uchar* restrict finalImage,
__global uchar* restrict edgesImage);

D. Multidevice BME-LLSURE Implementation

In this section, the implementation of the BME-LLSURE
algorithm with multiple devices is described. Opposite to the
implementation with a single device, where OpenCL kernels
distribute the computational load on one accelerator (CPU or
GPU), with multiple devices, it is possible to encounter three
scenarios.

1) One device per context. This is the simplest way to access
all devices, since the platform is independent, but the
synchronization between devices requires copying data to
host memory.

2) Multiple devices in one context (devices of same plat-
form/vendor). There must be a queue for each device, but
it facilitates sharing data between devices. Usually, it is
difficult to guarantee that all devices are from the same
vendor.

(a) (b) ©

Fig. 3. Types of multispectral image data partitioning: (a) spectral, (b) spatial,
and (c) mixed.

3) Multiple devices from the same platform in one context,
one context per platform. This is the most flexible alter-
native, but also a tricky one, since the work distribution
has to be well thought-out because of its two levels.

The authors chose to use only one context, taking advantage
of the platform and devices used, since both may use the host
unified memory, i.e., it is not necessary to explicitly transfer
data to the device. In this case, a data parallel model is used
dividing the data over all available devices. In order to achieve
such a distribution, it is necessary to perform a partition of the
multispectral image data between the devices.

E. Spatial-Spectral Partitioning

Three different types of data partitioning are identified
for multispectral image processing [26]: spectral, spatial, and
mixed, which are illustrated in Fig. 3. Considering the previous
partitioning scheme, we select the spectral partition, as the LL-
SURE requires windows on the same spectral band. For large
images, an overflow could occur in the device memory; to ad-
dress this problem, it is necessary to query the device capabilities
and divide the image accordingly. Next, Algorithm 1 is queued
in every device with their corresponding portion (bands) of the
multispectral image.

Let us consider a multispectral image of x x y pixels with 2
bands and a platform of n GPUs and m CPUs. The image ratio
to be processed by one GPU () is represented by

_1-mp
T on

(3D

where 3 € [0, 1] represents the image ratio to be processed by
one CPU. The processing ratio p, defined by

~
pP== (32)

p
represents the proportion of pixels that process the GPU in

regard to CPU.
Now, substituting (31) in (32) and solving for (3, the image
ratio to be processed by the CPU is now defined as

1

b= np+m’

(33)

In order to compute f3, it is necessary to provide a value of
p. If it is assumed that the time processing of both CPU and
GPU is directly proportional to the amount of pixels, then p can
be estimated as the processing time ratio between the CPU and
the GPU for the same image. Fig. 4 shows the image partition
strategy used in this work.

<

GPU1 |JCPU3|CPU4| GPU2

rCPU 1|CPU 2

W_JH,_J_Y_J_\,_IW_JH_JJZ
py By vy py Py vy

Fig. 4.
CPUs.

CPU/GPU partition strategy supposing there are two GPUs and four

Algorithm 1: Pseudocode of BME-LLSURE Implementa-
tion.
1: % b denotes the number of spectral bands%
2: % d denotes the number of OpenCL devices%
3: Allocate memory in the device for F, S;
4: Allocate memory in the device for a, b, o, and
edgelmage;
: Calculate W(B), V(B)
: Create one context with d devices and b streams;
7: Divide the image into d subimages, with x x vy pixels
for GPU and x x (y pixels for CPU
8 fori=1— bdo
9: Copy i-th band of the multispectral image from CPU
to device in the i-th stream;
10: Compute the estimate of band B (BME kernel);
11: Compute the mean and variance of image window w;
(LLSURE_sigma kernel);
12: Apply weights %; of (26) (LLSURE_lambda kernel);
13: Normalize values to unsigned char (LLSURE_normal
kernel);
14: Apply (30) for edge-preserving (LLSURE_edges
kernel);
15: Read the i-th band from device;
16: end for
17: Subimages come together to form the output image;
18: Frees the memory allocated in device.

AN W

Finally, the pseudocode for implementing the BME-
LLSURE algorithm using a single device is presented in
Algorithm 1.

IV. IMPLEMENTATION AND PERFORMANCE ANALYSIS

In this section, the implementation and the time performance
analysis of the proposed architecture based on multiple devices
computing are evaluated. These results are analyzed from
the point of view of multispectral processing accuracy and
parallel performance. Then, we describe the potential of the
proposed multiple device parallel design. Two case studies
are presented to prove the effectiveness of the proposal. The
first is a synthetic image, which can be seen in Fig. 5(a).
The second is a multispectral image collected by the UAV
Hexacopter DJI F550 with Tetracam multispectral camera,
presented in Fig. 5(d). Considering a 3 x 3 window, the GPU
time is 0.459 s and CPU time is 1.12 s, the partition parameters
are as follows: n=m=1, p=2.44, =029, v=0.71;
however, for simplicity, in the case of three-band im-

Fig. 5. Implementation results: Synthetic scene (a) original, (b) degraded,
(c) enhanced; real multispectral image (d) original, (e) degraded, (f) enhanced.

ages, the CPU processes one band and GPU process
two bands.

A. Synthetic Image Data

The synthetic image (1024 x 1024 pixels) has elements and
edges that present a challenge to the noise removal and enhance-
ment. It was degraded, adding additive (Gaussian) and multi-
plicative (speckle) noise to simulate the physical effects of image
capture with a flying device. The original and degraded im-
age are shown in Fig. 5(a) and (b), respectively. The degraded
image was processed with the proposed BME-LLSURE; see
Fig. 5(c). In order to have a comparable metric of enhance-
ment, in analogy to the image reconstruction, the quality metric
defined as an improvement in the output signal-to-noise ratio
(IOSNR) is employed as follows:

e (b —by)?
S (0P — by)2

IOSNR = 10 loglo

(34)

where by, represents the value of the kth element (pixel) of the
original image B, b; represents the value of the kth element
(pixel) of the degraded image, and ZA)ECBL) represents a value of
the kth pixel of the image reconstructed using the proposed
BME-LLSURE method. According to these quality metrics, the
higher the IOSNR the better the improvement of the image
enhancement/reconstructed with the employed algorithm.

B. Multispectral Image Data

The full dataset selected for the real case consists of multi-
spectral images of 2048 x 1536 pixels, with three spectral bands
corresponding to green, red, and NIR sensitivity, approximately
equal to Landsat TM2, TM3, and TM4. We consider an aerial
image of the School of Engineering, Autonomous University
of Yucatan, Mérida, México. Fig. 5(d) shows the NIR band of
the multispectral image, which is referred as UAV. Fig. 5(e)
shows the degraded image using speckle and Gaussian noise.
Fig. 5(f) shows the enhanced image using a 3 x 3 window for
BME-LLSURE. From these figures, it can be seen that some
structure is recovered and it is possible to see edges and objects
that noisy image occludes.

(a) (b)

Fig.6. Implementation results for UAV2: (a) multispectral image from cenote;
(b) enhanced image with BME-LLSURE.

(a)

Fig. 7. Implementation results: (a) original Sentinel-1 scene [28]; (b) image
enhanced applying the BME-regularized and edge-preserving LLSURE.

Fig. 6 presents a cenote image captured with the UAV located
at 21°13/39.52""N, 88°35'17.86"W, which is referred as UAV2.
The UAV2 image was shot at 170 m off the ground with a
resolution of 60 mm. Fig. 6(a) shows the cenote multispectral
image, and Fig. 6(b) shows the resulting enhanced image via
BME-LLSURE algorithm.

C. SAR Image Data

The second real case consists of a one-band Sentinel-1 [27]
SAR image. SAR images suffer speckle noise, and they are suit-
able to be enhanced with the proposed implementation. Sentinel-
1 is a two-satellite constellation with the prime objectives of
land and sea monitoring. The goal of the mission is to provide
C-band SAR data with medium- and high-resolution imaging in
all weather conditions. The C-SAR is capable of obtaining night
imagery and detecting small movement on the ground, which
makes it useful for land and sea monitoring. The image used
corresponds to the Yucatdn Peninsula with 25206 x 15157 16-b
pixels. The white area in the image corresponds to Mérida city
located at 20°58'24.7"N, 89°37'14.2"W. The image occupies
764.2 MB, and the implementation demands as much as seven
float point memory buffers resulting in approximately 10 GB;
the GPU used has only 4 GB, hence it was necessary to split the
image and send parts to GPU. Fig. 7(a) shows a selected region
from Sentinel-1 original image; Fig. 7(b) shows enhanced
image region using a 3 x 3 window for BME-LLSURE.

D. Performance Analysis

In this section, the time performance analysis of the multiple
device implementation is presented. The algorithm has been

TABLE III
PROCESSING TIME (IN S) OF THE MBE-LLSURE IMPLEMENTATIONS

Scene C++ CPU" GPU" CPU+GPU"

1 band 1 band 1 band 3 bands
Synthetic (3 x 3) 625 0410s 0.180s 0410s
Synthetic (5 x 5) 1.36's 0.464s 0281s 0.464 s
UAV (3 x 3) 1.87s 1.120s 0459 s 1.120 s
UAV (5 x 5) 4.14s 1.376s 0.496s 1.376 s
UAV 2 (3 x 3) 1.92s 1.145s 04655 1.145 s
UAV 2 (5 x 5) 425 1.462s 05135 1.462 s
Sentinel-1[28] (3 x 3) 212.6s 34.0ls 21.12s -
Sentinel-1[28] (5 x 5) 483.9s 65.28s 42425 -
*Implemented with OpenCL.

TABLE IV

IOSNR (DB) REGISTERED BY THE MBE-LLSURE IMPLEMENTATIONS

Scene 3x3 5x5 Scene 3x3 5x5
window window window window

Synthetic 9.860 8.827

UAV (1) 5.738 5.132 UAV 2 (1) 7.318 7.119

UAV (2) 10.406 8.539 UAV 2 (2) 3.951 2.079

UAV (3) 9.553 8.343 UAV 2 (3) 13.712 11.396

(1) Red band, (2) Green band, (3) NIR band.

tested on an iMac with two devices: CPU and GPU associated
with the “Apple” platform. The CPU is an Intel Core i5 @
3.4 GHz with 24 GB of RAM and four compute units; the GPU
is an NVIDIA GeForce GTX 780M with 4 GB of memory
and eight compute units, with 192 compute elements (cores)
each.

Table IIT summarizes the overall time performance achieved
with the proposed approach. The size of the window is a process-
ing time factor, since there are more pixels to process for each
window center. There are four enhanced images: one synthetic,
two real multispectral image with three bands, and a single band
Sentinel-1 image. Table III shows the processing times for CPU
and GPU when only one band is enhanced; to process all bands,
the value shown must be multiplied by three. The last column of
Table IIT shows the time required to process all bands according
to the spectral partition; the overall time is the greatest between
the CPU time (one band) and the GPU time (two bands). Addi-
tionally, Table IV summarizes the resulting IOSNR metric for
the enhanced image. There is a difference between using 3 x 3
or 5 x 5 windows for the method, with the result that enhanced
images with the smaller window are better estimations of real
images.

The implementation of the MBE-LLSURE algorithm using
the proposed multiple device architecture and 3 x 3 windows
takes only 1.120 s for the first multispectral RS image, in con-
trast to the 5.61 s (1.67 s x 3 bands) required with the C++
CPU-based implementation, with a significant speed up of 5x.
When the size of the image grows, as in the Sentinel-1 image,
the speed up of the GPU versus the CPU-based is 11.5x. The
proposed implementation helps to drastically reduce the over-
all processing time of the algorithm. In regard to IOSNR, the

contents of the image highly affects the result, since for a urban
scenario (UAV data) the major recovery is in the red band; in
the forest scenario (UAV2 data) the best results are achieved on
the NIR band.

V. CONCLUSION

The principal result of this study relates the digital signal
processing oriented solution of RS enhancing imaging prob-
lems (i.e., real large-scale multispectral images of 2048 x 1536
pixels, and 25206 x 15157 pixels with one band) by integrating
parallel computing techniques with OpenCL devices. In the first
stage, the BMR and the LLSURE techniques were algorithmi-
cally adapted for image enhancement and postprocessing edge-
preserving denoising filtering. In the study, the enhancement
approach was stated and addressed as an uncertain ill-posed
inverse problem of nonparametric estimation of the SSP. This
pattern is associated to unknown statistics of perturbations of
the recorded data in the turbulent medium, finite dimensionality
of measurements, and uncontrolled UAV vibrations. In a second
stage, the large-scale image enhancement tasks are efficiently
implemented using multiple devices with the aim to accelerate
the highly demanding operations embedded in the analysis of
a particular geographical region. The implementation has been
tested with images acquired by a UAV; the obtained results
show an enhancement based on the IOSNR metric. The parallel
OpenCL-based approach significantly reduces the overall com-
putational load of the algorithms obtaining a significant speed up
of 11.5x over a C++ CPU-based implementation when process-
ing a high spatial resolution image, justifying the use of GPU
units. Finally, through the results of the multispectral test scenar-
ios, we have concluded that near real-time image processing can
be achieved with the proposed approach. The proposed imple-
mentation is useful for applications where images are corrupted
with speckle or white noise, since the implemented algorithms
handle these very well. OpenCL is a very attractive option for
parallelism because it is supported by different vendors and
architectures; however, for RS images, it is necessary to pay
special attention to issues, such as memory overflow, device
capabilities, event synchronization, and others. Other problems
arise because RS image sizes are usually not power of 2, or are
too big to fit in GPU device memories, the proposed implemen-
tation address this issue by querying the device capabilities and
adapting buffer and work sizes. Finally, technology provides
new multiprocessor devices that are smaller, but more powerful,
which lead us to think that our proposal would execute on board
of UAV in the near future.

REFERENCES

[1] F. M. Henderson and A. J. Lewis (Eds), Principles and Applications of
Imaging Radar, Manual of Remote Sensing, vol. 2, 3rd ed. New York, NY,
USA: Wiley, 1998.

[2] J.W. Van Wagtendonk, R.R.Root, and C. H. Key, “Comparison of AVIRIS
and landsat ETM+ detection capabilities for burn severity,” Remote Sens.
Environ., vol. 92, no. 3, pp. 397-408, 2004.

[3] C.-1. Chang, Hyperspectral Data Exploitation: Theory and Applications.
New York, NY, USA: Wiley-Interscience, 2007.

(4]

(5]

(8]
9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

(19]

(20]

(21]

(22]

[23]

[24]

[25]

[26]

(27]

(28]

A. Castillo, D. Torres, and Y. Shkvarko, “Experiment design
regularization-based hardware/software codesign for real-time enhanced
imaging in uncertain remote sensing environment,” EURASIP J. Adv. Sig-
nal Process., vol. 2010, 2010, Art. no. 10.

T. Qiu, A. Wang, N. Yu, and A. Song, “LLSURE: Local linear SURE-
based edge-preserving image filtering,” IEEE Trans. Image Process., vol.
22, no. 1, pp. 80-90, Jan. 2013.

P. Jain and V. Tyagi, “A survey of edge-preserving image denoising meth-
ods,” Inf. Syst. Frontiers, vol. 18, no. 1, pp. 159-170, Feb. 2016.

C. A. Lee, S. D. Gasster, A. Plaza, C. I. Chang, and B. Huang, “Recent
developments in high performance computing for remote sensing: A re-
view,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3,
pp. 508-527, Sep. 2011.

S. S. Maddikonda and S. S. G. A, “SAR image processing using GPU,” in
Proc. Int. Conf. Commun. Signal Process., 2014, pp. 448-452.

A. Castillo, R. Carrasco, J. Ortegén, and J. Vazquez, “A new tool for
intelligent parallel processing of radar/SAR remotely sensed imagery,”
Math. Problems Eng., vol. 2013, pp. 1-10, 2013.

C. Gonzalez, S. Sanchez, A. Paz, J. Resano, D. Mozos, and A. Plaza, “Use
of FPGA or GPU-based architectures for remotely sensed hyperspectral
image processing,” Integr, VLSI J., vol. 46, pp. 89-103, 2013.

E. Christophe, J. Michel, and J. Inglada, “Remote sensing processing:
From multicore to GPU,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 4, no. 3, pp. 643-652, Sep. 2011.

G. Bilotta, R. Z. Sanchez, and G. Ganci, “Optimizing satellite monitoring
of volcanic areas through GPUs and multi-core CPUs image processing:
An openCL case study,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 6, no. 6, pp. 2445-2452, Dec. 2013.

F. Huang, S. Bu, J. Tao, and X. Tan, “OpenCL implementation of a
parallel universal kriging algorithm for massive spatial data interpolation
on heterogeneous systems,” ISPRS Int. J. Geo-Inf., vol. 5, no. 6, p. 96,
2016.

G. M. Callicé, S. Lopez, B. Aguilar, J. F. Lopez, and R. Sarmiento, “Par-
allel implementation of the modified vertex component analysis algorithm
for hyperspectral unmixing using opencl,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 8, pp. 3650-3659, Aug. 2014.

F. Huang, J. Zhou, J. Tao, X. Tan, S. Liang, and J. Cheng, “Pmodtran:
A parallel implementation based on modtran for massive remote sensing
data processing,” Int. J. Digital Earth, vol. 9, no. 9, pp. 819-834, 2016.
A. Castillo, Y. Shkvarko, D. Torres, and H. Perez, “Convex regularization-
based hardware/software co-design for real-time enhancement of remote
sensing imagery,” J. Real-Time Image Process., vol. 4,no. 3, pp. 261-272,
2009.

1. E. Villalon-Turrubiates, “Remote sensing signatures extraction for hy-
drological resources management applications,” in Proc. IEEE/ACS Int.
Conf. Comput. Syst. Appl., 2009, pp. 567-570.

Y. Shkvarko, H. Perez, and A. Castillo, “Enhanced radar imaging in
uncertain environment: A descriptive experiment design regularization
paradigm,” Int. J. Navigat. Observ, vol. 8, p. 11, 2008.

I. Villalon-Turrubiates and M. Llovera-Torres, “Archaeological land use
characterization using multispectral remote sensing data,” in Proc. [EEE
Int. Geosci. Remote Sens. Symp., 2011, pp. 86—89.

Y. V. Shkvarko, “Unifying experiment design and convex regularization
techniques for enhanced imaging with uncertain remote sensing data—
part I: Theory,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 82—
95, Jan. 2010.

T. Inc., “Tetracam -ADC lite,” (2016). [Online]. http://www.tetracam.com/
Products-ADC_Lite.htm

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems. New
York, NY, USA: Winston, 1977.

R. Tibshirani, “Stein’s Unbiased Risk Estimate.” [Online]. Available:
http://www.stat.cmu.edu/~larry/=sml/stein.pdf. Accessed on: Feb. 24,
2016.

K. Group, “OpenCL - the open standard for parallel programming of het-
erogeneous systems.” (2016). [Online]. https://www.khronos.org/opencl/
D. B. Kirk and W. H. Wen-mei, Programming Massively Parallel Proces-
sors: A Hands-on Approach. Burlington, MA, USA: Morgan Kaufmann,
2010.

J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming. Boston, MA, USA: Addison-Wesley Prof.,
2011.

K. Fletcher and European Space Agency, Eds., Sentinel-1: ESA’s Radar
Observatory Mission for GMES Operational Services, ser. SENTINEL.
Noordwijk, the Netherlands: ESA Communications, 2012.

“EO Data—Earth Online—ESA.” (2016). [Online]. https://earth.esa.int/

