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Jalisco, México. (e-mail: dsanchez@iteso.mx).

∗∗∗Department of Electrical Engineering, CINVESTAV-IPN
Guadalajara, Av. del Bosque 1145 Col. El Baj́ıo CP 45019, México
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Colombia (e-mail: habotero@unal.edu.co)

Abstract: This paper presents a soft sensor to estimate the biomass concentration in a batch
bioprocess used in production of δ-endotoxins of Bacillus thuringiensis, subject to delayed
measurements. The soft sensor proposed is based on a cascade observer-predictor algorithm.
The observer stage is based on a class of second order sliding mode algorithms, allowing a fixed-
time estimation of the biomass. Additionally, the prediction stage offsets the effect of the delay
in measurements. Simulations show the feasibility of the proposed observer.

Keywords: cascade observer-predictor, delayed measurements, δ-endotoxins production of
Bacillus thuringiensis, fixed-time observer, Smith predictor.

1. INTRODUCTION

Measuring variables in industrial processes, such as biopro-
cess, is necessary to carry out tasks of control, diagnosis
and fault detection, identification and monitoring (Walcott
et al., 1987; Dochain, 2003). For some variables, the work
of measurement is hard, costly and difficult to perform
due to the unavailability of reliable devices, time delays,
errors in the measurement system, high costs of devices
and hostile environments for primary measuring devices
(Bequette, 2002). Therefore, in order to make estimates
by measurements of other variables related directly or
indirectly to the variable difficult to measure has been
used the state estimators. This dynamic systems are ap-
plied to a specific process, with a combination of software
and hardware, and they are commonly named as virtual
sensors or soft sensors.

However, the soft sensors technology transfer to
industrial bioprocesses require to solve some problems
such as observer schemes that allowing the use of
delayed measurements. To overcome such problem,
some authors have developed different methods to
incorporate nonuniform and delayed information in
state estimation techniques. In (Gopalakrishnan et al.,
2011; Guo and Huang, 2015; Guo et al., 2014) have
incorporated asynchronous and delayed information to
stochastic estimation techniques (Kalman filter and its
modifications) but these only apply to discrete systems.
Other authors present deterministic estimation techniques

with asynchronous and delayed measurement for hybrid
systems, with a continuous model for the process and
a discrete model for the effects of sensor and sampling.
These observers are grouped into three types: Piece-
wise (Wang et al., 2015), Cascade (Khosravian et al.,
2015b,a) and distributed (Zeng and Liu, 2015). This
deterministic techniques can to solve the problems of
estimating independently or in stages. This feature allows
adaptation and extension to solving future problems in
state estimation. For example, a mathematical application
of a high gain observer in cascade with a predictor was
proposed in (Khosravian et al., 2015a). However, a few
papers show applications in state estimation in bioprocess
with delayed measurements (Zhao et al., 2015).

Therefore, in this paper a cascade observer-predictor for
the process of δ-endotoxins production process of Bt
with fixed time convergence and delayed measurements
is considered. The cascade observer-predictor structure is
based on the observer presented in (Khosravian et al.,
2015b,a) and the Sliding Mode Observer (SMO) proposed
in (Sánchez et al., 2015). The proposed observer allows
the exact and fixed-time reconstruction of the biomass
(vegetative cells and sporulated cells) in the reactor when
measurements are delayed.

In the following, the Section 2 presents the mathematical
model δ-endotoxins production process of Bt with
Delayed Measurement. The cascade observer-predictor is
presented in Section 3 and presents some mathematical
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preliminaries in order to introduce the basics of fixed time
stability and predictor stability. The Section 4 presents
simulation results of the cascade observer-predictor for
the δ-endotoxins production process of Bt. Finally, the
conclusions of this paper are exposed in the Section 5.

2. BATCH PROCESS MODEL WITH DELAYED
MEASUREMENT

The model of the δ-endotoxins production of Bt proposed
on (Amicarelli et al., 2010; Rómoli et al., 2016) is used. In
this paper the block-wise form of the equations is modified
to allow a straightforward design of a second order sliding
mode observer. The model equations are

ṡp = −

(

µ(sp, od)

yx/s
+ms

)

xv

ȯd = K3QA (o∗d − od)−K1 (µ(sp, od)− ke(t))xv

−K2 (xv + xs)

ẋv = (µ− ks(sp)− ke(t))xv

ẋs = ksxv

(1)

where sp is the substrate concentration, od is the
dissolved oxygen concentration, xv is the vegetative cells
concentration, xs is the sporulated cells concentration, µ
is the specific growth rate, yx/s is the growth yield, ms is
the maintenance constant, QA is the airflow that enters
the bio-reactor, o∗d is the oxygen saturation concentration,
K1 is the oxygen consumption dimensionless constant
by growth, K2 is the oxygen consumption constant for
maintenance, K3 is the ventilation constant, ks is the
spore formation kinetics and ke(t) is the specific cell death
rate. Furthermore, the constitutive equations for µ(sp, od)
(Monod-based), ks(sp) and ke(t) are given by:

µ(sp, od) = µmax
sp

Ks + sp

od

Ko + od

ks(sp) = ks,max

(

1

1 + eGs(sp−Ps)
−

1

1 + eGs(sp,ini−Ps)

)

ke(t) = ke,max

(

1

1 + e−Ge(t−Pe)
−

1

1 + e−Ge(tini−Pe)

)

(2)

where µmax is the maximum specific growth rate, Ks is the
substrate saturation constant, Ko is the oxygen saturation
constant,ks,max is the maximum spore formation, ke,max

is the maximum specific cell death rate, Gs is the gain
constant of the sigmoid equation for spore formation rate,
Ge is the gain constant of the sigmoid equation for specific
cell death rate, Ps is the position constant of the sigmoid
equation for spore formation rate, Pe is the position
constant of the sigmoid equation for specific cell death
rate, sp,ini is the initial glucose concentration and tini is
the initial fermentation time.

Assumption 2.1. It is assumed that the measurements of
the outputs sp and od are continuously measured with a
delay time τ > 0. The delay τ is considered to be known
and constant.

Defining x1 = sp, x2 = od, x3 = xv, x4 = xs and
considering the Assumption 2.1, the model (1) can be
written as:

ẋ1(t) = b1(x1(t), x2(t))x3(t)

ẋ2(t) = b21(x1(t), x2(t))x3(t)

+ f2(x2(t)) + b22x4(t)

ẋ3(t) = b3(x1(t), x2(t))x3(t)

ẋ4(t) = b4(x1(t))x3(t)

(3)

where

b1(x1(t), x2(t)) = −

(

µ(x1(t), x2(t))

yx/s
+ms

)

f2(x2(t)) = K3QA (o∗d − x2(t))

b21(x1(t), x2(t)) = −K1(µ(x1(t), x2(t))− ke(t))−K2

b22 = −K2

b3(x1(t), x2(t)) = µ(x1(t), x2(t))− ks(x1(t))− ke(t)

b4(x1(t)) = ks(x1(t))
(4)

and with the measurements

y (t) = [x1 (t− τ) x2 (t− τ)]
T (5)

The block-wise form (3)-(5) allows a straightforward
design of a second order sliding mode observer. The
nominal parameters for the system (3) are given in Table
1.

Table 1. Nominal Parameters of the BT model.

Parameter Values Unit

µmax 0.65 h−1

yx/s 0.37 g · g−1

Ks 3 g · L−1

Ko 1× 10−4 g · L−1

ms 5× 10−3 g · g−1
· h−1

ks,max 0.5 h−1

Gs 1 g · L−1

Ps 1 g · L−1

ke,max 0.1 h−1

Ge 5 h

Pe 4.9 h

K1 3.795× 10−3 dimensionless

K2 0.729× 10−3 h−1

K3 2.114× 10−3 L−1

QA 1320 L · h−1

o∗d 0.00759 g · L−1

tini 0 h

sp,ini 32 g · L−1

3. PROPOSED SOFT SENSOR SCHEME

3.1 Observability Analysis

Let the vector H which contains the measured outputs of
the system (3), x1(t − τ), x2(t − τ) and their derivatives
be defined as

H = [ x1(t− τ) x2(t− τ) ẋ1(t− τ) ẋ2(t− τ) ]
T

(6)

Similarly to the analysis presented in Sánchez et al.
(2015), the observability analysis for the system (3)
determines the existence of a diffeomorphism between
the vector H and the delayed state vector x =

[ x1(t− τ) x2(t− τ) x3(t− τ) x4(t− τ) ]
T
.

The existence of this diffeomorphism can be evaluated,
at least locally, by checking if the observability matrix
defined as O = ∂H

∂x(t−τ) is invertible. For the system (3),

the observability matrix is calculated from (6) and is given
by
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O =







1 0 0 0
0 1 0 0
∗ ∗ b1(x1(t− τ), x2(t− τ)) 0
∗ ∗ b21(x1(t− τ), x2(t− τ)) b22






(7)

where it follows that the determinant of (7) is det(O) =
b22b1(x1(t − τ), x2(t − τ)). Therefore, this system is
observable for t ≥ τ . However, it can be shown that
|det(O)| achieves a very small value (about 1 × 10−9),
which compromises the numerical invertibility of the
observability matrix O (Sánchez et al., 2015).

To overcome this numerical drawback, the following
scaling transformation of the state is proposed:

x1s(t− τ) = β1x1(t− τ)

x2s(t− τ) = β2x2(t− τ)
(8)

with β1 and β2 real positive constants to be defined
thereafter.

Thus, using the notation xτ
i = xi(t − τ) for i = 1, . . . , 4,

the system (3) under the scaling (8) becomes:

ẋτ
1s = bs1(x

τ
1 , x

τ
2)x

τ
3

ẋτ
2s = fs

2 (x
τ
2) + bs21(x

τ
1 , x

τ
2)x3 + bs22x

τ
4

ẋτ
3 = b3(x

τ
1 , x

τ
2)x

τ
3

ẋτ
4 = b4(x

τ
1)x

τ
3

(9)

where bs1(x
τ
1 , x

τ
2) = β1b1(x

τ
1 , x

τ
2), fs

2 (x
τ
2) = β2f2(x

τ
2),

bs21(x
τ
1 , x

τ
2) = β2b21(x

τ
1 , x

τ
2) and bs22 = β2b22.

3.2 Observer-Predictor Scheme

In this section a cascade observer-predictor scheme is rep-
resented. Based in the structure presented in Khosravian
et al. (2015b), the proposed scheme is composed for a SMO
and Smith predictor. A block diagram of this proposal is
shown in Figure 1. In this figure the sensor block separately
block process is proposed to clarify, in this paper, the
problem of delay occurs in the dynamics of the sensor.

Figure 1. Observer-Predictor scheme

An explanation of the scheme of Figure 1 is as follows.

Observation Stage (SM Observer): First, from (8)-(9)
the following Sliding Mode Observer is proposed in order
to provide an estimation of the delayed state variables:

x̂τ
1 = β−1

1 x̂τ
1s

x̂τ
2 = β−1

2 x̂τ
2s

˙̂xτ
1s = bs1(x̂

τ
1 , x̂

τ
2)x̂

τ
3 + k11φ1(x̃

τ
1s)

˙̂xτ
2s = fs

2 (x̂
τ
2) + bs21(x̂

τ
1 , x̂

τ
2)x̂

τ
3 + bs22x̂

τ
4 + k21φ1(x̃

τ
2s)

˙̂xτ
3 = b3(x̂

τ
1 , x̂

τ
2)x̂

τ
3 + k12 [b

s
1(x̂

τ
1 , x̂

τ
2)]
−1

φ2(x̃
τ
1s)

˙̂xτ
4 = b4(x̂

τ
1)x̂

τ
3 + k22 [b

s
22]
−1

φ2(x̃
τ
2s)

(10)

where x̂τ
1 , x̂

τ
2 , x̂

τ
1s, x̂

τ
2s, x̂

τ
3 and x̂τ

4 are the estimates of xτ
1 ,

xτ
2 , x

τ
1s, x

τ
2s, x

τ
3 and xτ

4 , respectively; x̃
τ
1s = xτ

1s − x̂τ
1s and

x̃τ
2s = xτ

2s − x̂τ
2s are the error variables; the observer input

injections φ1(·) and φ2(·) are of the form φ1(·) = ⌊·⌉
1

2 +

θ⌊·⌉
3

2 and φ2(·) =
1
2⌊·⌉

0+2θ ·+ 3
2θ

2⌊·⌉2, with the parameter
θ ≥ 0, the function ⌊·⌉α = |·|αsign(·) is defined for α ≥ 0,
where sign(x) = 1 for x > 0, sign(x) = −1 for x < 0 and
sign(0) ∈ {−1, 1}; and λ1, λ2 > 0, and k11, k12, k21, k22
are the observer positive gains.

The SMO (10) was proposed in a previous paper (Sánchez
et al., 2015). This observer is fixed-time convergent
and also has time-invariance property, according to the
definition of Khosravian et al. (2015a). A detailed stability
test of observer (10) without delay in measurements has
been previously published (Sánchez et al., 2015). However,
the problem considered in this paper is to estimate the
current state x (t) when the measurements of the output
are delayed such that the output measurement at time t is
y (t) = h (x (t− τ)) for some know constant delay τ ≥ 0.
In this sense a prediction stage it is proposed to offset the
effect of the delay in the measurement.

Prediction Stage (Model + Delay): Second, based on
(Khosravian et al., 2015a) a Smith predictor compensating
the delay may be considered as

ẋp (t) = ˙̂xτ (t) + f (xp (t))− f (xp (t− τ)) (11)

where the prediction of the current state is denoted by
xp ∈ R

n and x̂τ is the estimate x subject to delayed output
measurements (5). Moreover, with the system model (3)
and the known delay τ for output measurement (5), it
is possible to know the dynamics of the predicted states
without delay f (xp (t)) and delayed f (xp (t− τ)).

The stability of the Observer-Predictor structure is
such that the estimate state converge asymptoti-
cally/exponentially to the system trajectories (1)-(2), if
the estimates provided by the Observer (SMO) converge
asymptotically/exponentially to the delayed system state
(Khosravian et al., 2015a). In this sense the definition of fi-
nite time convergent include asymptotically/exponentially
convergent and fixed-time convergent of SMO (10) is a
stronger form of finite time (Polyakov, 2012). In the next
section the simulation results are presented.

4. SIMULATION RESULTS

This section presents the numerical simulation results
of the proposed estimation structure. The simulations
parameters were:

• Fundamental step size of 1 × 10−5[h]. This time is
small due to requirement of robust differentiation in
the estimation scheme.

• Model parameters like shown on Table 1.
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Figure 2. Substrate concentration sp with τ = 5×10−5[h].

• The parameters shown in this table were taken
according to the range to 20 [g ·L−1] < sp,max < 32 [g ·

L−1].
• The value sp,max corresponds to the initial condition
of sp since ṡp ≤ 0.

• The substrate concentration sp = x1 and the
dissolved oxygen concentration od = x2 are assumed
to be measured, noiseless and delayed, and the initial
conditions x̂τ

1s and x̂τ
2s were taken as the scaled initial

conditions of x1 and x2 respectively
• The delay is a known constant τ ≥ 0. However,

since the vegetative cells concentration xv = x3 and
the sporulated cells concentration xs = x4 aren’t
measured, the initial conditions x̂τ

3 and x̂τ
4 were taken

different from x3 and x4, respectively.
• Another thing that should be noted is that with the

selected values of β1 and β2, the minimum value of
|det(Os)| is around 2.

Figures 2, 3, 4 and 5 show the comparison between the
actual x, estimated x̂τ (SMO without prediction) and pre-
dicted xp (SMO with prediction) variables corresponding
to substrate concentration sp, dissolved oxygen concentra-
tion od, vegetative cell concentration xv and sporulated
cells concentration xs when the delay measurement is τ =
5× 10−5[h]. It can be noticed that, despite initial estima-

tion error x(0) =
[

32, 0.74× 10−2, 0.645, 1× 10−5
]T

,

and x̂τ (0) = xp(0) =
[

32, 0.74× 10−2, 6.45, 1
]T

the
fixed time convergence of the estimated variables is
achieved.

Figures 6 and 7 show the comparison between the actual
and estimated variables corresponding to xv and xs when
measurements of sp and od are delayed with τ = 1×10−1[h]
with SMO (SMO without prediction) and predicted xp

(SMO with prediction). Based on the presented results,
it can be observed a good performance of the observer-
predictor scheme proposed while the only SMO does not
converge. A correct and fast estimation of xv and xs

using the cascade observer-predictor is achieved making
the proposed system suitable for observer-based control
applications.
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Figure 3. Dissolved oxygen concentration od with τ = 5×
10−5[h].
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Figure 4. Vegetative cells concentration xv with τ = 5 ×
10−5[h].

Finally, Figures 8 and 9 show the effect of increased the
delay measurement in sp and od for estimation of xv and xs

respectively in booth cases only SMO and SMO-predictor.
The Integral Time Absolute Error (ITAE) of only SMO
tends to infinity for delays in measuring higher than τ =
6 × 10−5[h], while the cascade observer-predictor scheme
keep the convergence of error when the delay increase.

5. CONCLUSIONS

In this paper was presented a soft sensor to estimate
the biomass in a batch bioprocess subject to delayed
measurements. The soft sensor proposed is based on a
cascade sliding mode observer-predictor. The observer
stage is based on a class of second order sliding
mode algorithms, allowing a fixed-time estimation of the
biomass. The prediction stage offsets the effect of the
delay in measurements. Convergence proof and numerical
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Figure 5. Sporulated cells concentration xs with τ = 5 ×
10−5[h].
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Figure 6. Vegetative cells concentration xv with τ = 0.1[h].

simulations shown the feasibility of the cascade observer-
predictor proposed.
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