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REAL-TIME LEAK ISOLATION BASED ON STATE ESTIMATION WITH
FITTING LOSS COEFFICIENT CALIBRATION IN A PLASTIC PIPELINE*

Adrian Navarro, Ofelia Begovich, Juan Sanchez, and Gildas Besancon

ABSTRACT

This paper presents a leak isolation methodology using a fitting loss coefficient calibration. Two stages are con-
sidered for this purpose: First, the equivalent straight length (ESL) is fixed by an model-base observer designed as an
extended Kalman filter. Once the leak is detected, the previous observer is stopped and the second system, based on an
algebraic observer, is started with the ESL value fixed by the previous observer. Finally, the estimated leak position is
recovered in original coordinates since the observer deal with ESL coordinates. In order to tackle the friction variations
problem, the so-called Swamee-Jain equation is embedded explicitly, instead of a constant parameter as in other studies.
The approach assumes only flow and pressure sensors at the ends of the duct. Experimental results with data obtained
from a plastic pipeline prototype are presented to assess the method efficiency.

Key Words: Leak detection and isolation, Kalman filter, algebraic observer, dynamic model.

I. INTRODUCTION

Many analytical methods (fault model and fault
sensitive approaches) have shown to be an efficient tool
to isolate a leak in a pipeline, as can be seen in [2,3].
However, due to several phenomena present in a real
pipeline, reliable and efficient mode-based leak detection
and isolation (LDI) algorithms are still being researched.

One example of this phenomena is that, in plastic
pipes, a flow regime that ensures a constant friction factor
is difficult to achieve, since the friction value is sensitive
to small flow rate variations. So, with leak occurrence, the
flow changes, and so does the friction.

Several papers in the literature do not take into
consideration these phenomena due to the fact that in
traditional pipelines (iron, concrete, etc.), the friction
value is quasi constant. However, nowadays the plas-
tic pipes have become more and more popular, and the
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friction variation are more significant, so the analysis
should include the friction variations.

For instance, Jian in [4] tackles the leak isolation
problem using the partial derivative equation model
and the gradient method to locate one leak. The paper
achieves a satisfying location precision of the leak but
that work only perform a statistic treatment of the noise.
Besides, the authors do not include friction variation
in this study then robustness and precision are com-
promised.

Benkherouf [2] and Aamo [5] design a nonlinear
observer in order to locate one leak. Although the
authors present good results, they fit the friction factor
as a constant which leads to a low performance in plastic
pipelines.

Liu [6] proposes an adaptive particle filter algo-
rithm to locate one leak. The authors, although only
presenting simulation results, show that the accuracy and
speed in the leak location is increased. This work does
not consider the influence of the friction variation.

In[7], the author extends the leak detection and iso-
lation problem to two leaks using a nonlinear observer.
The algorithm presented shows a good performance in
the estimation of two leaks, but the fact that the work
does not consider the friction variation could present lack
of exactness in plastic pipeline implementation.

To take into account the friction factor variations,
in [8] the friction is estimated into a Kalman Filter.
In [9] and [10], where a fault sensitive approach (the
model of the leak is explicitly characterized into the gen-
eral model) is used, a gradient algorithm is implemented
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to estimate the friction. A simple new idea was pro-
posed in [3] where the value of friction in the model is
replaced by an expression directly function of the flow,
given by the so-called Swamee-Jain equation [11]. In this
way, a direct estimate of the friction can be obtained
based on a measured signal (flow rate) avoiding prob-
lems associated with identification or estimation such as
persistent excitation, local minimum, convergence rate,
etc. All these works present a good leak position estima-
tion by taking a non-constant friction factor, but another
drawback exists. The necessity of using a model repre-
senting a straight pipeline (which is difficult to satisfy
when a designer is concerned with a real non-straight
pipeline). To tackle this problem, an equivalent straight
pipeline model must be obtained from the non-straight
pipeline. For this purpose, a designer should make a vir-
tual substitution of each fitting (elbow, joint, tee, efc.)
by an equivalent straight segment of pipe presenting the
same head loss as the fitting in question. In other words,
the equivalent straight length (ESL) of the fitting must
be obtained. The previous task involves the use of the
so-called loss coefficient (see chapter 5 in [11]) of a par-
ticular fitting (FLC). This parameter can be found in the
pipe manufacturer datasheet, which is normally denoted
as K. However, in such a specification, the K value is usu-
ally larger than its real one to provide a security margin
in the design of a pipeline system. As a consequence, if
this value is used to calculate the ESL of a fitting (needed
to design a model-based leak isolation system), its uncer-
tainty can lead to a bad leak isolation. Then, it is critical
to know with a good accuracy the FLC values to isolate
a leak position in a more efficient way. Since, an accurate
value of K is difficult to obtain via data-sheet, it is nec-
essary to draw upon other methods to achieve adequate
leak isolation.

In light of this background, the necessity to improve
the algorithms for one leak detection in isolation in plas-
tic pipelines continue to be a case worthy of study. More-
over, in a real case, the concurrence of two or more leaks
is unlikely.

For all these reasons, the present paper focuses on
the detection and isolation of one leak in a non-straight
plastic pipeline. For the purpose aforementioned, this
work proposes an LDI system to isolate one leak made
of two stages. First, a nonlinear state observer is pro-
posed to get a good estimation of the FLC value. In order
to do that, a finite-dimensional model resulting from the
classical infinite-dimensional model description of water
dynamics in pipelines (Water Hammer equations [11])
is derived. Then, the model is augmented with a state
variable related to the FLC and their own relations. In
the second stage (when the leak is detected), the previ-
ous observer is frozen and a second observer is started.

For the design of the second observer, the method shown
in [1] is used. Here the state variables are flows, pressure
head at the leak point and, in this approach, the model
is augmented with the leak position and a parameter
related to the leak intensity.

In both cases, “Swamee-Jain expression” is used
instead of considering a constant parameter for the fric-
tion in the model. In the FLC approach the resulting
continuous-time nonlinear model is discretized in time by
using Heun’s method. Then, an Extended Kalman Filter
is designed in order to estimate the “K” value [12].

For the isolation purpose, the paper explores the
use of a leak position estimator based on an algebraic
observer, taking advantage of its non-asymptotic conver-
gence, robustness to uncertainties and capacity to deal
with measurement noise without any assumption on its
statistical properties [13].

Finally, the leak position in the original coordinates
is computed (remember that the leak isolation task is
done in equivalent length coordinates).

In order to assess its performance, the proposed
LDI system is tested with measurements taken from the
pipeline prototype described in [10].

The paper continues as follows: Section II provides
the mathematical model and Section III describes the
proposed model-based detection approach. Section IV
then present some successful experimental results.
Finally Section V concludes the paper.

II. PIPELINE MATHEMATICAL
PRELIMINARIES

This section presents the two partial differential
equations modelling the water dynamics in a pipeline.
Then, the finite dimensional model to design the LDI
system is described, as well as the notion of equivalent
straight length.

2.1 Governing equations

Assuming the fluid to be slightly compressible and
the duct walls slightly deformable; the convective changes
in velocity to be negligible; the cross section area of the
pipe and the fluid density to be constant, then the dynam-
ics of the pipeline fluid can be described by the following
partial differential equations [11].

Momentum equation.

00¢.1) 4g2HED

by S +HOED10G0I=0 (1)
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Continuity equation.

0H(z,1) ~ b* 00(z,0)
ot Ag oz

=0 ©)

where Q is the flow rate (m3/s), H the pressure head
(m), z the length coordinate (m), ¢ the time coordinate (s),
g the gravity acceleration (m/s), A the cross-section area
(m?), b the speed of the pressure wave in the fluid (m/s),
H= 35 A, D the diameter (m) and z the friction factor.
Friction model. In several works, the friction factor has
been deemed to be a constant value. However, in smooth
pipes (pipes with a relative roughness usually less than
1x1073), the complete turbulence zone is difficult to reach
(i.e. the zone where friction factor is almost constant).
For this reason, when the LDI problem is considered in
plastic pipes, it is preferable to obtain a more realistic
value for the friction by using either some formula to cal-
culate it or some algorithm to estimate its value. In the
present work the friction factor is calculated by using
the well-known Swamee-Jain equation, where the friction
factor is function of the Reynolds number (which is in
turn function of the flow) [11]:

0.25
2
[logs (55 + 2% )|

where e (m) is the roughness height and Re the Reynolds
number given by:

oD
vA

7(Q) = (€)

Re =

and v is the kinematic viscosity (m%/s).

Leak model. Furthermore, one leak arbitrarily located
at point z; (see Fig. 1) in a pipeline can be modeled as
follows [11]:

0, = 4VH, @)

where the constant 4 is a function of the orifice area and
the discharge coefficient; Q; is the flow through the leak
and H; is the head pressure at the leak point [11].

QL

() 1 Q2 )
H1 Hy = Hp, Hj

F4 Z2

Fig. 1. Discretization of the pipeline with a leak O

This leak produces a discontinuity in the system.
Furthermore, due to the law of mass conservation, Q;
must satisfy the next relation:

0,=0,+0; ®)

where Q, and Q, are the flows in an infinitesimal length
before and after of the leak, respectively.

2.2 Spatial discretization of the modeling equations

In order to obtain a finite dimensional model from
(1) and (2), the partial differential equations are dis-
cretized with respect to the spatial variable z, as in [7,14],
by using the following relationships:

o0H Hj+1_H‘

J
0z z; ©)
00 9-9
0z Z; (7

j—1

where index j is related to the discretized variable at
position z;.

Assumlng only two partitions in the pipeline as
shown in Fig. 1, z; (j = 1,2) becomes the distance from
the beginning of the pipe to the point of the leak and from
the point of the leak to the end of the pipe, respectively.
Notice that z, = L — z; where L is the total length of the
pipeline and the leak position is assumed to be different
from 0 and L in this description. Applying approxima-
tions (6) and (7) to equations (1) and (2) together with (4)
and (5), we get

.Ql —Q(Hz—ul)_ﬂQl |Q1|
1.;12 = Ag' (QZ Ql + ﬂ,\/ﬁz) (8)
0, L_z] = (uy — Hy) — uQ, |0,

Here, the input vector is u = [H; H;]T = [u; u,]7,
and the output vector is y = [Q; Q,]7. Even if it is
very simplified, this model can be useful for actual leak
isolation, as will be seen from the results hereafter.

2.2.1 Time discretization

Notice finally that, in order to design an extended
Kalman filter, it can be useful to perform a temporal dis-
cretization of model (8). In this work, the well-known
Heun‘s Method is used. In this method, the solution for
the initial value problem

X(1) = §(x(0), u(1)), x(ty) = X
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is given by [15]

il _ i, At i
X =x"+ 3 [f(x,u) ©)
+& (X' + Arg (u, x1) ,u’“)]

where At is the time step.

2.3 Equivalent Straight Length

As explained before, even if the pipe is not straight,
an “Equivalent Straight Length” (ESL) can be obtained
by considering loses due to each “non straight” (fit-
ting) element. The head loss (/;) produced by a fitting is
calculated as [16]

h; = K—
L 2gA

where K is the fitting loss coefficient (FLC) for the par-
ticular fitting in question.

In accordance with the Darcy-Weisbach formula
[16], K satisfies the relation

where /, is the ESL of the fitting. In this way, by obtain-
ing the ESL of each fitting, a non-straight pipeline can
be transformed to an equivalent straight pipeline whose
total ESL (L,) can be calculated as

(11)

where L, is the pipeline physical length [m] measured
between the sensors placed at the ends of the pipeline, X;
is the FLC for the jth fitting and » the total number of
the pipeline fittings. Then, (11) is commonly used to cal-
culate the total ESL of a pipeline [17]. On the other hand,
L, must be such that it satisfies the following leak-free
steady state relation (Darcy-Weisbach equation):

T
Hin - Houl = ZDAngZLe (12)

where H;, and H,, denote the pressure head at inlet and
outlet of the pipeline, Q is the flow through the pipeline,
and L, is the total length for a straight pipeline. However,
if the ESL is not well calculated, due to uncertainty in
the K; values, then the right hand of (12) could not match

the left hand of this one (remember that H,, and H,,, are

Qr
() 1 Q2 )
H1 Hy = Hp, Hj
_-_Z—____-—g—___

Fig. 2. LDI scheme.

measured online). Therefore, the K; values are important
to obtain a good modelling of a pipeline.

III. OBSERVER SCHEMES

As has been mentioned, the LDI scheme proposed
in this work comprises two main stages: First, an observer
which estimates the ESL of the pipe through the knowl-
edge of fitting loss coefficient is designed. For this pur-
pose, the pipeline model state equation (8) is augmented
with a factor related with the FLC of each fitting. When
the leak is detected, the first observer is stopped and the
ESL is fixed. Then, a second observer that estimates the
values related to the leak is started. At this point, the
state of the Eq. 8 is now augmented with the leak loca-
tion and the A parameter. Fig. 2 depicts a scheme for this
approach.

3.1 Fitting loss coefficients observer

As can be seen in equation (11), the ESL could be
computed directly with the knowledge of each K;. These
values are given by the manufacturer data-sheet but, most
of the time, these values are larger than the real ones. This
work proposes an observer that estimates the K; values.
In order to do that, one could try to find an augmented
model of (8) including as extra states each K;. Unfortu-
nately, due to the limited number of measurements, this
model would be unobservable. However, a model involv-
ing only one kind of K, which keeps relation with the
other Kjs , leads to an observable model. This shall be
outlined in this paper.

By selecting the lowest value of the FLC in the
data-sheet (denoted by K), the relation (11) can be
expressed as:

DK Z';l ¢
f(O)

DY K _

L =L — =1
"o THT

(13)

where ¢; is the proportional factor of K with respect
to each other fitting. The ¢; values can be determined
based on the manufacturer data-sheet. For example, for
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the pipeline used in this work, the FLC of an elbow is
approximately eight times the FLC of a coupling [18].

Using Eq. 8 with the pipeline divided in two equal
parts (ie z1 = %), by substituting the left hand of
(13), and then incorporating the K value as an addi-
tional state, a leak free dynamic model (since in the first
stage the pipe is not leaking) of the pipeline in a state
space representation is given by the following nonlinear
equations:

. r A
o _O.SgL(K) (H, —uy)
-1t (0Q)) 0, 10|
H P
? _O.SgAL(K)(Q2 -0
- (14)
. e A
0, _O.SLL(K) (u, — Hy)
—u'T (Qz) Qz |Q2|
LK 0 |
where y* = ﬁ and L(K) is as follows:
LK)=L, + DKL (15)
S 7(Q)

and the input and output vector remain the same (i.e. u =
[(H, H;)" = [u; )" and y = [Q; O,1").

In equation (14) the dynamics of K is equal to zero
since K is not a function of time.

Now, applying equation (9) to equation (14) yields a
difference equations that can be written in compact form
as (see [1] for details)

xi+1 - f(xi,u”l,ui)

e Hy (16)
where
x'=[0] H, 0, K"
1000
H= [() 01 0]

where the symbol 7" stand for matrix transpose.

3.1.1 Extended Kalman filter application

In order to minimize the estimated error covari-
ance a Kalman Filter is implemented to the model
(equation (16)) in the following form [12]:

=% +K('-H&")

where & is the a priori estimate of x' and K', the Kalman
gain for the observer.

R and Q are known as the covariance matrices of the
measure and process noises, respectively. Notice that:

¥ = |01 £ 01 K]
2 T
P?,z:<P(1),2> >0,R=R7">0and 0 =0 > 0.

3.2 Leak isolation scheme

Pipeline equations (8) together with the two new
estates related with the leak (z; and A) yields

) [ —j—f(Hz—ul)—MQ1|Q1| |
Hy || =5 (Q: = 0+ A/
_Q2 = —Lii (uy — Hy) = 1 Q5 | Q5| a7
1 B
0

As before, the input and output vector remain the
same (i.e. u = [H, H5])T = [u; u,]" and y = [Q, 0,]7).

This equation corresponds to a nonlinear multiple
input multiple output (MIMO) system of the general
form:

x=fx)+g®u (18)

y=hx)
where x € R” is the state, u € R” is the input, y € R?
is the output and f, g, & are sufficiently differentiable
function vectors.

For system (18), it is possible to define the following
vector of output time derivatives:

V() = [yl(l)yl(t) )

(19)
30 5,0 W0 ]
From model (18), V'(¢) can be expressed as a func-

tion of x,u, i, ..., u®, ... as

V() =0(x,ui, ... ,u",..) (20)

Observability somehow means that this relationship
is invertible, and that one can find elements among the
components of I' defining an invertible map with respect
to x[19]. Let us denote by I'(x, u, £) this map, and consider
the vector V(¢) conformed by n independent elements
selected from V'(¢). Then,

x=I"" (V(@),u,1). (1)
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3.2.1 Observer design for the LDI system

Considering the augmented model in (17) and uni-
directional flow (i.e. x; > 0 and x5 > 0), it is easy to check
that an invertible map I can be formed with the output
time derivatives vector as: ' = [y, (0)j ()7, ()y2()3,(1)].

Then in this case by using f(x), g(x) and
h(x) one gets: ' = [x|, —i—f (xp—uy) — wrr(x)xd,
* * bz
W7 eprxDx} + 2P0y + 5 (% =
4
ﬂ g * — *
+x5\/x2) + o (ul + 2uF (X)X X, 2 T(x))x Uy
T
+p 7 (e )ty =T (x)XTuy ), X5, Lf—i(uz—xz)—y*xg].

Therefore, the system state in terms of output
derivatives (21), is written as

X1 =)

_ yz"‘#}’% I L(J'J2+/,ly§)—Ag (”1_“2)
= \T; 2 _ (s 5|
g (a+uy3) = (1 +my7)

X3 =)»
.- L(b+uy§) — Ag (u) — uy)
! (3 + ﬂyﬁ) - (i + HJ/%)
x2 Y
_ T4 .. . g. 1
X5 = bz\/x_2<yl+2ﬂy1yl - x_4ul>+ﬁ (yl—b)

(22)

Now, noting that the system output time derivative is
unknown, the problem reduces to the real time estima-
tion V(¢) of V() in (21) so that an estimation of the estate
can be given by (see [1] for details):

x:i*(ﬁ&%q 23)

IV. EXPERIMENTAL RESULTS

In this section we present experimental results in
order to evaluate the performance of the designed LDI
scheme. For the present work, we consider the pilot water
pipeline built at the Research and Advanced Studies Cen-
ter in Guadalajara, Mexico (CINVESTAV-Guadalajara)
reported in [10], whose main parameters are given in
Table I.

The pipeline is equipped with: two water-flow (FT)
and two pressure-head (PT) sensors at inlet and out-
let of the pipe; a 5 hp centrifugal pump connected to a
variable-frequency driver fixed at 50 Hz (this is in order
to experiment flow-rate variation effects over the LDI
scheme); and three valves, in order to emulate the effect

Table I. Pipeline prototype parameters

Parameter Symbol Value
Length between sensors L, 68.4 m
Internal diameter D 0.0654 m
Pressure wave speed b 376 m/s
Roughness € 7x107% m
Kinematic viscosity v 2% 1076 m? /s
18.6m 12.3m
= : e o s
/ -
Valve 2 s
Valve 3—— Kr
Valve 1 N
(S
K. . I E
F . .
e b i » -
16.8m 12.3m

Fig. 3. Fitting diagram.

of a leak, at 16.8, 33.3 and 49.8 meters respectively (more
information can be found in [10]).

The fittings are: 12 coupling, 8 connectors, 3 tees,
and 2 elbows. Their respective FLC are denoted by K,
K., K; and K,. The FLC related with the initial and
final connections are denoted by K;, and K, respec-
tively. Fig. 3 shows a fitting pipeline diagram. A picture
of the pipeline prototype is shown in Fig. 4.

Table II. summarizes the FLC taken from the man-
ufacturer datasheet. In this case, the lower FLC value
considered is K, so the Equation (13) can be written as
follows:

27
DKc zj:l i

L =1L _—
7o)

(24)

with n = 27 in model (15). According to Table 11, it is
possible to determine a proportional factor for the each
fitting. In this work we consider that this proportional
factor remains constant. The proportional factors for
each fitting are summarized in Table III.

It should be also noted that, as we mentioned
before, the leak isolation observer uses the ESL so the
leak position is estimate in ESL coordinates. Therefore, it
is necessary to compute the leak position in original coor-
dinates. We emphasize that the ESL of each fitting can be
computed solving /, from equation (10) as follows:
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Fig. 4. Pipeline prototype picture.

Table II. FLC taken from the manufacturer’s

data-sheet
Parameter Symbol  Value
FLC for the initial connections K;, 0.40
FLC for a coupling K. 0.25
FLC for a connector K., 0.40
FLC for a Tee Kr 0.45
FLC for an elbow K, 2.00
FLC for the final connections K 0.40

Table III. Proportional factor for each fitting

Parameter Symbol

Value

Coupling proportional

factor Clat s Cpn
Connector proportional

factor C13,7 5 €
Tee proportional

factor €215 C2245 €23
Elbow proportional

factor €4 €25
Initial connection

proportional factor Co6
Final connection

proportional factor Cy7

1.6

1.8

1.6

1.6

where the subscript i denotes the ith fitting.

(25)

Now, one just needs to find the ESL sum that equals
the leak equivalent length position. This sum obviously
starts at the beginning of the pipeline. Based on Fig. 3,
we can follow the next steps in order to recover the leak

position in the original coordinates:

)

(ii)

. Initialize the sum with the ESL of the first fitting,

(iel, =1,).

Is i, > zl? If yes, it means that the leak is on the
ﬁrst ﬁttlng and the leak position in original coor-
dinates is the physical length of the fitting. End the
searching. If not, go to the next step.

l, =1, +1, (itis due to a connector is the second

ﬁttlng in the plpehne Fig. 3).

. Isl, > z?If yes, it means that the leak is on

the second fitting and the leak position in the origi-
nal coordinates is the sum of the physical length of
both fittings. End the searching. If not, go to the
next step.

Now, the third part of the pipeline is a straight pipe,
so here the sum is equal to the previous sum plus the
length of the pipe in question (ie. [, =1, +1, +1;,
[, denotes the length of the first pipe).

. Isl, > z?If yes, it means that the leak is on

the ﬁrst straight pipe. In this point, it is possible to
know the exact position of the leak just subtract-
ing the z; value from the actual sum (ie. z; =
lo, +1,,+l,—z;, herez; denote the distance from the
last fitting to the leak” pomt in original coordinate).
End the searching. If not, go to the next step.

. And so on, until the z; value is reached.

It should be pointed out that:

On the one hand, it is easy to assume from
equation (25) that without the knowledge of the fit-
ting loss coefficient it is not possible to recover the
leak position in original coordinates.

On the other hand, it is neither possible to obtain a
general function to recover the leak position in orig-
inal coordinates due to the shape and the number
of fitting change in each application.
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In order to test the previous scheme, a leak located
at z; = 49.8 m (Valve number 3, Fig. 3) was induced at
time 500 s (noted as ¢,), approximately. At time ¢ = 0
the first observer (Fitting loss coefficient estimator) is
started. In the leak occurrence, the ESL is fixed with the
fitting loss coefficients estimated by the observer. This
parameter (ESL) is fed to the second observer at the time
itis started. A simplest leak alarm given by |Q,, — Q,,,/| >
6 (Q;, represents the measured inflow whereas Q,,, is the
measured outflow) was implemented. At this time, the
leak isolation begins. The § threshold is defined experi-
mentally according to the noise of the system (i.e. § must
be at least larger than variance of difference between Q,,
and Q,,, in order to avoid false alarms). For this study,
6=8x107>.

The initial conditions for the Kalman Filter are
fixed as follows: Q(l) and Qg are equal to the mean values
of the input and output flows in the operating point, K is
computed with the loss coefficient provided by the manu-
facturer, I:IS is the pressure head calculated at distance 2?

in absence of leak. 2(1’ isequal to L/2, and A° = 0 since the
pipe is not leaking. It is important to note that these ini-
tial conditions are kept constant until the leak is detected.

Table IV. Initial conditions sfor the observer

Estimate Symbol Value
Inflow 0, 7.76 x 1073 m3 /s
Outflow 0, 7.76 x 1073 m3 /s
Pressure head H, 10.8 m
Total loss
coefficient K 12.3 [-]
Leak position ) 50.1 m
A 5
Lambda parameter A 0m2/s
14.4
Hin
£ 1435 /
o)
&
=
® 14.3
=
7
&
ol 14.25
14.2 : : - -
0 200 400 600 800 1000
Time [s]

Fig. 5. Pressure head at inlet of the pipe (u;).

Table IV below summarizes these values. For our setting,
the Reynolds Number is in order of 1.69 x 10° (note that
it is not a complete turbulence zone) and the sampling
time was chosen as 1.43 x 1072 s.

The process and measurement noise covariance
matrices for the Extended Kalman Filter were experi-
mentally tuned with the following values:

Q =diag (1x107%, 1x 1072, 1x 1075, 1)
R = diag (1x 107, 1 x107%)

for the first observer. Finally, in order to obtain the alge-
braic estimation of the derivatives, a moving window of
7.13 seconds was fixed (see [1] for details).

Figs 5 and 6 presents the measured pressure heads
at inlet (H,, = H,) and outlet (H,,, = H;) of the pipe

7.3
é 7.26
&
o 7.24
=
% ?22 HO’LLt
»n
S 72
[al
718
16
# 0 200 400 600 800 1000
Time [s]
Fig. 6. Pressure head at outlet of the pipe (u,).
x10° Qin
7.82 /
7.8 k“’““\-—\
n
@ 778
£
2 7.76
2
= Qout
7.74
Qout
7.72
0 200 400 600 800 1000
Time [s]

Fig. 7. Flow at inlet and outlet of the pipe ([ y; y,] .
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respectively (i.e. the observer inputs). Fig. 7 depict the
evolution of the flow at inlet (Q;,, = ;) and outlet
(O, = O,) of the pipe (i.e. the observer outputs). Figs 8
and 9 show the results for the FLC observer. Specifi-
cally, Fig. 8 displays the value of K, ZJZZI ¢; (denoted by
K;) where K, is the FLC estimated by the observer. This
figure also shows the sum of all FLC values in the pipeline
obtained from the manufacturer data-sheet. Note that
this value is larger than the observer value, as expected. In
order to verify, in an indirect way, the effectiveness of the
observer, the ESL of the pipeline was calculated in three
different forms:

(a) By using the Darcy-Weisbach equation (12);

147

1

g 12 T

2

[}

= Kr

S 10 .

()

2 Kr

2 )

= 8

S

=
6 1 1 L i
0 200 400 600 800 1000

Time [s]

Fig. 8. Total loss coefficient and its estimation.
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Fig. 9. Equivalent straight length of the pipeline computing

by using: (i) the FLC from data-sheet; (ii) the
estimated FLC; (iii) the Darcy-Weisbach equation.

(b) By using equation (24) with the FLC determined
from our observer;

(¢) By using equation (11) with the FLC from
data-sheet pipe manufacturer.

The results are shown in Fig. 9. As can be seen in this
figure, the ESL obtained by using the procedure in (a)
an (b) gives similar values for the ESL, which states that
the FLC estimates by our observer are appropriate. It is
important to note that the Darcy-Weisbach equation pro-
vides a direct way to calculate an appropriate value of the
ESL of the pipeline. Nonetheless, this formula does not
provide information about the value of the FLC which
are needed to recover the original length coordinates of
a leak position. In this figure, we also note that the use
of the procedure in (c¢) gives a bad estimation of the ESL,
due to the use of the FLC given by the manufacturer
which are only approximate values.

-5
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no w 42

Lambda coefficient [—]

0 200 400 600 800 1000
Time [s]

Fig. 10. Lambda parameter estimation.
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Fig. 11. Leak position and its estimation (real coordinates).
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In Fig. 10, the lambda (1) parameter estimation
is shown. Using (4), it is possible to compute the leak
intensity. For this case, the leak intensity is around 2.7 X
1073 [m?/s].

Fig. 11 shows the estimated leak position in original
coordinates, Z; . As we can see in this figure, the leak
position is well estimated.

V. CONCLUSIONS

This work has proposed an LDI algorithm which
has been divided into two main stages: an FLC observer
and a leak position and magnitude estimator.

The first point to underline is that using the FLCs
given by the manufacturer can lead to a wrong determi-
nation of the ESL and thus lead to poor leak isolation.
Additionally, without the knowledge of the fitting loss
coefficient it is not possible to recover the leak position
in original coordinates. For this reason, and in order to
improve leak isolation task, the designer must find more
accurate values for the FLC. In this work, we have pro-
posed a possible alternative to finding0 such coefficients
by using a Kalman Filter and relations between them.

The second part of this work designs and tests in
real-time a leak detection and isolation algorithm based
on an algebraic observer to locate a water-leak on a
plastic pipeline prototype.

Flow rates have been well estimated in the pres-
ence of a leak, which means that the algebraic observer
correctly follows the dynamics of the model with a
leak. In the same way, the observer has estimated the
leak position and its intensity in a very acceptable way,
in spite of the noise and uncertainties found in this
real application.

The Swamee-Jain equation, implemented to
calculate in a more precise form the friction value, has
been a key to achieve good estimation. This formula
allows to calculate the friction by directly using flow
measurements. This makes unnecessary any dynamic
estimation of a friction coefficient (by identification or
state estimation), consequently avoids many problem
related to such a dynamic estimation.

Finally, the acknowledgement of the K values
given for the ESL observer leads a better leak position
estimation rather than using the K values given by the
manufacturing

As a future work, three points should be tackled:
(i) extend the approach to locate two leaks; (ii) this
algorithm will be refined to achieve better performance;
(iii) a more sophisticated leak alarm will be designed

in order to start the leak isolation algorithm in a more
accurate way.
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