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Abstract-For the first time, we present 
neuromodeling of microwave circuits based on Space 
Mapping (SM) technology. SM based neuromodels 
decrease the cost of training, improve generalization 
ability and reduce the complexity of the ANN 
topology w.r.t. classical neuromodeling. Three novel 
techniques are proposed to generate SM based 
neuromodels: Space-Mapped Neuromodeling (SMN), 
Frequency Dependent Space-Mapped Neuromodeling 
(FDSMN), and Frequency-Space-Mapped Neuromo- 
deling (FSMN). Huber optimization is proposed to 
train the neuro-space-mapping (NSM). The techni- 
ques are illustrated by a microstrip right angle bend. 

I. INTRODUCTION 

A powerful new concept in neuromodeling of 
microwave circuits based on Space Mapping technology 
is presented. The ability of Artificial Neural Networks 
(ANN) to model high-dimensional and highly nonlinear 
problems is exploited in the implementation of the Space 
Mapping concept. By taking advantage of the vast set of 
empirical models already available, Space Mapping 
based neuromodels decrease the number of EM 
simulations for training, improve generalization ability 
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and reduce the complexity of the ANN topology with 
respect to the classical neuromodeling approach. 

Three innovative techniques are proposed to create 
Space Mapping based neuromodels for microwave cir- 
cuits: Space-Mapped Neuromodeling (SMN), Frequency 
Dependent Space-Mapped Neuromodeling (FDSMN) and 
Frequency-Space-Mapped Neuromodeling (FSMN). In 
both the FDSMN and FSMN approaches, a frequency- 
sensitive neuromapping is established to expand the 
frequency region of accuracy of the empirical models 
already available for microwave components that were 
developed using quasi-static analysis. 

For the first time, Huber optimization is proposed to 
efficiently train the neuro-space-mapping (NSM), as a 
powerful alternative to the popular backpropagation 
algorithm. The SM based neuromodeling techniques are 
illustrated by a microstrip right angle bend. We contrast 
our approach with classical neuromodeling as well as 
with other state-of-the-art neuromodeling techniques. 

11. SPACE MAPPING CONCEPT 

The Space Mapping (SM) technology [ l ]  combines 
the computational efficiency of coarse models with the 
accuracy of fine models. The coarse models are typically 
empirical functions or equivalent circuits, which are 
computationally very efficient but often have a limited 
validity range for their parameters, beyond which the 
simulation results may become inaccurate. On the other 
hand, detailed or ‘‘fine” models can be provided by an 
electromagnetic (EM) simulator, or even by direct 
measurements: they are very accurate but CPU intensive. 
The SM technique establishes a mathematical link 
between the coarse and the fine models, and directs the 
bulk of CPU intensive evaluations to the coarse model, 
while preserving the accuracy and confidence offered by 
the fine model. 
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Let the vectors x, and xf represent the design 
parameters of the coarse and fine models, respectively, 
and R,(xc) and Rf(xf) the corresponding model responses. 
As illustrated in Fig. 1, the aim of SM is to 
appropriate mapping P from the fine model p 
space xf to the coarse model parameter space x, 

such that 
x c  = P ( X  f 1 

Rc ( P ( X  f 1) = Rf (x f 1 (2) 

Once the mapping is found, the coarse model can be 
used for fast and accurate simulations. 

1 -xr  ,m 1 x c  , 
such that 

R,(P(Xf)) Rf(X/) 
Fig. 1. Illustration of the aim of Space Mapping. 

111. NEUROMODELING MICROWAVE CIRCUITS 

The ability to learn and generalize from data, the non- 
linear processing nature, and the massively parallel 
structure make the ANN particularly suitable in modeling 
high-dimensional and highly nonlinear problems, as in 
the case of microwave circuits. 

The size of an ANN model does not grow 
exponentially with dimension and, in theory, can 
approximate any degree of nonlinearity to any desired 
level of accuracy, provided a deterministic relationship 
between input and target exists [2]. The most widely 
used ANN paradigm in the microwave arena is the multi- 
layer perceptron (MLP), which is usually trained by the 
well established backpropagation algorithm. 

ANN models are computationally more efficient than 
EM or physics-based models and can be more accurate 
than empirical models. It has been demonstrated [3, 41 
that ANNs are suitable models for microwave circuit 
yield optimization and statistical design. 

For microwave problems the learning data is usually 
obtained by either EM simulation or by measurement. 
This is very expensive since the simulation or 
measurements must be performed for many combinations 
of different values of geometrical, material, process and 
input signal parameters. This is the principal drawback 
of classical ANN modeling. Without sufficient learning 
samples, the neural models may not be very reliable. 

Innovative strategies have been proposed to reduce 
the learning data needed and to improve the generali- 

zation capabilities of an ANN by incorporating empirical 
models. In the knowledge based ANN approach [5] 
(KBNN), a non fully connected network is used, with a 
layer assigned to the microwave knowledge in the form 
of single or multidimensional functions. In the hybrid 
EM-ANN modeling approach [6] ,  the difference in S- 
parameters between the available coarse model and the 
fine model is used to train the corresponding ANN, 
reducing the number of fine model simulations due to a 
simpler input-output relationship. 

IV. SPACE-MAPPED NEUROMODELING 

In the Space-Mapped Neuromodeling (SMN) 
approach the mapping from the fine to the coarse 
parameter space is implemented by an ANN. It can be 
found by solving the optimization problem 

(3) 
where vector w contains the internal parameters of the 
neural network (weights, bias, etc.) selected as 
optimization variables, I is the total number of learning 
samples, and 9 is the error vector given by 

ej = Rf(xf j )  -Rc(Xfj, w )  j = 192,. * 1 (4) 
Fig. 2 illustrates the SMN concept. Once the mapping 

is found, i.e., once the ANN is trained, a space-mapped 
neuromodel for fast, accurate evaluations is immediately 
available. 

model 

WT 
Fig. 2. Space-Mapped Neuromodeling concept. 

v. INCLUDING FREQUENCY IN THE NEUROMAPPING 

Many available empirical models are based on quasi- 
static analysis: they usually yield good accuracy over a 
limited low range of frequencies. We overcome this 
limitation through a frequency-sensitive mapping from 
the fine to the coarse parameter space. This is realized by 
considering frequency as an extra input variable of the 
ANN that implements the mapping. We propose 
Frequency Dependent Space-Mapped Neuromodeling 
(FDSMN) and Frequency-Space-Mapped Neuromodeling 
(FSMN). 

As illustrated in Fig. 3, in the FDSMN approach both 
coarse and fine models are simulated at the same 
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frequency, but the mapping from the coarse to the fine 
parameter space is dependent on the frequency. 

@-pRj model 

WT 
Fig. 3. Frequency Dependent SM Neuromodeling. 

With a more comprehensive domain, the FSMN 
technique establishes a mapping not only for the design 
parameters but also for the frequency variable, such that 
the coarse model is simulated at a mapped frequencyf, to 
match the fine model response. This is realized by 
adding an extra output to the ANN that implements the 
mapping, as shown in Fig. 4. 

model 

coarse Rc = R ,  __ model 
yac - 

Fig. 4. Frequency-Space-Mapped Neuromodeling. 

VI. EXAMPLE: A MICROSTIUP RIGHT ANGLE BEND 

Consider a microstrip right angle bend, with the 
following input parameters: conductor width W, substrate 
height H, substrate dielectric constant E,., and operating 
frequency freq. Several neuromodels exploiting SM 
technology are developed for the following region of 
interest: 20mil 5 W I 3Omi1, 8mil I H 2 16mi1, 8 I E~ I 
10, and lGHz 5 freq 5 41GHz. 

Gupta’s model [7], consisting of a lumped LC circuit 
whose parameter values are given by analytical functions 
of the physical quantities W, H and cr is taken as the 
“coarse” model and implemented in OSA90/hopeTM [8]. 
Sonnet’s emTM [9] is used as the fine model. To 
parameterize the structure, the Geometry Capture 
technique available in ErnpipeTM [ 101 is utilized. 

The coarse and fine models before neuromodeling are 
compared in Fig. 5 using 50 random test base points with 
uniform statistical distribution in the region of interest. 
Gupta’s model, in this region of physical parameters, 
yields excellent results for frequencies less than 10 GHz. 

0 3  _-L , , 

0 2 5 -  . J 

frequency (GHz) 

Fig. 5. Error in Gupta model with respect to Sonnet’s em. 

Only seven learning base points (with 21 frequency 
points per base point) are used for the three SM based 
neuromodels, and the corresponding ANNs were 
implemented and trained within OSA90. Huber 
optimization was employed as the training algorithm, 
exploiting its robust characteristics for data fitting 11 11. 

Fig. 6 shows typical results for the SMN model 
implemented with a three layer perceptron with 3 inputs, 
6 hidden neurons, and 3 outputs (3LP:3-6-3). 

025 - . ~ -  _ -  

I ,  
1 1  

0 2 +  - + I T i 

frequency (GHz) 
Fig. 6. Error in SMN model with respect to Sonnet’s em. 

A FDSMN model is developed using a 3LP:4-7-3, 
and the improved results are shown in Fig. 7. In Fig. 8 
the results for the FSMN model with a 3LP:4-8-4 are 
shown, that are even better (as expected). It is seen that 
the FSMN model yields excellent results for the whole 
frequency range of interest, overcoming the frequency 
limitations of the empirical model by a factor of four. 

To compare these results with those from a classical 
neuromodeling approach, an ANN was developed using 
NeuroModeler [12]. Training the ANN with the same 
147 learning samples, the best results were obtained for a 
3LP:4-15-4 trained with the conjugate gradient and 
quasi-Newton methods. Due to the small number of 
learning samples, this approach did not provide good 
generalization capabilities, as illustrated in Fig. 9. To 
produce similar results to those in Fig. 8 using the same 
ANN size, the learning samples have to increase from 
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147 to 3 15. 

frequency (GHz) 

Fig. 7. Error in FDSMN model with respect to Sonnet’s em. 

frequency (GHz) 
Fig. 8. Error in FSMN model with respect to Sonnet’s em. 

, 
I 

frequency (GHz) 
Fig. 9. Error in classical neuromodel w.r.t. Sonnet’s em. 

VII. CONCLUSIONS 

We present novel applications of Space Mapping 
technology to the neuromodeling of microwave circuits: 
Space-Mapped Neuromodeling (SMN), Frequency De- 
pendent Space-Mapped Neuromodeling (FDSMN) and 
Frequency-Space-Mapped Neuromodeling (FSMN). 
These techniques can exploit the vast set of empirical 
models available, decrease the number of fine model 
evaluations needed for training, improve generalization 
ability and reduce the complexity of the ANN topology 
w.r.t. the classical neuromodeling approach. Frequency- 
sensitive neuromapping (FDSMN and FSMN) is de- 

monstrated to be a clever strategy to expand the useful- 
ness of empirical models that were developed using 
quasi-static analysis. Huber optimization was employed 
to eficiently train the neuromapping, exploiting its 
robust characteristics for data fitting. 
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