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Abstract—In this work, high order sliding mode
techniques are used to control an Anti-lock Brake
System (ABS) which is assisted with an active
suspension. The main objective is to modify the
slip rate of a vehicle and ensure a shorter stopping
distance in the braking process. The control system
is designed in independent way for the ABS and
the suspension subsystem. For the ABS subsystem a
second order sliding mode controller is used. On the
other hand, for the active suspension subsystem the
supertwisting algorithm combined with regular form
and linear geometric techniques is proposed. The use
of sliding mode controllers allows that both closed-
loop subsystems are robust against a class of external
perturbations and system uncertainties, furthermore
the chattering effect is reduced and higher tracking
accuracy is obtained. The effectiveness of the proposed
control strategy is confirmed via simulations.

Keywords: Brake Control, Antilock Braking Systems
(ABS), Sliding Mode Control, Automotive Control.

I. INTRODUCTION

Technology advances quickly every day, researchers of
diverse areas are looking for alternatives to accomplish
common tasks using a big variety of methods. Since the
vehicles were made, they have been changed constantly.
Now, they have more quality, they are safer, provide
more comfort, have a better performance and they
are more effective. The breaking process is one of the
most important topics to consider in safety, there are
several kinds of breaking systems e.g. the ABS, and
traction control system. One of the objectives of the
active suspension is to guarantee the improvement of
the ride quality namely the comfort for the passengers.
The ABS as a control problem consists in imposing a
desired vehicle motion to enhance the vehicle stability.
There are different mathematical models of the ABS
system, however, all they content high non-linearities
and uncertainties which are the main difficulties arising
in the ABS design and control. For the whole system
control design is necessary to cope with the disturbance

due to road friction which is unknown. Therefore, the
researchers in area of robust control consider the ABS
and active suspension as interesting problems to be
solved.
Sliding mode (SM) control [1] provides robustness

properties against uncertainties in system parameters
and external disturbances, however, SM has a drawback:
high frequency switching may become destructive
for actuators of the plant or may cause system
resonance via excitation of neglected or unmodeled
dynamics of the system under control. These dangerous
vibrations are called the chattering effect. High Order
SM (HOSM) [2] improve accuracy of standard SM,
HOSM has the main sliding-mode features namely that
preserves robustness properties, finite time convergence,
furthermore chattering effect is reduced considerably.
Several works have been reported in the literature using
the sliding mode technique to a slip-ratio control of ABS,
for example [3], [4], [5], [6]. For the active suspension case
a similar approach is used in the [7]. In [8] a backstepping
design is applied to ABS and active suspension as a
whole system, in this case the road disturbances have
been assumed known in order to propose the control law.
However, in most cases these two systems are treated
independently.
In this paper, we use HOSM techniques to design a

controller to achieve the relative slip tracks a desired
trajectory to obtain a shorter stopping distance. In
the other hand, a combination of HOSM namely
supertwisting, regular form [9] and geometric linear
[10] approaches is used to design the active suspension
controller, which guarantees the passenger comfort and
helps to improve the braking process. As a result the
vehicle dynamic, i.e., the vehicle velocity and horizontal
position, on the designed SM manifolds becomes
asymptotically stable with disturbance attenuation,
ensuring an stable tracking error.
The paper is organized as follows. The mathematical



model for the longitudinal movement of a vehicle,
including the brake and active suspension systems is
presented in Section II. In Section III the HOSM
controllers with special emphasis in the design of sliding
surface for active suspension are shown. The simulation
results are presented in Section IV to show the robustness
and performance of the proposed control strategy.
Finally, some conclusions are presented in Section V.

II. MATHEMATICAL MODEL

This section presents a dynamic model of a vehicle
active suspension and ABS subsystems similar as is used
in [8]. In this work, we consider a quarter of vehicle model,
this model includes the active suspension, the pneumatic
brake system, the wheel motion and the vehicle motion.
Now we study the task of controlling the wheels rotation,
such that, the longitudinal force due to the contact of the
wheel with the road is near from the maximum value in a
period of time valid for the model. This effect is reached
as a result of the ABS valve effort.

A. Active suspension model

The quarter-car active suspension is a 2-DOF
mechanical system shown in Fig. 1.

Fig. 1: Active suspension scheme

this system connects the car body and the wheel
masses and is modeled as a linear viscous damper and a
spring elements, whereas the tire is represented as a linear
spring and damping elements. The motion equations for
this system are represented by

mcz̈c = −Kcw (zc − zw)− Ccw (żc − żw) + fha

mw z̈w = Kcw (zc − zw) + Ccw (żc − żw) (1)

−Kwr (zw − zr)− Cwr (żw − żr)− fha

where mc and mw the mass of the car an the wheel,
respectively, zc is the car vertical displacement, zw is the
wheel vertical displacement, Kcw and Kwr are the spring
coefficients, Ccw and Cwr are the damping coefficients, zr
is the disturbance due to road and fha is the force of the
hydraulic actuator.

B. Pneumatic brake system equations

The specific configuration of this system considers the
brake disk, which holds the wheel, as a result of the
increment of the air pressure in the brake cylinder. The
entrance of the air trough the pipes from the central
reservoir and the expulsion from the brake cylinder to
the atmosphere is regulated by a common valve.
The time response of the valve is considered small,

compared with the time constant of the pneumatic
system.

Fig. 2: Pneumatic brake scheme

Considering Fig. 2, we suppose the brake torque Tb is
proportional to the pressure Pb in the brake cylinder

Tb = kbPb (2)

with kb > 0. For the brake system we use an
approximated model of pressure changes in the brake
cylinder due to the opening of the valve with a first order
relation [11], this relation can be represented as

τṖb + Pb = Pc (3)

where τ is the time constant of the pipelines, Pc is the
pressure inside the central reservoir. The atmospheric
pressure, Pa, is considered equal to zero.

C. Wheel motion equations

To describe the wheel motion we use a partial
mathematical model of the dynamic system as it is done
in [12], [13], [14]. Considering the Fig. 2, the dynamics of
the angular momentum variation relative to the rotation
axis, are given by

Jω̇ = rf (s)− bbω − Tb (4)

where ω is the wheel angular velocity, J is the wheel
inertia moment, r is the wheel radius, bb is a viscous
friction coefficient due to wheel bearings and f is the
contact force of the wheel.
The expression for longitudinal component of the

contact force in the motion plane is

f (s) = νNmφ (s) (5)



where ν is the nominal friction coefficient between the
wheel and the road, Nm is the normal reaction force in
the wheel and it is defined by Nm = mg−Kwr (zw − zr)−
Cwr (żw − żr), with g the gravity acceleration and m the
mass supported on the wheel and it is given by m =
mw +mc/4. The function φ(s) represents a friction/slip
characteristic relation between the tire and road surface.
Here, we use the Pacejka formula [15], defined as follows

φ (s) = D sin (Catan (Bs− E (Bs− atan (Bs))))

.
In general, this model produces a good approximation

of the tire/road friction interface. With the following
parameters B = 10, C = 1.9, D = 1 and E = 0.97
that function represents the friction relation under a dry
surface condition.
The slip rate s is defined as

s =
v − rω

v
(6)

where v is the longitudinal velocity of the wheel mass
center. The equations (4)-(6) characterize the wheel
motion.

D. The vehicle motion equation

The vehicle longitudinal dynamics considered without
lateral motion, are described by

Mv̇ = −F (s)− Fa (7)

where M = 4mw + mc is the total vehicle mass; Fa is
the aerodynamic drag force, which is proportional to the
vehicle velocity and is defined as Fa = 1

2ρCdAf (v + vw)
2
,

where ρ is the air density, Cd is the aerodynamic
coefficient, Af is the frontal area of vehicle, vw is the
wind velocity; and the contact force of the vehicle F is
modeled of the form

F (s) = νNMφ (s) (8)

where NM is the normal reaction force of the vehicle,
NM =Mg −Kwr (zw − zr)− Cwr (żw − żr).

E. State space equations

The dynamic equations of the whole system (3)-
(7) can be rewritten using the state variables x =
[x1, x2, x3, x4, x5, x6, x7]

T
= [zc, żc, zw, żw, ω, Pb, v]

T

results in the following form:

ẋ1 = x2

ẋ2 = −a1 (x1 − x3)− a2 (x2 − x4) + b1us

ẋ3 = x4 (9)

ẋ4 = a3 (x1 − x3) + a4 (x2 − x4)

−a5 (x3 − zr)− a6 (x4 − żr)− b2us

ẋ5 = −a7x5 + a8f (s)− a9x6

ẋ6 = −a10x6 + b3ub (10)

ẋ7 = −a11F (s)− fw (x7)

with the outputs y1 = x1 and y2 = x5, where a1 =
Kcw/mc, a2 = Ccw/mc, a3 = Kcw/mw, a4 = Ccw/mw,
a5 = Kwr/mw, a6 = Cwr/mw, a7 = bb/J , a8 = r/J ,
a9 = kb/J , a10 = 1/τ , a11 = 1/M , b1 = 1/mc,
b2 = 1/mw, b3 = 1/τ , us = fha, ub = Pc and
fw(x7) =

1
2M (ρCdAf ) (x7 + vw)

2
.

III. CONTROL DESIGN

In this section, we use the concepts of regular form,
SM and geometric linear control methods for the sliding
surface for an active suspension controller design; and,
then HOSM is applied to design an ABS controller. In
this case, the form of the whole system (9)-(10) allows us
to design both controllers in independent way.

A. Suspension Control

Define xs = [x1, x2, x3, x4] and p =
[
zr żr

]T
, then

the subsystem (9) is represented as

ẋs = Asxs + bsus +Dp (11)

where

As =

⎡
⎢⎢⎣

0 1 0 0
−a1 −a2 a1 a2
0 0 0 1
a3 a4 −a3 − a5 −a4 − a6

⎤
⎥⎥⎦

bs =

⎡
⎢⎢⎣

0
b1
0

−b2

⎤
⎥⎥⎦ ; D =

⎡
⎢⎢⎣

0 0
0 0
0 0
a5 a6

⎤
⎥⎥⎦ .

with the output y1 = x1. Now, we define new variables
xr1 = x1, xr2 = x2 +

b1
b2
x4, xr3 = x3 and xr4 = x4; using

the nonlinear transformation the system (11) is shown
into regular form [9]

ẋr1 = A11xr1 +A12xr2 +D1p (12)

ẋr2 = A21xr1 +A22xr2 +D2p+ b2us (13)

which consists of the two blocks: (12) with xr1 =[
xr1 xr2 xr3

]T
and (13) with xr2 = [x4], where

A11 =

⎡
⎣

0 1 0

a3
b1
b2

− a1 a4
b1
b2

− a2 a1 − b1
b2

(a3 + a5)

0 0 0

⎤
⎦,

A12 =

⎡
⎢⎣

− b1
b2

a2 − b1
b2

(a4 + a6 − a2)− a4

(
b1
b2

)2

1

⎤
⎥⎦, A21 =

[
a3 a4 −a3 − a5

]
, A22 =

[
−a4

(
b1
b2

+ 1
)
− a6

]
,



b2 = [−b2], D1 =

⎡
⎣

0 0
b1
b2
a5

b1
b2
a6

0 0

⎤
⎦ and D2 =

[
a5 a6

]
.

Then for the first block (12), the output can be
regarded as y1 = cxr1, with c =

[
1 0 0

]
. The vector

xr2 is handled as a virtual control in the first block and
it is designed as a linear function of xr1

xr2 = −C1xr1 + ξ (14)

where C1 are the feedback gains. In this work,
we assume the matrix (A11 −A12C1) is Hurwitz,
and the term ξ is chosen as ξ = H−1

k y1d with

Hk = c (A12C1 −A11)
−1 A12, yielding a constant

stable response y1d. Using (14), a sliding variable ψ is
formulated as

ψ = xr2 +C1xr1 − ξ (15)

and the dynamics of (15) are governed by

ψ̇ = (C1A11 +A21)xr1 + (C1A12 +A22)xr2(16)

+ (C1D1 +D2)p+ b2us.

To induce chattering reduced sliding mode on ψ =
0, the super-twisting control algorithm [16, Chap. 2] is
applied

us = −b−1
2

[
−λs1 |ψ|

1
2 sign (ψ) + us2 (17)

− (C1A11 +A21)xr1 − (C1A12 +A22)xr2]

u̇s2 = −λs2sign (ψ) (18)

where λs1 > 0, λs2 > 0 are control gains. The stability
condition for the closed-loop system (16) and (17) can be
obtained via the transformation qs = (C1D1 +D2)p −
λs2

∫ t

0
sign (ψ) dt to

ψ̇ = −λs1 |ψ|
1
2 sign (ψ)− qs (19)

q̇s = −λs2sign (ψ) + (C1D1 +D2) ṗ.

We assume that |(C1D1 +D2) ṗ| < L < ∞ and
choosing λs2 > 5L and, 32L ≤ λ2s1 ≤ 8 (λs2 − L) then,
the system (19) is finite time globally stable [17], i.e, its
solution converges in finite time to the origin (ψ, qs) =
(0, 0). The sliding motion on ψ = 0 is given by (12) and
(14), in this way the SM equation is

ẋr1 = (A11 −A12C1)xr1 +A12ξ +D1p. (20)

At this point, to reject the unmatched unknown
perturbation p in the SM equation (20), we applied the
well known geometrical approach [10]. The disturbance
p can be rejected preserving SM equation stability if
and only if the image of the matrix associated to the
disturbance, ImD1, belongs to V∗

g, the so-called maximal
(A11,A12)-invariant subspace contained in the kernel of
the output y1 = xr1 =

[
1 0 0

]
xr1.

It can be seen that this problem is solvable, since

clearly ImD1 = span
{
D̃1

}
belongs to V∗

g =

span
{
V

∗(1)
g ,V

∗(2)
g

}
with D̃1 =

[
0 1 0

]T
, V

∗(1)
g =

[
0 1 0

]T
and V

∗(2)
g =

[
0 0 1

]T
.

Then, using the virtual control xr2 (14), which
produces V∗

g to be SM equation (20) invariant, the
output y1 = xr1 is not affected at all by the signal
p, i.e, this control rejects the disturbance p in the SM
equation. Notice that this control renders the system
(20) maximally non-observable by canceling out the zeros
associated to the transfer function between p and y1 =
xr1 with closed-loop poles. The closed-loop system (20) is
stable, because these zeros are stable, and the remaining
pole is located in a suitable stable position.

B. ABS Control

In this section we present a second order sliding
mode control design for the brake system based on the
dynamics (10), we suppose that x5, x7, s are known.
Taking in account the direct action of the pressure Pb

on the brake cylinder over the wheels motion, we define
the output tracking error as

σ � x5 − 1− s∗

r
x7, (21)

which has relative degree two. We will use the following
assumptions:

• A1 For some Km,KM , Cm ≥ 0, we have that:

0 < Km ≤ ∂σ(2)

∂u
≤ KM ,

∣∣σ2|u=0

∣∣ ≤ Cm (22)

• A2 The trajectories of subsystem (10 are infinitely
extensible in time for any Lebesgue-measurable
bounded control.

Considering (9), and (10), we take the derivative of the
tracking error (21)

σ̇ = −a7x5 + a8f(s)− a9x6 − 1− s∗

r
ẋ7 +

x7
r
ṡ∗

= −a7x5 + a8vNmφ(x5, x7)

− c4a11vNMφ(x5, x7) + c4fw(x7)− a9x6

= f1 (x5, x7) + b4x6 +Δ1 (23)

where f1 (x5, x7) = c4 [a11νNMφ (s)− fw(x7)] − a7x5 +
a8νNmφ (s), b4 = −a9, and c4 = 1−s∗

r . We consider
that the term Δ1 contains the reference derivative ṡ∗, the
inevitable changes of the friction parameter ν, the wind
speed vw, the influence of zr, żr on the high nonlinear
F (s). Hence, Δ1 will be considered as an unmatched and
bounded perturbation term.
Now if we take the second derivative of σ

σ̈ = −a9a10x6 − b4ub − a7ẋ5 + fσ(NM , φ) (24)



where fσ = ∂σ̇
∂x5

ẋ5+
∂σ̇
∂x7

ẋ7+
∂σ̇
∂x3

ẋ3+
∂σ̇
∂x4

ẋ4 contains all the
uncertainties of Δ1 and others known terms, is evident
that second derivative is very hard to be computed due
to that is highly nonlinear. Therefore, it is not easy to
use common techniques to design a robust controller. In
order to achieve chattering reduced sliding mode motion
on the manifold σ = σ̇ = 0, we use the high order sliding
mode technique presented in [2]. Thus, the control input
is proposed in the form:

ub =
α

b3

(
0.5 + 0.5sign(σ̇ + β |σ|1/2 signσ)

)
(25)

with α, β > 0. The control signal (25) establishes a 2-
sliding mode σ = σ̇ = 0 attracting each trajectory in
finite time [18].

In order to use the controller (25) we need to know
the time derivative σ̇ of the output tracking error. Note
that to compute that derivative of σ is not an easy task,
to avoid this calculation and considering σ is known, we
propose to use a the first-order differentiator [19], [20] for
the estimation of σ̇. In this case, the differentiator is in
the form

ż0 = −λ1L1/2 |ε|1/2 sign (ε) + z1

ż1 = −λ0Lsign (ε) (26)

where ε = σ − z0 and z0 and z1 are estimations of σ and
σ̇ respectively.

IV. SIMULATION RESULTS

To show the performance of the proposed control laws
(17), (25), we have carried out simulations on a wheel and
active suspension model, the system parameters used for
the simulations are listed in Table 1.

During the breaking process we want to maximize the
friction force, for that reason throughout simulations we
suppose that slip tracks a constant signal s∗ = 0.203,
which in this case produces a value close to the maximum
of the function φ(s). The reference for suspension is
y1d = −0.2. The road perturbation is considered as
zr = 0.1 cos (10t). The parameters used in the control

law are λs1 = 10, λs2 = 15, C1 =
[ −175 −35 0

]T
,

α = 10000, β = 5000, λ0 = 1.1, λ1 = 1.5, L = 1000.

On the other hand, to show robustness properties of the
control algorithms in presence of parametric variations
we introduce a change of the friction coefficient ν which
produces different contact forces, that is F and F̂ . Then,
ν = 0.1 for t < 4 s and ν = 0.5 for t ≥ 4 s.

Longitudinal speed v and the linear wheel speed rω are
shown in Fig. 3, the ABS controller should be turned off
when the longitudinal speed is close to zero.

TABLE 1

Values of Parameters (MKS Units)

Parameter Value Parameter Value Parameter Value

mc 1800 J 18.9 E 0.97

mw 50 kb 100 Af 6.6

Kcw 1050 bb 0.08 Cd 0.65

Kwr 175500 r 0.535 ρ 1.225

Ccw 19960 B 10 vw -6

Cwr 1500 C 1.9 g 9.81

τ 0.0043 D 1 v 0.5

Fig. 3: Longitudinal speed v (dashed) and the linear wheel
speed rω (solid)

The Fig. 4 shows the slip rate during the breaking
process, we can see the fast convergence to the
reference value s∗ and Fig. 5 presents the friction/slip
characteristic relation φ(s) obtained during the breaking
process under control actions.

Fig. 4: Slip performance in
the braking process

Fig. 5: Performance of φ(s) in
the braking process

Fig. 6 shows the vertical vehicle position during the
breaking process.

Fig. 6: Vehicle position x1 Fig. 7: Suspension position x3

We could see the position is lowered 0.2 m under zero
position and that is kept constant until the car is almost



stopped, until Fig. 7 presents the suspension position
of the vehicle, we note that moves constantly trying to
counteract the changes on the road and wheel.
The control action us for the suspension is shown in

Fig. 8. Note that the valve can put or extract fluid into
the reservoir to obtain the necessary forces. The sliding
variable ψ is presented in figure 9.

Fig. 8: Control signal for
suspension us

Fig. 9: Sliding surface for
suspension control ψ

The control signal ub for the ABS system is presented
in Fig. 8, due to the form of the control design (25) the
control signal is switching between two values. The sliding
variable σ is presented in figure 11.

Fig. 10: Control signal for
ABS ub

Fig. 11: Sliding surface for
ABS control σ

Finally, in Fig. 12 the nominal F , and the F̂ contact
forces are shown

Fig. 12: Nominal contact force F (dashed) and real force F̂
(solid)

V. CONCLUSIONS

In this work high order sliding mode based controller
for ABS assisted with active suspension has been
proposed. To overcome the difficulty of the calculation
of the derivatives needed for the HOSM ABS control,
SM differentiator were used. The simulation results

show good performance and robustness of the closed-
loop system in presence of both, the matched and
unmatched perturbations, namely, parametric variations
and neglected dynamics.
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