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AbsfrucZ This paper presents recent advances in model development for RF/microwave 
components exploiting two powerful technologies: Artificial Neural Networks (ANN) and Space 
Mapping (SM). We survey the fundamental issues on classical neuromodeling. We review some 
state-of-the-art neuromodeling techniques, emphasizing SM based neuromodeling techniques. We 
show how SM based neuromodels decrease the cost of training, improve generalization ability and 
reduce the complexity of the ANN topo1ogyw.r.t. the classical neuromodeling approach. We 
illustrate these novel approaches through a practicalmicrowave modeling problem. We conclude 
by proposing some possible exciting future applications of ANN and SM in microwave CAD. 

A Brief Review of Neuromodeling of Microwave Components 

ANNs are particularly suitable in modeling high-dimensional and highly nonlinear 
devices, as those found in the microwave area, due to their ability to learn and generalize from 
data, their non-linear processing nature, and their massively parallel structure. 

The size of an ANN model does not grow exponentially with dimension and, in theoxy, 
can approximate any degree of nonlinearity to any desired level of accuracy, provided a 
deterministic relationship between input and target exists I]. The most widely used ANN 
paradigm in the microwave arena is the multi-layeperceptron @ALP), which is usually trained by 
the well established backpropagation algorithm. It has been demonstrated f!, 31 that A h W s  are 
suitable models for microwave circuit yield optimization and statistical design. 

For microwave problems the learning data is usually obtained by either EM simulation or 
by measurement. This is expensive since the simulatiodmeasurements must be performed for 
many combinations of different values of input parameters. This is the main drawback of classical 
ANN modeling. Without sufficient learning samples, the neural models may not be reliable. 

Three innovative strategies have been proposed to reduce the learning data needed and to 
improve the generalization capabilities of an ANN by incorporating empirical models: the hybrid 
EM-ANN modeling approach, the knowledge based ANN (KB") approach, and the Space 
Mapping (SM) based neuromodeling approach. 

In the hybrid EM-ANN modeling approach (1, the difference ins-parameters between 
the empirical model and the EM model is used to train the corresponding ANN, reducing the 
number of fine model simulations due to a simpler input-output relationship. In the knowledge 
based ANN approach [SI (KBNN) the empirical model is incorporated into the internal structure 
of the ANN. Knowledge BasedANNs are non fully connected networks, with a layer assigned to 
the microwave knowledge in the form of single or multidimensional functions. 

By combining SM and ANN, three novel techniques are proposed in$l to generate SM 
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based neuromodels: Space-Mapped Neuromodeling (SMN), Frequency-Dependent Space-Mapped 
Neuromodeling (FDSMN), and Frequency Space-Mapped Neuromodeling (FSMN). 

Spaee Mapping Concepf 

The Space Mapping (SM) technique Q] combines the computational efficiency of coarse 
models with the accuracy of fine models. The coarse models are typically empirical functions or 
equivalent circuits, which are computationally very efficient but have a limited validity range for 
their parameters. Fine models can be provided by an electromagnetic (EMpimulator, or even by 
direct measurements: they are very accurate but CPU intensive. The SM technique establishes a 
mathematical link between the coarse and the fine models, and directs the bulk of CPU intensive 
evaluations to the coarse model, while preserving the accuracy offered by the fine model. 

Let the vectors x, and x, represent the design parameters of the coarse and h e  models, 
respectively, and R, (xc) and Rf (x,) the corresponding model responses. The aim of SM 
optimization is to find an appropriate mappingP from the tine model parameter spacey to the 
coarse model parameter spacex, 

such that 
x, = P@,) (1) 

R,(P(x/ ) )=  R , ( x / )  (2) 
Once the mapping is found, the coarse model can be used for fast and accurate 

simulations. 

Spaee Mapping Based Neuromodeling 

In the Space-Mapped Neuromodeling (SMN) approach an ANN implements the mapping 
from the fine to the coarse parameter space, as illustrated in Fig. I(a). The mapping can be found 
by solving the optimization problem 

min 11 [ei' e: A 1) (3) 

where N contains the internal parameters of the neural network (weights, bias, etc.) selected as 
optimization variables,l is the total number of learning samples, an&, is the error vector given by 

(4) 
Once the mapping is found, i.e., once the ANN is trained, a space-mappedneuromodel 

e, = R f ( x f , )  - R , ( x f l , N ) ,  i = L2, K , I 

for fast, accurate evaluations is immediately available. 

Frequency-Sensitive Neuromapphg 

Many available empirical models are based on quasi-static analysis: they usually yield 
good accuracy over a limited low range of frequencies. We overcome this limitation through a 
frequency-sensitive mapping, which is realized by considering frequency as an extra input variable 
of the ANN. As illustrated in Fig. 19). in the Frequency Dependent Space Mapped 
Neuromodeling (FDSMN) approach both coarse and fine models are simulated at the same 
frequency, but the mapping from the fine to the coarse parameter space is dependent on the 
frequency. With a more comprehensive domain, the Frequency Space Mapped Neuromodeling 
(FSMN) technique in Fig. 16) establishes a mapping not only for the design parameters but also 
for the frequency variable, such that the coarse model is simulated at a mapped frequent$ to 
match the fine model response. 

Illustration: A Mierosirp Right Angle Bend 

Consider a microstrip right angle bend, with the following input parameters: conductor 
width W, substrate height H, substrate dielectric constant& and operating frequencyfreq. Several 
neuromodels exploiting SM technology have been developed for the following region of interest: 
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20milS WS30mil,8milS HS 16mil, 8 S c S  10, and lGHzSfreqS41GHz. 

GuptaS model [8], consisting of a lumped LC circuit whose parameter values are given 
by analytical functions of the physical quantitiesw, Hand c is taken as the “coarse”mode1 and 
implemented inOSA90hopeW [9]. SonnetS emW [lo] is used as the fine model. 

The coarse and fine models before any neuromodeling are compared in Fig. @ using 50 
random test points with uniform statistical distribution in the region of interest.GuptaS model, in 
this region of physical parameters, yields acceptable results for frequencies less than 10 GHz. 

Seven learning base points are used for the three SM neuromodels, and the corresponding 
ANNs were implemented and trained withinosA90. Huber optimization was employed as the 
training algorithm, exploiting its robust characteristics for data fitting 11. 

Fig. 2(b) shows typical results for the SMN model implemented with a three layer 
perceptron with 3 input neurons, 6 hidden neurons, and 3 output neurons (3LB-6-3). A FDSMN 
model is developed using a 3LP4-7-3, and the improved results are shown in Fig. 2 0 .  In Fig. 
2 ( 4  the results for the FSMN model with a 3LE4-84 are shown, that are even better (as 
expected). It is seen that the FSMN model yields excellent results for the whole frequency range 
of interest, overcoming the frequency limitations of the empirical model by a factor of four. 

Conclusions 

We review fundamental advances in the microwaveneuromodeling arena. We describe 
novel applications of Space Mapping technology and Artificial Neural Networks to the modeling 
of microwave components. SM basedneuromodels exploit the vast set of empirical models 
already available, decrease the number of fine model evaluations needed for training, improve 
generalization ability and reduce the complexity of the ANN topo1ogyw.r.t. the classical 
neuromodeling approach. Frequency-sensitiveneuromapping is demonstrated to be a clever 
strategy to expand the usefulness of empirical models that were developed using quasi-static 
analysis. As an original alternative to the classicabackpropagation algorithm, Huber optimization 
is employed to efficiently train theneuromapping. Promising perspectives are open by the 
application of frequency-space neuromapping to the solution of complex yield optimization and 
statistical design problems. 
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Fig. 1. SM Neuromodeling techniques: 4) SMN, (b) FDSMN, (c) FSMN. 
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Fig. 2. Error in ISzll with respect toem results for a right angle bend of: @) Gupta 
model, (b) SMN model, (c) FDSMN model, (d) FSMN model. 
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