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Abstract  

We review Neural Space Mapping (NSM) optimization for electromagnetic-based design of RF 

and microwave circuits.  NSM optimization exploits our Space Mapping-based neuromodeling techniques 

to efficiently approximate a suitable mapping at each iteration.  Coarse model sensitivities are exploited to 

select suitable fine model base points for the initial mapping. 

I.  INTRODUCTION 

Artificial Neural Networks (ANNs) are suitable models for microwave circuit yield optimization 

and statistical design.  Neuromodels are computationally much more efficient than EM models.  Once they 

are trained with reliable learning data, obtained from a “fine” model by either EM simulation or by 

measurement, the neuromodels can be used for efficient and accurate optimization within the region of 

training.  This has been the conventional approach to microwave optimization using ANNs [1].  The 

principal drawback of this approach is the cost of generating sufficient learning samples, since the fine 

model must be evaluated for many combinations of different values of input parameters over a large region.  

Additionally, the extrapolation ability of neuromodels is poor, making unreliable any solution predicted 

outside the training region.  Introducing knowledge, as in [2], can alleviate these limitations. 
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A powerful method for optimization of microwave circuits based on Space Mapping (SM) 

technology and Artificial Neural Networks (ANN) is reviewed [3].  Neural Space Mapping (NSM) 

optimization exploits our Space Mapping-based neuromodeling techniques [4] to efficiently approximate a 

suitable mapping, including frequency, at each iteration.  A “coarse” or empirical model is used not only 

as source of knowledge that reduces the amount of learning data and improves the generalization 

performance, but also as a means to select the initial learning base points through sensitivity analysis.  A 

novel procedure that does not require parameter extraction to predict the next point is presented.  Huber 

optimization is used to train the SM-based neuromodels at each iteration.  The SM-based neuromodels are 

developed without using testing points: their generalization performance is controlled by gradually 

increasing their complexity starting with a 3-layer perceptron with 0 hidden neurons.  NSM optimization is 

illustrated by an HTS microstrip filter. 

II.  NEURAL SPACE MAPPING (NSM) OPTIMIZATION: AN OVERVIEW 

We start by finding the optimal solution xc
* that yields the desired response using the coarse model.  

We select 2n additional points following an n-dimensional star distribution [4] centered at xc
*, where n is 

the number of design parameters (xc, xf  n).  The percentage of deviation from xc
* for each design 

parameter is determined according to the coarse model sensitivity.  The larger the sensitivity of the coarse 

model response w.r.t. a certain parameter, the smaller the percentage of variation of that parameter.  We 

assume that the coarse model sensitivity is similar to that one of the fine model. 

The fine model response Rf at the optimal coarse solution xc
* is then calculated.  If Rf is 

approximately equal to the desired response, the algorithm ends, otherwise we develop an SM-based 

neuromodel over the 2n+1 fine model points. 

Once an SM-based neuromodel with small learning errors is available, we use it as an improved 

coarse model, optimizing its parameters to generate the desired response.  The solution to this problem 

becomes the next point in the fine model parameter space, and it is included in the learning set. 
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We calculate the fine model response at the new point, and compare it with the desired response.  

If it is still different, we re-train the SM-based neuromodel over the extended set of learning samples and 

the algorithm continues.  If not, the algorithm terminates. 

III.  COARSE OPTIMIZATION 

During the coarse optimization phase of NSM optimization, we want to find the optimal coarse 

model solution xc
* that generates the desired response over the frequency range of interest.  The vector of 

coarse model responses Rc might contain m different responses (for example, S11 and S21), 
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The desired response R* is expressed in terms of specifications.  The problem of circuit design 

using the coarse model can be formulated as [5]  
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where U is a suitable objective function.  For example, U could be a minimax objective function expressed 

in terms of upper and lower specifications for each response and frequency sample.  A rich collection of 

objective functions, for different design constraints, is in [5]. 

IV.  TRAINING THE SM-BASED NEUROMODEL DURING NSM OPTIMIZATION 

At the ith iteration, we find the simplest neuromapping P (i) such that the coarse model using that 

mapping approximates the fine model at all the learning points.  This is realized by solving 
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where 2n + i is the number of training base points and Fp is the number of frequency points per frequency 

sweep.  The total number of learning samples at the ith iteration is s = (2n + i) Fp. 

(5b) is the input-output relationship of the ANN that implements the mapping at the ith iteration.  

Vector w contains the internal parameters (weights, bias, etc.) of the ANN.  The paradigm chosen to 

implement P (i) is a 3-layer perceptron. 

All the SM-based neuromodeling techniques proposed in [4] can be exploited to solve (4).  The 

starting point for the first training is a unit mapping, i.e., P (0) (xf
(l), j, wu) = [xf

(l)T j]T, for j = 1,…, Fp and 

l = 1,…, 2n+1, where wu contains the internal parameters of the ANN for a unit mapping.  The SM-based 

neuromodel is trained in the next iterations using the previous mapping as the starting point. 

The complexity of the ANN is gradually increased according to the learning error L, starting with 

a linear mapping (3-layer perceptron with 0 hidden neurons).  In other words, we use the simplest ANN 

that yields an acceptable learning error, defined as 

TT
sL ][  e  (6)

where es is obtained from (5) using the current optimal values for the ANN free parameters w*. 

V.  SM-BASED NEUROMODEL OPTIMIZATION 

At the ith iteration of NSM optimization, we use an SM-based neuromodel with small learning 

error as an improved coarse model, optimizing its parameters to generate the desired response.  We denote 

the SM-based neuromodel response as RSMBN, defined as 
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and j defined in (5c).  The solution to the following optimization problem becomes the next iterate: 
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If an SMN neuromapping is used to implement )(iP , the next iterate can be obtained in a simpler 

manner 
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VI.  NSM ALGORITHM 

Step 0. Find *
cx  by solving (3). 

Step 1. Choose )1(
fx ,…, )2( n
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Step 5. Find w* by solving (4). 

Step 6. Calculate L using (6). 

Step 7. If min L , increase the complexity of )(iP  and go to Step 5. 

Step 8. If an SM neuromapping is used to implement )(iP , solve (11), otherwise solve (10). 
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Step 9. Set 1 ii ; go to Step 3. 

VII.  HTS MICROSTRIP FILTER 

We apply NSM optimization to a high-temperature superconducting (HTS) quarter-wave parallel 

coupled-line microstrip filter.  L1, L2 and L3 are the lengths of the parallel coupled-line sections and S1, S2 

and S3 are the gaps between the sections.  The width W is the same for all the sections as well as for the 

input and output microstrip lines, of length L0.  A lanthanum aluminate substrate with thickness H and 

dielectric constant r is used. 

The specifications are |S21|  0.95 in the passband and |S21|  0.05 in the stopband, where the 

stopband includes frequencies below 3.967 GHz and above 4.099 GHz, and the passband lies in the range 

[4.008GHz, 4.058GHz].  The design parameters are xf = [L1 L2 L3 S1 S2 S3] T.  We take L0 = 50 mil, H = 20 

mil, W = 7 mil, r = 23.425, loss tangent = 3105; the metalization is considered lossless. 

Sonnet’s em driven by Empipe was employed as the fine model, using a high-resolution grid.  

OSA90/hope built-in linear elements MSL (microstrip line), MSCL (two-conductor symmetrical coupled 

microstrip lines) and OPEN (open circuit) connected by circuit theory over the same MSUB (microstrip 

substrate definition) are taken as the “coarse” model. 

The coarse and fine model responses at the optimal coarse model solution xc
* are shown in Fig. 

1(a).  The initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: 3% 

deviation from xc
* for L1, L2, and L3 is used, while 20% is used for S1, S2, and S3. 

The final mapping follows a FPSM approach [4] using a 3-layer perceptron with 7 inputs (6 design 

parameters and the frequency), 5 hidden neurons, and 3 output neurons (, L1, and S1). 

The next point predicted by optimizing the coarse model with the mapping found matches the 

desired response with excellent accuracy, as seen in Fig. 1(b), where a fine frequency sweep is used. The 

NSM solution satisfies the specifications.  The HTS filter is optimized in only one NSM iteration. 
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VIII.  CONCLUSIONS 

We review EM optimization exploiting Space Mapping technology and Artificial Neural Net-

works.  Neural Space Mapping (NSM) optimization exploits our SM-based neuromodeling techniques to 

efficiently approximate mappings from the fine to the coarse input space.  NSM does not require parameter 

extraction to predict the next point.  An initial mapping is established by performing upfront fine model 

analysis at a number of base points.  Coarse model sensitivities are exploited to select the base points.  

Huber optimization trains simple SM-based neuromodels at each iteration without using testing points.  

Their generalization performance is controlled by gradually increasing their complexity starting with a 3-

layer perceptron with 0 hidden neurons.  An HTS filter is optimized in only one NSM iteration. 
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Fig. 1.  Responses from Sonnet’s em () compared with desired response (): (a) at the 
starting point, (b) at the point predicted by the first NSM iteration. 

 




