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Abstract— Object tracking and manipulation is an important
process for many applications in robotics and computer vision.
A novel 3D pose estimation of objects using reflectionally
symmetry formulated in Conformal Geometric Algebra (CGA)
is proposed in this work. The synthesis of the kinematics
model for robots and a sliding mode controller using the CGA
approach is described. Real time implementation results are
presented for the pose estimation of object using a stereo vision
system.

I. INTRODUCTION

Symmetry plays an important role in human activity since
many objects found in domestic environments are symmet-
rical. The manner in which these objects are grasped and
manipulated are also related to its axis of symmetry. For
example, grasping of a bottle is done by applying force on
opposite sides of its axis of symmetry, perpendicular to the
axis. In this work, we obtain the pose of an reflectionally
symmetric object and the differential kinematics model for
manipulators with n-DOF using Conformal Geometric Alge-
bra. Also, it is proposed a controller based on sliding modes
[1] to obtain robustness and finite time stabilization of the
error variables of the system for tracking and manipulation
of objects.

The article is organized as follows. Section II presents
an introduction to the Conformal Geometric Algebra. The
kinematics model for the pose of robotic manipulators is
obtained in section III. In section IV, the pose estimation
algorithm is introduced and some real time results are
presented. The design of the error variables and sliding mode
controller in CGA are defined in section V. Section VI,
presents the simulation results for a pose reference tracking,
and the values of the controller gains. Finally, conclusions
are given in section VII.

II. GEOMETRIC ALGEBRA

Let Gn denote the geometric algebra of n dimensions,
which is a graded linear space. As well as vector addition and
scalar multiplication, Gn has a non-commutative product that
is associative and distributive over addition. This is called the
geometric or Clifford product.
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The inner product of two vectors is the standard scalar or
dot product, which produces a scalar. The outer or wedge
product of two vectors is a new quantity, which we call
a bivector. We think of a bivector as an oriented area in
the plane containing the vectors a and b, that is formed
by sweeping a along b. Thus, b ∧ a will have the opposite
orientation, making the wedge product anticommutative.
The wedge product is immediately generalizable to higher
dimensions. For example, (a∧b)∧c, a trivector, is interpreted
as the oriented volume formed by sweeping the area a ∧ b

along vector c. The wedge product of k vectors is a k-blade,
and such a quantity is said to have grade k. A multivector
(the linear combination of objects of different grades) is a
homogeneous k-vector if it contains terms of only a single
grade k.

In this paper we will specify the geometric algebra Gn of
the n dimensional space by Gp,q,r, where p, q, and r stand
for the number of basis vectors that square to 1, -1, and 0,
respectively, and fulfill n = p + q + r. We will use ei to
denote the i− th basis vector, where 1 ≤ i ≤ n.

Any multivector can be expressed in terms of this basis.
The multivectors can be of grade 0 (scalars), grade 1 (vec-
tors), grade 2 (bivectors), grade 3 (trivectors), etc., up to
grade n (n-vectors).

Any pair of multivectors can be multiplied using the
geometric product. Consider two k-vectors Ar and Bs of
grades r and s, respectively. The geometric product of these
multivectors can be written as

ArBs = 〈AB〉r+s + 〈AB〉r+s−2
+ ...+ 〈AB〉|r−s|, (1)

where 〈〉t is used to denote the t-grade part of multivector,
e.g. consider the geometric product of two vectors

ab = 〈ab〉
0
+ 〈ab〉

2
= a · b+ a ∧ b. (2)

A. Conformal geometric algebra

Geometric algebra G4,1 = G4,1,0 can be used to treat
conformal geometry in a very elegant way. To see how this
is possible, we follow the same formulation presented in [6]
and show how the Euclidean vector space R

3 is represented
in R

4,1. This space has an orthonormal vector basis given by
{ei} and bivectors eij = ei ∧ ej . The bivector basis contains
the bivectors e23, e31 and e12 that corresponds to Hamilton’s
quaternions.

The unit Euclidean pseudo-scalar Ie = e1 ∧ e2 ∧ e3, the
bivector or Minkowski plane E := e4 ∧ e5 = e4e5 and a
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pseudo-scalar I = IeE are used for computing Euclidean and
conformal duals of multivectors. For more about conformal
geometric algebra see [5], [6].

1) The point: The vector xe ∈ R
3 representing a point

after a conformal mapping is rewritten as

xc = xe +
1

2
x2
ee∞ + e0, (3)

where the null vectors are the point at infinity e∞ = e4+ e5
and the origin point e0 = 1

2
(e4 − e5), with the properties

e2∞ = e20 = 0 and e∞ · e0=1.
2) Lines: Lines can be defined in its dual form or OPNS

(Outer Product Null Space), by the wedge product of two
conformal points and the point at infinity as

L∗ = xc1 ∧ xc2 ∧ e∞. (4)

The standard IPNS (Inner Product Null Space) form of the
line can be expressed as

L = nIe − e∞mIe, (5)

where n and m stand for the line orientation and moment,
respectively. The line in the IPNS standard form is a bivector
representing the six Plücker coordinates.

3) Pair of points: The pair of points is represented as

P ∗
p = p1 ∧ p2 (6)

and is obtained using the wedge product of the two points
that define the pair of points, p1 and p2. It can be obtained as
the intersection of a line and a sphere, a line and a circle or a
circle and a sphere. We can retrieve the points that compose
the pair of points using

p1,2 =
P ∗
p ±

(
P ∗
p · P ∗

p

)1/2

−e∞ · P ∗
p

. (7)

These entities are useful to represent the parts of a robotic
manipulator; for example, the line is used to express the joint
axes of each D.O.F. of the robot and the pair of points to
model the end-effector of the manipulator.

B. Rigid transformations

1) Reversion: The reversion of an r-grade multivector
Ar =

∑r
i=0

〈Ar〉i is defined as:

Ãr =
r∑

i=0

(−1)
i(i−1)

2 〈Ar〉i . (8)

The reversion can also be obtained by reversing the order
of basis vectors making up the blades in a multivector
and then rearranging them in their original order using the
anticommutativity of the Clifford product [5].

2) Translation: The translation of conformal geometric
entities can be done by carrying out two reflections in parallel
planes π1 and π2. That is,

Q
′ = (π2π1)︸ ︷︷ ︸

Ta

Q(π−1

1 π
−1

2 )︸ ︷︷ ︸
T̃a

, (9)

Ta = (n+ de∞)n = 1 +
1

2
ae∞ = e

a

2
e∞ , (10)

with a = 2dn, where n is the normal of both planes and d

is the Hesse distance from the origin to the plane.

3) Rotation: The rotation is the product of two reflections
at nonparallel planes that pass through the origin:

Q
′ = (π2π1)︸ ︷︷ ︸

Rθ

Q(π−1

1 π
−1

2 )︸ ︷︷ ︸
R̃θ

, (11)

or by computing the Clifford product of the normals of the
planes:

Rθ = n2n1 = cos(
θ

2
)− sin(

θ

2
)l = e

−
θ

2
l
, (12)

with l = n2 ∧ n1, and θ twice the angle between the planes
π2 and π1.

The screw motion, called motor, related to an arbitrary
axis L is

Mθ = TRT̃ (13)

and is applied in the same way as a rotor; that is,

Q
′ = (TRT̃ )︸ ︷︷ ︸

Mθ

Q(TR̃T̃ )︸ ︷︷ ︸
M̃θ

, (14)

Mθ = TRT̃ = cos(
θ

2
)− sin(

θ

2
)L = e

−
θ

2
L
, (15)

where L is an arbitrary axis defined by a normalized line.

III. KINEMATICS MODELING OF MANIPULATORS

The direct kinematics of a manipulator consists of calcu-
lating the position and orientation of the end-effector of a
serial robot using the values of the joint variables. The joint
variable is a translation Mi = Ti = e−dne∞ for a prismatic
joint and a rotation Mi = Ri = e

−θLr

2 for a revolute joint.
The direct kinematics for a serial robot is computed as a

successive multiplication of motors given by

Q
′ = M1 · · ·MnQM̃n · · · M̃1 =

(
n∏

i=1

MiQ

n∏

i=1

M̃i=n−i+1

)
.

(16)

This equation is valid for points (i.e., the position of the
end-effector), lines (i.e., the orientation of the end-effector),
planes, circles, pair of points and spheres.

The differential kinematics of the system results from the
differentiation of (16) for points and lines, and is given by

ẋ
′

p = Jxq̇ (17)

L̇
′

p = JLq̇

with q̇ = [q̇1 . . . q̇n], and

Jx =
[
x
′

p · L
′

1 . . . x
′

p · L
′

n

]
(18)

JL = [α1 . . . αn] (19)

where

L
′

j =

(
j−1∏

i=1

Mi

)
Lj

(
j−1∏

i=1

M̃j−i

)
(20)

αj =
1

2

(
L

′

pL
′

j − L
′

jL
′

p

)

and Lj is the axis for the jth joint in the initial position.
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Equations (17) is defined as the differential kinematics
of the manipulator. Again, as in the direct kinematics, our
method allows us to calculate the differential kinematics for
the pose of the manipulator with respect to one geometric
entity. It has been demonstrated in [9], that the calculus
of the Jacobian matrix for differential kinematics using the
geometric approach decrease the computational burden. In
that paper they rename the Jacobian matrix as V and it
is possible to get this matrix in O(Log2(n)) using parallel
computing and n2 threads. Please refer to [3] for a more
detailed explanation about the differentiation process.

IV. 3D POSE ESTIMATION

Next we describe a procedure to obtain the 3D pose
estimation for tracking and manipulation of the object. The
perception system consists of a stereo vision system (SVS)
mounted in a pan-tilt unit (PTU) as shown in figure 1(a).
First, a calibration process for the SVS is realized. This
process consists of retrieving the position and orientation
of the principal axis of the right camera with respect to the
principal axis of the left camera.

A. Line symmetry estimation via reflectional symmetry

(a) SVS mounted in a PTU used
to apply the proposed algorithm.
The frame reference is fixed in left
camera.

(b) Geometric entities in PTU

Fig. 1. Pan tilt unit

The procedure for pose estimation is based on a Fast
Reflectional Symmetry Detection algorithm proposed in [15],
[16]. In [17], the symmetry detection is combined with a
block motion detector to find the symmetry axis of an object
in motion, which is limited due to it is impossible to detect
static objects. Instead of this, a color-based segmentation
is proposed to solve this issue. The color segmentation is
performed in HSV color space (hue-saturation-value); this
color space is chosen due to its relative robustness to changes
in the environment’s illumination.

Once the image segmentation is obtained in each camera,
it is converted to an edge image using an appropriate edge
filter and after that the fast reflectional symmetry detection
is applied, obtaining a parametrization of the line given by
its angle and the radius or distance perpendicular to the line
symmetry (θ, r) (see figure 2).

Using the data obtained from camera calibration (for both
cameras), the line symmetry is transformed from the image

coordinates to camera coordinates, i.e. from R
2 → R

3 and
then create the line in conformal space as follows

L = cos(θ)e23 + sin(θ)e31 + re3 ∧ e∞ (21)

Notice that from eq. (21), line L lies in xy plane. Since
a rigid transformation [R, t] relates both cameras, we need
to define the line in both camera planes πcl and πcr (figure
1(b)). In order to obtain that, a motor M is constructed with
this transformation that relates the cameras. The lines are
then defined as follows:

Ll = L (22)

Lr = MLM̃ (23)

where Ll is the line of the left camera plane πcl and Lr is
from the right camera plane πcr.

To obtain the 3D line symmetry, it is necessary to get
the points at camera center which can be calculated from
calibration matrix. Without loss of generality, it is possible
to define the camera center of the left camera cl as the origin
and the right camera center cr as a translated origin (defined
by the rigid transformation M) i.e.

cl = eo (24)

cr = Me0M̃ (25)

With the lines and the image center points obtained, we
create two planes as follows

π∗
l = cl ∧ L∗

l (26)

π∗
r = cr ∧ L∗

r (27)

Finally, the symmetry line in 3D L3D is created by the
intersection of the planes

L3D = πl ∧ πr (28)

The figure 3 shows a general scheme of the idea presented.
To create the reference for the object manipulation, (28)

will be used as the orientation reference LMref . The sub-
script M is used to define manipulation. In order to calculate
a reference for the position, it is necessary to calculate a
point that lies in the line symmetry of the object, which

Fig. 2. Parameters obtained from fast reflectional symmetry detection
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(a) Top view

(b) Isometric view

Fig. 3. Schematic representation of 3D line symmetry estimation

will be found calculating its mass center. In each segmented
image the mass center is computed and the 3D point is
calculated using the parameters obtained in calibration. Once
this point is obtained, it is transformed to its conformal point
representation xMref .

In order to create the visual tracking reference of the
object, a line is defined using the mass center xMref and
left camera center cl, as shown in the previous section (as
in the manipulation reference the subscript V will be used
to define visual tracking).

L∗
V ref = xMref ∧ cl ∧ e∞. (29)

B. Real time results

The results obtained of the real time implementation are
presented in this section. The algorithm was developed using
C++ and a computer vision library called IVT (Integrating
Vision Toolkit) [18]. In order to obtain the line symmetry
in the plane images, the line is projected in this plane as
follows

Li,l = (L3D · πcl)π
−1

cl (30)

Li,r = (L3D · πcr)π
−1
cr (31)

where Li,l and Li,r are the line symmetry in the images
plane of the left and right camera respectively. The figure 4
shows the 3D line symmetry projected in the image plane
obtained using different objects.

V. SLIDING MODE CONTROLLER

In this section, the output tracking problem for the pose
of the end-effector of a manipulator will be solved using
the geometric algebra approach and the sliding mode control
method.

The figure 5 shows a general scheme for our case of
study. The control objective is to make the end-effector and

(a)

(b)

Fig. 4. Sequence of left camera images from real time implementation

reference poses equal by means of reconfiguring the structure
of robot kinematics through the actuators of the joints.

Fig. 5. MEXONE, humanoid robot of two 7-DOF robotic arm and a 2-DOF
head, for real time implementation.
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A. The pose tracking problem

Defining the following variables

x′
p = pose

we can obtain a state-space model from (17) as

ẋ′
p = Ju+ λ, (32)

where x′
p is the current pose of the end effector, u = q̇ is the

control term, the Jacobian matrix J is defined as in (18) and
adding a disturbance term λ (due to external perturbations,
model uncertainties and parameter variations).

Now, let xref be the reference for the pose of
the end-effector expressed in conformal algebra(xref =
[xMref , LMref ]

T ), and propose the sliding surface for the
controller as the tracking error variable of the form

s = x′
p − xref . (33)

We assume that the disturbance term λ is bounded by positive
scalar functions as

‖λ‖ < δ1 |s| . (34)

Then, the proposed controller is given by

u = −KJ+sign (s) , (35)

where J+ is the pseudo-inverse matrix of the Jacobian matrix
J and

K = diag
{

k1, . . . , k6
}

(36)

and k1, . . . , k6 are scalars.
The closed loop dynamics for the sliding surface S is given

by

ṡ = ẋ′
p − ẋref (37)

= Ju− ẋref + λ.

The stability conditions for (37) are given by

‖K‖ > ‖ẋref‖+ ‖λ‖ , (38)

which are the standard stability conditions for sliding mode
controllers. A detailed analysis for the aforementioned sta-
bility conditions can be found in [1], [12].

Due to the high frequency of the sliding mode controller,
its implementation in real time becomes difficult. For this
reason we will use the following definition:

Definition 5.1: The sign function can be approximated by
the sigmoid function as shown by the following limit:

lim
ǫ→∞

sigm (ǫ, S) = sign (S) . (39)
The sigmoid function that we used for this work is defined

by
sigm (ǫ, S) = tanh (ǫS) . (40)

Now, we define the difference between the sign function and
the sigmoid function as

∆(ǫ, S) = sign (S)− sigm (ǫ, S) , (41)

where ∆(ǫ, S) is a bounded function by

‖∆(ǫ, S)‖
2
≤ ξ, (42)

where ξ is a positive constant scalar.
The ∆(ǫ, S) value can be considered as a new disturbance

and is added to the value of λ. The stability conditions for
the controller using the sigmoid approximation are discussed
by González et al in [10].

Without loss of generality, the same control law can be
implemented in the PTU for object tracking using LV ref as
the reference.

VI. APPLIED CONTROLLERS

Consider the system shown in figure 5, which is composed
of a serial manipulator of 7-DOF. For a given target, the end-
effector of the 7-DOF manipulator must realize pose tracking
of the target. First, the kinematics model the manipulator is
defined. Then, the parameters of the proposed controllers are
determined. Finally, a simulation of the performance of the
closed-loop system is presented.

The pose control term for the 7-DOF manipulator is
defined as u =

[
q̇1 q̇2 q̇3 q̇4 q̇5 q̇6 q̇7

]T
and is

obtained via equation (35). The control gain was selected as
K = diag{7.5, . . . , 7.5}. The reference vector used was

xref = [−0.3 + 0.1 cos (2t) , 0.15, 0.25, 0, 1, 0]T , (43)

ẋref = [−0.2 sin (2t) , 0, 0, 0, 0, 0]T

Simulation Results

The simulation process was developed in two steps. First,
the differential kinematics model and the controllers for the
robotic system were programmed in MatLab [14] using our
own conformal geometric libraries, and the response for the
closed loop system was obtained. Then, the data of the joint
variables obtained from MatLab were used in a 3-D model
of the robotic system developed in CLUCalc [13], in order
to obtain a better visual appreciation of the behavior of the
closed loop system.
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Fig. 6. Euclidean components for the position and orientation of the end-
effector of the 7-DOF manipulator and their references.
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Fig. 7. Control values of joint velocities of the 7-DOF manipulator .
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Fig. 8. Angular position of the joints of the 7-DOF manipulator .

The previous figures shows the simulation response of the
pose tracking for the 7-DOF manipulator using the control
laws proposed. The figure 6 shows the tracking response for
the pose of the end-effector, the figure 7 depicts the control
values obtained and finally the joint position of each joint
are shown in the figure 8. It can be noted that the objective
of control is fulfilled. The real time implementation is shown
in the figure 9.

VII. CONCLUSIONS

A methodology for object pose estimation via reflectional
symmetry of objects, modeling and control of robotic manip-
ulators was developed using the conformal geometric algebra
framework. The pose for the manipulator was defined using
lines and points. This is impossible using vector calculus,
which shows the potential of the CGA. Moreover, a robust
controller based in sliding mode control was designed for
the tracking problem of the pose of the manipulator.

Fig. 9. Real time implementation of the proposed control law.
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