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Abstract: We address a new efficient robust optimisation approach to large-scale environmental 
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1 Introduction 

Numerical reconstructive image processing is now a mature 
and well developed research field, presented and detailed in 
many works, (see all the references). Although the existing 
theory offers a manifold of statistical and descriptive 
regularisation techniques for reconstructive imaging in 
many application areas there still remain some unresolved 
crucial theoretical-level and computational-level problems 
related to large scale sensor array or synthesised array  
real-time reconstructive image processing. In this study,  

as a particular application area, we consider the 
reconstructive Remote Sensing (RS) imaging with the use 
of array sensor systems, e.g., array radars (Haykin and 
Steinhardt, 1992; Shkvarko, 2002a, 2002b) or Synthetic 
Aperture Radars (SAR) (Henderson and Lewis, 1998; 
Mahafza, 2000). The particular problems that we are going 
to detail and treat in this paper relate to substantial reduction 
of the computational load of the recently developed 
optimal/suboptimal nonlinear Bayesian/regularisation  
image reconstruction procedures (Astola and Kuosmanen, 
1997; Haykin and Steinhardt, 1992; Henderson and  
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Lewis, 1998, Shkvarko, 2002a, 2002b, 2004a, 2004b; Starck 
et al., 1998) via performing their robustification aggregated 
with efficient real-time numerical implementation that 
employs the Neural Network (NN) computing. Three 
principal algorithmic-level and NN computational-level 
developments constitute major innovative contributions of 
this study, namely: 

1.1 First stage: Robustification of the FBR method 
At this level of study, we develop the robustified numerical 
version of the Fused Bayesian-Regularization (FBR) 
method (Shkvarko, 2002a, 2002b, 2004a, 2004b) for 
reconstruction of the power Spatial Spectrum Pattern  
(SSP) of the wave field scattered from the remotely  
sensing scene (that is referred to as a desired RS image 
(Shkvarko, 2002a, 2002b) given a finite set of array 
radar/SAR signal recordings. Since this is in essence a 
nonlinear numerical inverse problem, we propose to 
alleviate the problem illposeness by robustification of the 
Bayesian estimation strategy (Shkvarko, 2002a, 2002b; 
Starck et al., 1998; Stoica and Moses, 1997) via performing 
the non adaptive approximations of the reconstructive 
operators that incorporate the non-trivial metrics 
considerations for designing the proper solution space and 
differerent regularisation constraints imposed on a solution. 
Pursuing such an approach we develop the family of 
robustified versions of the FBR method of different 
computational complexity that we address as the robustified 
real-time RS image reconstruction algorithms. 

1.2 Second stage: Modification of NN computing 
scheme 

Here, we derive a numerical technique for efficient  
real-time computational implementation of the robustified 
RS image reconstruction/enhancement algorithms that 
employ the NN computing paradigm. In particular,  
we propose to employ the general Li’s architecture of the 
Hopfield-type dynamic NN detailed by Shkvarko (2001)  
but modify the specifications of the NN’s parameters  
(i.e., synaptic weights and bias inputs in all the NN’s loops, 
as well as the NN’s state update rule) to enable such  
the modified NN to perform the real-time robust image 
reconstruction/enhancement tasks. The new proposed 
method is addressed to as the aggregated robust regularised 
MENN (ARRMENN) technique. 

1.3 Third stage: Towards dynamic computing 
The last issue that we address as a perspective innovation  
is an idea of incorporating the concept of dynamic 
computing into the ARRMENN technique to enable the 
latter to reconstruct the desired environmental imagery 
taking into account dynamical behaviour of particular 
Remote Sensing Signatures (RSS). This provides a 
background for understanding the future trends in 
development of intelligent dynamic RS imaging and 
resource management techniques. 

2 Problem formalism 

2.1 RS-motivated problem model 
The generalised mathematical formulation of the problem 
considered in the present study is similar in notation and 
structure to that by Shkvarko (2002a, 2002b, 2004a, 2004b), 
and some crucial elements are repeated for convenience to 
the reader. Consider a remote sensing experiment performed 
with a coherent array imaging radar or SAR (radar/SAR) 
that is traditionally referred to as Radar Imaging (RI) 
problem (Henderson and Lewis, 1998; Shkvarko, 2002a, 
2002b, 2004a, 2004b). The measurement sensor/SAR data 
wavefield u(y) = s(y) + n(y) modelled as a superposition of 
the echo signals s and additive noise n and is assumed to be 
available for observations and recordings within the 
prescribed time-space observation domain Y ' y, where 
y = (t, p)T defines the time-space points in the observation 
domain Y = T × P . The model of the observation wavefield 
u is specified by the linear stochastic Equation of 
Observation (EO) of operator form (Shkvarko, 2002a, 
2002b): 

u = Se + n;    e ε E;    u, n ε U;    S: E → U (1) 

on the Hilbert signal spaces E and U with the metric 
structures induced by the inner products,  
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respectively, where asterisk stands for complex conjugate. 
In the EO (1), the S is referred to as the regular Signal 
Formation Operator (SFO). It defines the transform of 
random scattered signals e(x) ε E(X) distributed over the 
remotely sensed scene (probing surface) X ' x into the echo 
signals (Se(x))(y) ∈  U(Y ) over the time-space observation 
domain Y = T × P ; t ∈ T, p ∈ P . In the functional terms 
(Shkvarko, 2002a, 2002b; Starck et al., 1998), such a 
transform is referred to as the operator S : E → U that maps 
the scene signal space E (the space of the signals scattered 
from the remotely sensed scene) onto the observation data 
signal space U. The operator model of the stochastic EO (1) 
in the conventional integral form (Shkvarko, 2002a, 2002b) 
may be rewritten as 

( ) ( , ) ( ) ( ) ( ),
X

u S e d n= +∫y y x x x y  (3) 

( ) ( ; ) = ( , , )exp( 2 )
F

e e f e t j ft dt= − π∫x ρ,θ ρ θ  (4) 

where the functional kernel S( y, x) of the SFO S given by 
equation (1) defines the signal wavefield formation model 
(Mahafza, 2000). Following the multi-scale array/SAR 
radar RS problem phenomenology (Henderson and Lewis, 
1998; Shkvarko, 2002a, 2002b) we assume an incoherent 
nature of the backscattered field e(x) over the frequency-
space observation domain X = F × R = F × P × Θ; in the 
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slant range ρ ∈ P and azimuth angle θ ∈ Θ domains, 
respectively. When tackling the RS spatial analysis 
problems, the radar engineers typically work in the 
frequency-space domain, x = (f, ρ, θ )T ∈ X = F × P × Θ 
(Henderson and Lewis, 1998; Mahafza, 2000; Shkvarko, 
2002a, 2002b). However, because of the one-to-one 
mapping, only the spatial cross range coordinates r = (ρ, θ) 
may be associated with x as well (Mahafza, 2000).  
Such interpretation is valid if one assumes the narrowband 
system model (Doerry et al., 2002) and incoherent nature of 
the backscattered field e(x) (Mahafza, 2000). 

This is naturally inherent to the RS imaging experiments 
(Mahafza, 2000; Shkvarko, 2004a, 2004b) in which  
case the phasor e(f, r) in equation (4) is taken to be 
independent random variable at each frequency f,  
and spatial coordinates r, θ with the zero mean value  
and δ-form correlation function, RE(f, f′; r, r′) = < E(f , r*) 
E*(f′, r′) > = B(f, r) δ (f – f ′)δ (r – r′) that enables one to 
introduce the following definition of the Spatial Spectrum 
Pattern (SSP) of the wavefield sources distributed in the 
observation environment (Doerry et al., 2002) 
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Here, <·> represents the ensemble averaging operator,  
while Aver(2) is referred to as the second order  
(i.e., nonlinear) statistical averaging operator defined by 
equation (5). Also in equation (5), H(f) represents the given 
transfer function of the radar receiving channels that we 
assume to be identical for all antenna array elements and 
impose the conventional normalisation, |H(f )|2 = 1 for all 
frequencies f ∈ F in the radar receiver frequency integrating 
band F (Puetter, 1996). 

Following the described by Haykin and Steinhardt 
(1992) and by Shkvarko (2002a, 2002b), the initial RS 
imaging problem is stated as estimation ˆ( )B x  of the SSP 
B(r) over the remotely sensed scene R ' r by processing 
whatever values of measurements of the data u(y); y ∈ Y,  
are available. Next, following the RS methodology 
described by Shkvarko (2002a, 2002b), any particular 
physical signature of interest ˆ( )Λ x  could be extracted from 
the reconstructed RS image ˆ( )B x  applying the so-cold 
deterministic signature extraction operator Λ . Hence,  
the particular RSS is mapped applying Ëto the reconstructed 
image, i.e., 

ˆ ˆ( ) ( ( )).BΛ = Λx x  (6) 

Last, taking into account the RSS extraction model (6),  
we can reformulate now the signature reconstruction 
problem as follows: to map the reconstructed particular  
RSS of interest ˆ ˆ( ) ( ( ))BΛ = Λx x  over the observation  
scene X ' x by post-processing whatever values of the 
reconstructed scene image ˆ( )B x ; x ' X, are available.  

2.2 Projection-based numerical model of the 
problem 

Viewing it as an approximation problem leads one to the 
projection concept for a transformation of the continuous 
data field u(y) to the M × 1 vector U = (U1,…, UM )T of 
sampled spatial-temporal data recordings. The M-d 
observations in the terms of projections (Shkvarko, 2004a, 
2004b) can be expressed as 

( ) ( ) 1
( ) ( ) ( )

M

m mM U M m
u P u U φ

=
= = ∑y y y  (7) 

with coefficients Um = [u, hm]U where PU(M) represents a 
projector onto the M-d observation subspace (Astola and 
Kuosmanen, 1997) 

{ }
( ) ( )

( )mM U M
U P U Span φ= = y  (8) 

uniquely defined by a set of the orthogonal functions 
{φm(y) = ||hm(y)||–2hm(y); m = 1, …, M} that are related to 
{hm(y)} as a dual basis in U(M) i.e., [hm, φn]U = δmn ∀ m, 
n = 1, …, M. 

In the observation scene X ' x, the discretisation  
of the scattering field e(x) is traditionally performed  
over a Q × N rectangular grid where Q defines the 
dimension of the grid over the horizontal (azimuth) 
coordinate x1 and N defines the grid dimension over the 
orthogonal coordinate x2 (the number of the range gates 
projected onto the scene). The discretised complex 
scattering function is represented by coefficients (Shkvarko, 
2004a, 2004b) 

( , )
E =
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E =  [ , ] ( ) ( )d ;
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X
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1, , ,k K Q N= = ×…  of it decomposition over the grid 

composed of such identical shifted rectangular functions 
{gk(x) = g(q,n)(x) = 1 if x ∈ ρ(q,n)(x) = rect(q,n)(x1, x2) and 
gk(x) = 0 for other x ∉ ρ(q,n)(x) for all q = 1,…, Q; 
n = 1, …, N; k = 1, …, K = Q × N}. Hence, the K-d 
approximation of the scattering field becomes 
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1
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where PE(K) represents a projector onto the K-d signal 
approximation subspace  

EK = PE(K)E = Span{gk(x)} (10) 

spanned by K orthogonal grid functions (pixels) {gk(x)}. 
Using such approximations, we proceed from the 

operator form EO (1) to its conventional numerical (vector) 
form 

= + ,U SE N  (11) 

where U, N and E define the vectors composed of  
the coefficients Um, Nm and Ek of the finite-dimensional 
approximations of the fields u, n and e, respectively,  
and S is the matrix-form representation of the SFO  
with elements *{ [ , ] ( ( ))( ) ( ) ;m mmk k U k

Y

S Sg h Sg h d= = ∫ x y y y   
1, , ; 1, , }k K m M= =… … (Shkvarko, 2002a, 2002b). 
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Zero-mean Gaussian vectors E, N and U in equation (11) 
are characterised by the correlation matrices, RE, RN and 
RU = SRES

+ + RN, respectively, where superscript + 
defines the Hermitian conjugate when it stands with a 
matrix. Because of the incoherent nature of the scattering 
field e(x), the vector E has a diagonal correlation matrix, 
RE = diag{B} = D(B), in which the K × 1 vector of the 
principal diagonal B is composed of elements 

* ; 1, , .
k k k

B E E k K=< > = …  This vector B is referred to 
as a vector-form representation of the SSP, i.e., the SSP 
vector defined by Shkvarko (2002a, 2002b, 2004a, 2004b). 
Hence, using the model (6) the K-d approximation of the 
desired RS signature estimate 

( )
ˆ ( )

K
Λ x  as a continuous 

function of x ∈ X over the probing scene X is now 
expressed as follows 
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Analysing equation (12), one may deduce that in every 
particular measurement scenario (specified by the 
corresponding approximation spaces U(M) and E(K)) one  
has to derive the estimate B̂  of a vector-form 
approximation of the SSP that uniquely defines  
via equation (12) the approximated continuous 
reconstructed map 

( )
ˆ ( )

K
Λ x  of the desired RS signature 

distributed over the observed scene X ' x. Hence, the  
vector 

{ }ˆ ˆ( ); 1, ,
k

vec B k KΛ = Λ = …  (13) 

represents the numerical (vector-form) model of the 
reconstructed RS signature in the conventional pixel format. 
The latter is uniquely reconstructed from the original  
RS image B̂ . Thus, we may restrict our further study to 
reconstruction of the SSP vector B̂  that uniquely 
determines through equation (13) the resulting pixel-format 
map of the desired RS signature. 

2.3 Experiment Design(ED) considerations 

The Experiment Design (ED) aspects of this problem 
involving the analysis of how to choose (finely adjust) the 
basis functions {gk(r)} that span the signal representation 
subspace E(K) = PE(K)E = Span{gk} for a given observation 
subspace U(M) = Span{ϕm} were investigated in more details 
by Shkvarko (2002a, 2002b, 2004a, 2004b). Also, we 
employ here the ED considerations regarding the metrics 
structure in the solution space defined by the inner product 
(Shkvarko, 2004a, 2004b) 

2

( )
|| || [ ]

B K
=B B, MB  (14) 

where M is referred to as the metrics inducing operator. 
Hence, the selection of M provides the additional 
geometrical degrees of freedom of the problem model.  

In this paper, we incorporate the model of M that 
corresponds to the numerical approximation of the 
Tikhonov’s stabiliser of the second order that was 
numerically designed by Shkvarko (2004a, 2004b). Also, 
following the work of Shkvarko (2004a, 2004b),  
we incorporate the projection-type a priori information 
requiring, the SSP vector B satisfies the linear constraint 
equation 

GB = C, i.e., G–GB = BP (15) 

where BP = G–
C and G– is the Moore-Penrose (Mesarovic 

et al., 1995) pseudoinverse of a given projection operator G: 
B(K) → B(Q), and the constraint vector C ∈ B(Q) and the 
constraint subspace B(Q) (Q < K) are assumed to be given.  
In equation (15), the constraint operator G projects the 
portion of the unknown SSP onto the subspace where the 
SSP values are fixed by C. In practice, such limitations may 
specify the system calibration (Bell and Narayanan, 2001). 
The main purpose of this paper is to present the efficient 
real-time implementation techniques for the robustified 
(suboptimal) versions of the FBR optimal estimator derived 
previously by Shkvarko (2002a, 2002b, 2004a, 2004b) via 
performing the relevant array data processing. Thus we limit 
our study here to the implementation aspects of the SSP 
estimation problem via performing the robustification of the 
FBR method (Shkvarko, 2002a, 2002b, 2004a, 2004b) for 
the generalised model (3) of the SSP of the wavefield 
sources collected (integrated) over the prescribed frequency 
observation band. Such a generalisation distinguishes the 
present study from the frequency independent SSP 
estimation that was considered by Shkvarko (2002a, 2002b, 
2004a, 2004b).  

3 FBR method 

The estimator that produces the optimal estimate B̂  of the 
SSP vector via processing the M-D data recordings U 
applying the FBR estimation strategy that incorporates  
nontrivial a priori geometrical and projection-type  
model information was developed in our previous study 
(Shkvarko, 2004a, 2004b). Such optimal FBR estimate of 
the SSP is given by the nonlinear equation (Shkvarko, 
2004a, 2004b) that we generalise here for the case of the 
integrated SSP model as follows 

0
ˆ ˆ ˆ ˆ( ( )}.p + + −B = B PB W B V B Z B){ ( )  (16) 

In equation (16), BP is defined by equation (15) and  
B0 represents the a priori SSP distribution to be considered 
as a zero step approximation to the desires SSP B̂ .  
Note that in this paper, we use all the notations used  
by Shkvarko (2004a, 2004b) for definitions of the sufficient 
statistics (SS) vector ˆ ˆ ˆ( )={ ( ) ( )}

diag
+ +

V B F B UU F B ({.}diag 

determines a vector composed of the principal diagonal  
of the embraced matrix), the solution-dependent  
SS formation operator 
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+ 1 1 + 1ˆ ˆ ˆ= ( ) = ( )( + ( )) ,− − −
N N

F F B D B I S R SD B S R  (17) 

the SS shift vector ˆZ B( ) (Shkvarko, 2004a, 2004b),  
and the composite solution-dependent smoothing-projection 
window operator (Shkvarko, 2004a, 2004b) 

ˆ ˆ( ) = ( )
W

W B P BΩ  (18) 

with the projector 

= ( )−−
W

P I G G  (19) 

and solution dependent smoothing window 
+ + 2 1ˆ ˆ ˆˆ( ) = ( {{ } }+ ( ) ( ))

diag
diag α −

B S F FS D B M BΩ  (20) 

in which the regularisation parameter α̂  is to be adaptively 
adjusted using the system calibration data (Shkvarko, 
2004a, 2004b). 

Next, applying the signature extraction model defined 
by equation (13) we get the final FBR-optimal estimate of 
the desired RSS in the numerical (discrete pixel) format 

0
ˆ ˆ ˆ ˆ ˆ= ( ) = ( + + ( ){ ( ) ( )}).

P
Λ Λ Λ −B B PB W B V B Z B (21) 

As it is obvious from the nonlinearity of equations (16), 
(21), because of the complexity of the solution dependent 
K-D operator inversions needed to be performed to compute 
the ˆSS ( ), V B  the window ˆ( )W B  and SS shift ˆ( ),Z B   
the computational load of the original optimal FBR  
estimator (16), (21) is extremely high to address that as a 
practically realisable estimator of the SSP and RS signatures 
(i.e., practical highresolution RS radar imaging and 
signature mapping technique realisable to operate in  
a real-time mode). 

4 Robust FBR-based techniques 

4.1 FBR-robustified estimators 
In this subsection, we propose the robustification scheme 
for real-time implementation of the FBR estimator (16), 
(21) that enables one to reduce drastically the computation 
load of the image formation procedure without substantial 
degradation in the resolution and overall image 
performances. We propose the robustified version of the 
FBR estimator (referred to as Robust Reconstructive 
Filtering (RRF) method) via roughing PW = I and 
performing the robustification (nonadaptive approximation) 
of both the SS formation operator ˆ( )F B and the smoothing 
window ˆ( )Ω B  in (16) by roughing ˆ( ) ,β≈D B D = I   
where β represents the expected a priori image grey level  
(Shkvarko, 2004a, 2004b). Hence, the robustified SS 
formation operator 

1 1( ) with ( ) +ρ ρ ρ− + + −= =F A S A S S I  (22) 

becomes the regularised inverse of the SFO S  
with regularisation parameter ρ–1, the inverse of the  
Signal-to-Noise Ratio (SNR) ρ = β/N0 for the adopted  

white noise model, RN = N0I. The robust smoothing 
window 

1
0

(w −= =W I + M)Ω  (23) 

is completely defined now by the matrix M that induces  
the metrics structure in the solution space (Shkvarko  
et al., 2001) with the scaling factor w0 = tr{S

+
F

+
FS}/K. 

Note that such robustified W can be pre-computed  
a priori for a family of different admissible ρ as it was 
performed in the previous study (Shkvarko, 2004a, 2004b). 
Here, we adopt practical constraints of high SNR 
operational conditions (Bell and Narayanan, 2001),  
ρ >> 1, in which case one can neglect also the constant  
bias Z = Z0I in equation (16) because it does not affect the  
pattern of the SSP estimate (it influences only the  
constant gray level in the resulting solution but Z0 << β  
for ρ >> 1). Following these practically motivated 
assumptions, the resulting RRF estimators for the SSP  
and RSS become 

0 0
ˆˆ , ( )

RRF RRF
= + Λ = Λ +B B V B VΩ Ω  (24) 

correspondingly, where V = {FUU
+ F+}diag represents now 

the robust (solution independent) SS vector. Thus, the 
principal computational load of the RRF estimator (24) is 
associated now with the operator inversions required  
to compute the solution operator (17) for adaptively 
(recurrently) adjusted regularisation parameter ρ. 

4.2 Robust matched spatial filtering algorithm 
The simplest rough SSP and RSS estimators can be 
constructed as further simplification of equation (24) if we 
adopt the trivial a priori model information (PW = I and 
B0 = 0I) and roughly approximate the SS formation operator 
F by the adjoint SFO, i.e., 

+
0

γ≈F S  (25) 

where the normalising constant γ0 provides balance of the 
operator norms 2 1

0
tr { } tr{ }γ − + += + +

S SS S FSS F  (Bell and 
Narayanan, 2001). In that case, the estimators (24) are 
simplified to their rough versions 

ˆˆ , ( )
MF MF

= Λ = ΛB H HΩ Ω  (26) 

respectively, where the rough SS, ∏ 2
0 diag

= { } ,γ + +
S UU S  is 

now formed applying the adjoint operator S
+, and the 

windowing of the rough SS Π is performed applying the 
smoothing filter 1

0
( )w −= I M+Ω  with the nonnegative 

entry, the same one as was constructed numerically by 
Shkvarko (2004a, 2004b). Equation (26) can be referred to 
as Matched Filtering (MF) algorithms for estimation of the 
SSP and RSS, respectively. This definition will become 
apparent from the following explanation. Observe,  
that equation (26) is recognised to be a vector-form 
representation of the conventional kernel SSP estimation 
algorithm (Henderson and Lewis, 1998), in which the SS is 
formed as the squared modulus of the outcomes of the 
matched spatial filter applied to the recorded data signal 
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(trajectory signal in the SAR terminology (Henderson and 
Lewis, 1998; Mahafza, 2000)). Thus, in the framework of 
the FBR inference-based approach to RS imaging 
(Shkvarko, 2002a, 2002b), the traditional MF technique 
(26a) can be viewed as a rough simplified version of the 
derived above RRF algorithm (24) with its corresponding 
generalisation (26) for the case of the RSS estimator.  
In view of this, in the presented family of the SSP and RSS 
estimators, we specify equation (26) as the rough MF 
method for SSP and RSS estimation, whereas we  
refer to (24) as the suboptimal Robust Reconstructive  
Filtering (RRF) enhanced imaging method, and, finally,  
we refer to equations (16) and (21) as the complete  
FBR-optimal or Adaptive Reconstructive Filtering (ARF) 
techniques for numerical reconstruction of the SSP and 
RSS, respectively. 

5 ARRMENN method 

5.1 NN-based computing scheme 
In this Section, we propose the NN-based computing 
scheme for efficient real-time implementation of the above 
presented RRF method. The main idea is to aggregate the 
robust regularisation with the NN-based computing to 
reduce the computational load of the RRF method.  
We approach this goal by performing the modifications of 
the multistate Hopfield-type modified maximum entropy 
NN (MENN) originally developed by Shkvarko et al. 
(2001). The modification that we perform is aimed at 
enabling such the NN to implement computationally the 
RRF algorithm (24). Borrowing from the work of Shkvarko 
et al. (2001) we define the Hopfield-type NN as a massive 
interconnection of formal neurons, i.e., basic processing 
units. The outputs of all K neurons compose the output 
vector, sgn( ),= +z Qv Θ  where, Q represents the K × K 
matrix of the interconnection strengths of the NN, and Θ 
defines the K-d bias vector of the NN (Shkvarko et al., 
2001). The output vector z is used to update the state  
vector v of the network: '' '= + ∆v v v  where, ∆v = ℜ(z) 
represents a change of the state vector v computed applying 
the state update rule ℜ(z), the same one as was originally 
designed by Shkvarko et al. (2001), where the superscripts ″ 
and ′ correspond to the state values before and after network 
state updating, respectively. The state update rule ℜ(z) is 
designed in a way (Doerry et al., 2002) that the energy 
function of the NN 

T T1
( ) min

2NN
E = − − →

v

v v Qv vΘ  (27) 

is decreased at each updating step, i.e., ENN (v″) ≤ ENN (v′), 
until the NN reaches its stationary state (saddle point) 
related to the state vopt at which the minimum of the NN 
energy is attained, i.e., 

NNv
 ( ) = min ( )

optNN
E Ev v . 

Analysing now the behaviour of such the NN we may 
associate the NN’s stationary state with the solution to the 
hypothetical Inverse Problem (IP) of minimisation of the 
composite cost function 

2
1 2

1 1
( | ) || || || || .

2 2IP
E λ λ= − +2

Y U SY Yλ  (28) 

5.2 MENN computing for implementing the 
ARRMENN 

Following the theory developed by Shkvarko et al.  
(2001), we adjust the regularisation parameters in equation 
(28) as, λ1 = 1, λ2 = ρ–1, in which case the NN’s stationary  
state is associated with the Maximum Entropy (ME) 
solution to equation (27) (Shkvarko, 2002a, 2002b),  
thus the minimisation of EIP(Y|λ) provides the robust 
regularised constraint least square estimate Y = FU that 
uniquely defines the desired high-resolution SSP vector 
V = {YY

+}diag. Hence, the cumbersome operator inversions 
needed to compute the SS formation operator (22) are now 
translated into the problem of recurrent minimisation  
of the energy function (27) of such modified MENN and 
derivation of Y = vopt via specification of the MENN’s 
parameters as follows  

*
1 2

1

for all , 1, ,
K

jiki jk ki
j

S S k i Kλ λ δ
=

= − − =∑Q …  (29) 

and 

1
1

for all 1, , ,
K

jk jk
j

S U k Kλ
=

= =∑ …Θ  (30) 

where Qki and Θk represent the elements of the 
interconnection strengths matrix Q and bias vector Θ  
of the modified MENN, respectively. Observe that because 
of the exclusion of the solution-dependent operator 
inversions (17), (22) via translations (28) of the SS 
formation procedure into the relevant recurrent problem of 
minimisation of the MENN’s energy function (27) 
associated with the relevant EIP (Y|λ) (28) the 
computational load of the resulting ARRMENN procedure 
(27), (28) is drastically decreased in comparison with the 
fully optimal FBR algorithm (16). 

In the simulation applications (reported in the 
subsequent Section) related to reconstruction of the  
1024-by-1024-pixel format 256-scaled environmental 
images, the computation load of the RS enhanced imaging 
with the ARRMENN algorithm (27), (28) that incorporates 
the proposed above MENN computational scheme in 
comparison with the original FBR method (16) was 
decreased approximately 105 times and required 0.38 sec of 
the overall computational time (i.e., real-time mode) for 
implementing the ARMENN technique (26)–(28) with the 
SONY¤ VAIO¤VGN-A190 PC. 

6 Towards dynamical computing for RSS 
reconstruction 

6.1 RSS linear dynamic model 
The crucial issue in application of the modern dynamic filter 
theory (Falkovich et al., 1989; Villalon-Turrubiates, 2006) 
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to the problem of reconstruction of the desired RSS in 
evolution time is related to modelling of the RSS as a 
random field (i.e., spatial map developing in time t) that 
satisfies some dynamical state equation. Following the 
typical linear assumptions for development of the RSS in 
time (Falkovich et al., 1989; Villalon-Turrubiates, 2006), 
we represent its dynamical model in a vectorised space-time 
form defined via the following stochastic differential state 
equation of the first order 

( )
( ) ( ), ( ) ( )

d t
t t t t

dt
= + =

z
Fz G Czξ Λ  (31) 

where z(t) is the so-called model state vector; C defines a 
linear operator that introduces the relation between the RSS 
and the state vector z(t), and ξ(t) represents the white model 
generation noise vector characterised by the statistics, 
〈ξ(t)〉 = 0 and 〈ξ(t)ξT(t′)〉 = Pξ(t)δ(t – t′) (Falkovich et al., 
1989). Here, Pξ(t) is referred to as state model disperse 
matrix (Falkovich et al., 1989) that characterises the 
dynamics of the state variances developed in a continuous  
time t (t0 → t) starting from the initial instant t0. Next,  
the dynamic model equation that states the relation between 
the time-dependent SSP (actual scene image) B(t) and the 
desired RSS map ( )tΛ  can be represented in the following 
form (Falkovich et al., 1989) 

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( );

( ) ( ).

t t t t t t t

t t

= + = +

=

B LC z H z

H LC

v v
 (32) 

Here, we introduced the linearised approximation L  
(i.e., first order matrix-form approximation (Villalon-
Turrubiates, 2006)) to the inverse of the RSS operator 

ˆ( ( ))B rΛ  and generalised (32) for the case of dynamical  
(i.e., time-dependent) RSS and SSP models. The stochastic 
differential model (31), (32) allows now to apply  
the theory of dynamical filters (Falkovich et al., 1989;  
Villalon-Turrubiates, 2006) to reconstruct the desired  
RRS in current time incorporating the a priori model 
dynamical information about the RSS. The aim of the 
dynamic filtration is to find an optimal estimate of the 
desired RSS, ˆ ˆ( ) ( )t t= CzΛ , developed in current  
time, t (t0→t), via processing the reconstructed image 
vector ˆ( )tB  (i.e., the reconstructed SSP developed in time) 
taking into considerations the a-priori dynamic model  
of the desired RSS specified through the state equation (31). 
In other words, one has to design an optimal dynamic  
filter that when applied to the reconstructed image ˆ( )tB  
(specified by the dynamic image model (32)) provides  
the optimal estimation of the desired RSS map 
ˆ ˆ( ) ( )t t= CzΛ , in which the state vector estimate (̂ )tz  

satisfies the a-priori dynamic behaviour modelled by  
the stochastic dynamic state equation (31). The canonical 
discrete-time solution to equation (31) in state variablesis  
(Villalon-Turrubiates, 2006) 
 
 
 
 

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( );

i i i i i

i i i

+ = +

=

z z

C z

Φ Γ ξ

Λ
 (33) 

where ( ) ( ) ;
i

i t t= ∆ +F IΦ  ( ) ( ) ,
i

i t t= ∆GΓ  and t∆  
represents the time sampling interval for dynamical 
modelling of the RSS in discrete time. Next, we specify the 
statistical characteristics of the a-priori information in such 
a discrete time scale (Falkovich et al., 1989). These are as 
follows: 

• generating noise model 
〈 〉 = 0 〈 〉 ={ ( )} : ( ) ; ( ) ( ) ( , )i i i j i jΤ

P
ξ

ξ ξ ξ ξ  

• data noise ( )} : ( )i kν ν{ 〈 〉 = ;0  

( ) ( ) ( , );i j i jΤ
νP〈 〉 =v v  (34) 

• state vector 
zP{ ( )} : (0); (0)T

zk 〈 (0)〉 = 〈 (0) (0)〉 =z z m z z  

where 0 argument implies the initial state for initial time 
instant, i = 0. For such model conventions, the disperse 
matrix Pz(0) satisfies the following disperse dynamic 
equation (Villalon-Turrubiates, 2006) 

T

T T

( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( ) ( ).

z i i i

i P i i i i i

+ = 〈 + + 〉

= +
z

P z z

P
ξ

Φ Φ Γ Γ
 (35) 

6.2 Dynamic RSS reconstruction 
The problem now is to design an optimal decision procedure 
(optimal filter) that, when applied to all reconstructed 
images ˆ{ ( )}iB  (ordered in a discrete time i, (i0 → i)), 
provides an optimal solution to the desired RSS represented 
via the estimate of the state vector state vector z(i) subject 
to the numerical dynamic model (33). To proceed with 
derivation of such a filter, we first represent the state 
equation (31) in discrete time i, (i0 → i): 

( 1) ( ) ( ) ( ) ( ).i i i i i+ = +z zΦ Γ ξ  (36) 

Next, according to this dynamical model, the anticipated 
mean value for the state vector can be expressed as 

〈 〉 = 〈 〉ˆ( +1) ( 1) ( 1) | ( ) .z i i i i= + +m z z z  (37) 

The mz(i + 1) is considered as the a-priori conditional  
mean value of the state vector for the (i + 1)st estimation 
step, thus from equations (36), (37) we obtain 

〈 〉 + 〈 〉ˆ ˆ ˆ( +1)= ( ) | (0), (1), , ( ) ( )

(̂ ).

z i i i i

i=

m z B B B

z

…Φ Γ ξ

Φ  (38) 

and the prognosis of the mean value becomes, 
ˆ( 1)= ( )z i i+m zΦ . From equations (36) – (38) one may 

deduce that given the fact that the particular reconstructed  
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image ˆ( )iB  is treated at discrete time i, it makes  
the previous reconstructions ˆ ˆ ˆ{ (0), (1), ( 1)}i −B B B…  
irrelevant, hence the optimal filtering strategy is reduced to 
the dynamical one-step predictor. Thus, using these 
derivations, we next modify the dynamical estimation 
strategy to such one-step optimal prediction procedure as 
follows,  

ˆ ˆ ˆ ˆ(̂i+1)= ( 1) | (0), (1), , ( ), ( 1)

ˆˆ( 1) | ( ); ( 1)

ˆ( 1) | ( 1); ( 1) .z

i i i

i i i

i i i

+ +

= + +

= + + +

z z B B B B

z z B

z B m

…〈 〉

〈 〉

〈 〉

 (39)

 

Hence, for the current (i + 1)-st discrete-time prediction-
estimation step, the dynamical RSS estimate (32) becomes 

ˆ( +1)= ( +1) ( +1)+ ( +1)i i i iB zΗ v  (40) 

with the a-priori predicted mean (37) for the desired state 
vector. Applying now the Wiener minimum risk strategy 
(Villalon-Turrubiates, 2006) to solve equations (40) with 
respect to the state vector z(t) and taking into account the a 
priori information summarised by equation (34), we obtain 
the dynamic solution for the RSS state vector 

ˆ(̂ +1) = ( 1) ( 1)[ ( 1)

( 1) ( 1)]

i i i i

i i

+ + + +

− + +

z

z

z m B

H m

Σ
 (41) 

where the desired dynamic filter operator Σ(i + 1) is 
defined as follows, 

T 1

11

T 1

( 1) ( 1) ( 1) ( 1);

( 1) ( 1) ( 1) ;

( 1) ( 1) ( 1) ( 1).

i i i i

i i i

i i i i

−

−−

−

+ = + + +

  ¯+ = + + +¢ ±
+ = + + +

z

K H P

K P

H P H

Σ

Σ Σ

Σ

Σ

Ψ

Ψ

v

v

 (42) 

Last, using the derived filter equations (41), (42) and the 
initial RSS state model given by equation (33), we finally 
obtain the optimal filtering procedure for dynamic 
reconstruction of the desired RSS map in the current 
discrete time i = 0, 1,… 

ˆ ˆˆ( 1) ( ) ( ) ( 1)[ ( 1)

ˆ( 1) ( ) ( )]; 0,1,

i i i i i

i i i i

+ = + + +

− + =

z B

H z …

Λ Φ Σ

Φ
 (43) 

with the initial condition, ˆ ˆ(0) { (0)}= BΛ Λ , and a priori 
statistics specified by equation (34). Figure 1 shows the 
information flow diagram that illustrates the overall fused 
procedure for RSS reconstruction and dynamic filtration.  
As a primary part, the SSP image reconstruction is to be 
performed. Next, the desired particular RSS map is to be 
reconstructed in a dynamic fashion. All necessary 
algorithmic details for computational implementation of 
such fused dynamical SSP-RSS reconstruction were 
explicitly specified in this section and in two previous 
sections. The crucial issue to note here is related to model 
uncertainties regarding the particular employed dynamical 
RSS model (33), hence the corresponding uncertainties 

regarding the overall dynamically reconstructed RSS.  
These issues require more investigations and are the matter 
of further studies. 

7 Computer simulation experiment 

7.1 Simulation experiment specifications 
We simulated a conventional side-looking SAR as particular 
sensor system with the fractionally synthesised aperture i.e., 
the array was synthesised by the moving antenna.  
The SFO of such a SAR is factored along two axes  
in the image plane (Shkvarko, 2004a, 2004b): the azimuth 
(horizontal axis, x1) and the range (vertical axis, x2). In the 
simulations, we considered the conventional triangular  
SAR range Ambiguity Function (AF) 

2
( )r xΨ  and Gaussian 

approximation, i.e., 
1

( )r xΨ  = exp(–(x1)2/a2), of the SAR 
azimuth AF with the adjustable fractional parameter  
a (Shkvarko, 2004a, 2004b). Note that in the RS imaging 
the AF is referred to as the continuous-form approximation 
of the ambiguity operator matrix += S SΨ  and serves  
as an equivalent to the point spread function in the 
conventional image processing terminology (Kang and 
Katsaggelos, 1995; Starck et al., 1998). In this paper,  
we present the simulations performed with the real-world 
256-scaled RS images of 1024-by-1024-pixel format  
(south-west Guadalajara region, Mexico (Shkvarko and 
Villalon-Turrubiates, 2005). In the reported simulations,  
the resolution cell along the x2 direction was adjusted to the 
effective width of the range AF for the both simulated 
scenarios. In the x 1 direction, the fractional parameter a was 
controlled to adjust different effective widths 

1
( )a x∆Ψ  of 

the azimuth AF. 

7.2 Quality metric 
For the purpose of objectively testing the performances of 
different ARRMENN related SSP and RSS estimation 
algorithms, a quantitative evaluation of the improvement in 
the estimates (gained due to applying the suboptimal and 
optimal IFOs F(1) and F(3) instead of the adjoint operator 
F

(2) = S+) was accomplished. In analogy to image 
reconstruction (Puetter, 1996; Shkvarko, 2004a, 2004b),  
we use the quality metric defined as an improvement.  
In the Output Signal-to-Noise Ratio (IOSNR) 
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( ) 1
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1
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∑
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where Bk represents a value of the kth element (pixel) of the 
original SSP B, ˆMF

k
B  represents a pixel value of the kth 

element (pixel) of the rough SSP estimate ( )ˆ ˆ, RRF
MF k

B B  
represents a value of the kth pixel of the suboptimal SSP 
estimate ( )ˆ ˆ, and ARF

RRF k
B B  corresponds to the kth pixel 
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value of the SDR-optimised SSP ARF , respectively. 
IOSNR(RRF) corresponds to the RRF estimator and 
IOSNR(ARF) corresponds to the ARF method. According to 

(44), the higher the IOSNR, the better the improvement in 
the SSP estimate is, i.e., the closer the estimate is to the 
original SSP. 

Figure 1 Block diagrams of the image and RSS reconstruction and dynamical post-processing techniques 
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7.3 Simulation results with image reconstruction 
Figure 2(a) shows the high-resolution image of the original 
scene borrowed from the RS imagery provided with the 
super-resolution SAR (Shkvarko and Villalon- Turrubiates, 
2005). The simulations of conventional-resolution (i.e., 
fractionally synthesised) SAR imaging and computer-aided 
image enhancement that employ the IFOs given by (26), 
(22) and (17) are displayed in Figures 2(b)–(d), respectively. 
The enhanced images presented in Figures 2(c) and (d)  
were numerically reconstructed from the rough image of 
Figure 2(b) for the case of white Gaussian observation noise 
with the Signal-to-Noise Ratio (SNR) µ = 20 dB and the 
fractional parameter a adjusted to provide the horizontal 
width 

1
( )a x∆Ψ  of the discretised azimuth AF 

1
( )a x∆Ψ   

at a half of its peak level equal to 16 pixels. Figure 3 shows 
the extraction of physical characteristics using the RSS 
linear dynamic model. In Table 1, we report the IOSNRs (in 
the dB scale) gained with the derived above RRF and ARF 
enhanced imaging algorithms for typical SAR system 
models that operate under different SNRs levels µ for two 
typical operation scenarios with different widths of the 
fractionally synthesised apertures: 

1
( ) 16a x∆Ψ =  pixels 

(first system) and 
1

( ) 32a x∆Ψ =  pixels (second system). 
The higher values of IOSNR(RRF) as well as IOSNR(ARF) were 
obtained in the second scenario. Note that IOSNR (31) is 
basically a squire-type error metric. Thus, it does not qualify 
quantitatively the ‘delicate’ visual features in the images, 
hence, small differences in the corresponding IOSNRs 
reported in Table 1. In addition, both enhanced estimators 
manifest the higher IOSNRs in the case of more smooth 
azimuth AFs (larger values of . 

1
( )a x∆Ψ ) and higher SNRs 

µ. The advantage of the ARRMENN reconstructed images 
(cases ˆ

RRF
B  and ˆ

ARF
B ) over the conventional case ˆ

MF
B  is 

evident. Due to the performed regularised SFO inversions 
the resolution was improved in the both cases, ˆ

RRF
B  and 

ˆ ,
ARF

B  respectively. 
For the ARRMENN-optimised reconstructed SSP, 

ˆ ,
ARF

B  in addition, the ringing effects were reduced, while 
the RRF robustified estimator with the IFO given by 
equation (22) did not require adaptive iterative computing, 
thus resulted in the processing with substantial reduced 
computational load (e.g., in the reported simulations, the 
RRF algorithm required approximately 40 times less 
computations than the ARF (17) computationally 
implemented with the ARRMENN algorithm (26)).  
These results qualitatively demonstrate that with some 
proper adjustment of the degrees of freedom in the general  
FBR-optimised estimator (16), one could approach the 
quality of the optimal FBR reconstructive imaging method 
avoiding the cumbersome adaptive computations. Such an 
optimisation is a matter of the further studies. 

7.4 Simulation results with RSS dynamical filtration 

In Figures 3(a)–(e), we present some simulation results of 
dynamic reconstruction-filtration of a particular RSS that 
represents the so-called Integral Hydrological Index (IHI) 
map extracted from the reconstructed images ˆ{ }B . 

Figure 2 Simulation results of SSP reconstruction of the SAR 
data: (a) original super-high resolution scene image 
(not observed in the imaging experiment);  
(b) low-resolution scene image formed applying the 
MF method; (c) scene image enhanced with the RRF 
method computationally implemented with the 
ARMENN algorithm and (d) the same scene image 
optimally enhanced applying the ARF method 
computationally implemented with the ARMENN 
algorithm 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 3 Simulation results of post-processing and dynamical 
filtration of the RSS using SAR data: (a) integral 
hydrological index (IHI) map extracted from the  
low-resolution image 2(b); (b) dynamics for a 
particular zone of the IHI map extracted from image 
3(a); (c) IHI map extracted from the reconstructed 
image 2(c); (d) dynamics for the same particular zone 
of the IHI map extracted from image 3(c); (e) IHI map 
extracted from the reconstructed image 2(d) and  
(f) dynamics for the same particular zone of the IHI 
map extracted from image 3(e) 

 
(a) 

 
(b) 

 
(c) 

Figure 3 Simulation results of post-processing and dynamical 
filtration of the RSS using SAR data: (a) integral 
hydrological index (IHI) map extracted from the  
low-resolution image 2(b); (b) dynamics for a 
particular zone of the IHI map extracted from image 
3(a); (c) IHI map extracted from the reconstructed 
image 2(c); (d) dynamics for the same particular zone 
of the IHI map extracted from image 3(c); (e) IHI map 
extracted from the reconstructed image 2(d) and  
(f) dynamics for the same particular zone of the IHI 
map extracted from image 3(e) (continued) 

 
(d) 

 
(e) 

 
(f) 
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Table 1 IOSNR values provided with the two simulated 
methods: RRF and ARF results are reported for two 
SAR system models with different  resolution 
parameters and different SNRs 

First system,  
∆Ψ = 16 (dB) 

Second system,  
∆Ψa = 32 (dB) SNR, µ 

(dB) IOSNR(RRF) IOSNR(ARF) IOSNR(RRF) IOSNR(ARF) 
15 2.24 3.20 2.62 3.89 
20 3.34 4.32 4.47 5.78 
25 4.20 5.12 5.31 7.42 
30 5.55 6.24 6.45 9.19 

The particular reported simulations are specified in the 
figure captures. The IHI map is extracted from the original 
brightness reconstructed image applying the truncated  
(two-edge) histogram filter operator with the empirically 
adjusted lower threshold thL and upper threshold thU. 
Within the truncation interval (thU – thL), the IHI extraction 
operator provides homogeneous translation (Henderson and 
Lewis, 1998) of the scaled reconstructed images ˆ{ }B  in to 
the RSS map ˆ{ }.Λ  

In the particular reported here simulations, based on the 
previously gained experience by Villalon-Turrubiates  
(2006), the thresholds were adjusted as follows, thL = 60 
pixels and thU = 200 pixels of the 256 pixel scale of greys.  
Following Henderson and Lewis (1998), the ‘mirror 
reflected’ inverse truncated histogram filter was used as an 
approximation to the RSS extraction operator L in the 
dynamic model of the RSS reconstruction filter specified in 
Section 6. 

As the purpose of the experimental study was to 
investigate the possibility to perform the dynamic RSS 
filtering in the realistic conditions of minimum prior model 
knowledge regarding the dynamical behaviour of the 
particular RSS, the dynamic IHI information was robustified 
to the simplest maximum entropy model (Henderson and 
Lewis, 1998) of the transfer matrix ( )i = IΦ  with 
initialising assumptions, (0)(0) = , =

z
P I P Iν . 

The dynamical reconstructions were performed 
iteratively applying the algorithm (43) to the images 
reconstructed with three different algorithms, MF, RRF and 
ARRMENN, respectively. These served as particular input 
data for algorithm (43), i.e., 

(1) (1)ˆ ˆ ˆ(0) { (0) },
MF

= Λ =B BΛ  

(2) (2)ˆ ˆ ˆ(0) { (0) }, and
RRF

= Λ =B BΛ  

(3) (3)ˆ ˆ ˆ(0) { (0) }, respectively.
ARF

= Λ =B BΛ  

Also, in Figure 3(b–d) and (f), we present the simulation 
results of the dynamics for the IHI maps extracted from the 
MF, RRF and ARF reconstructed images, respectively.  
The reported optimally filtered IHIs are indicative of the 
dynamical behaviour of the RSS. The RSS filtered from  
the previously enhanced images using the dynamical filter 
fused with the ARRMENN reconstruction related to the 

ˆ
RRF

B  and ˆ
ARF

B  over the RSS dynamics extracted from the 
rough images ( ˆ

MF
B ) is evident. The IHI map and the 

indexes dynamics are much more detailed in both cases. 
Also, the dynamical reconstructions performed 

iteratively applying the algorithm (43) resulted in the 
processing with substantial reduced computational load.  
The reported results qualitatively demonstrate that with 
proper adjustment of the degrees of freedom in the general 
algorithm (43), one could predict the dynamic behaviour of 
the IHI maps. The detailed investigation of the prediction 
methodology is a matter of the further studies. 

8 Conclusion and perspectives 

In this paper, we have presented the aggregated  
robust regularised maximum entropy neural network 
(ARRMENN) approach for solving the nonlinear inverse 
problems of high-resolution reconstruction of the SSP  
and RSS of the remotely sensed scenes via processing  
the finite-dimensional space-time measurements of the 
available sensor system signals as it is required, for 
example, for enhanced RS imaging/scene mapping with 
imaging radar/SAR. 

Our study revealed some new aspects of designing the 
optimal/suboptimal SSP and RSS estimators and numerical 
imaging techniques important both for the theory and 
practical implementation. 

To derive the optimal numerical SSP and RSS 
estimators, we proposed the fused ARRMENN strategy  
that incorporated the non-trivial a priori information  
on the desired image signatures through unifying the 
regularisation considerations with the minimum risk 
statistical estimation paradigm. Being nonlinear and 
solution dependent, the general optimal solution-dependent 
SSP and RSS estimators require adaptive signal processing 
operations that result in a very cumbersome computing.  
The computational complexity arises due to the necessity to 
perform simultaneously the solution-dependent operator 
inversions with control of the regularisation degrees of 
freedom. 

However, we have proposed a robustified approach for 
some simplifications of the general optimal Adaptive 
Reconstructive Filtering (ARF) estimator that leads to the 
computationally efficient Robust Reconstructive Filtering 
(RRF) method. In the terms of regularisation theory,  
the RRF method may be interpreted as robustified 
image/signature enhancement/reconstruction technique. 
Indeed, with an adequate selection of some design 
parameters that contain the RRF and ARF estimators,  
the reconstructed scene image performances can be 
substantially improved if compared with those obtained 
using the conventional MF method that is traditionally 
implemented in all existing remote sensing and imaging 
systems that employ the array imaging radars, side looking 
airborne radars or SAR. This was demonstrated in the 
simulation experiment of enhancement of the SAR images 
related to some typical remote sensing operational 
scenarios. 
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Also, as a matter for perspective study, we have 
addressed the dynamical RSS post-processing scheme that 
reveals some possible approach toward a new dynamic 
computational paradigm for high-resolution fused numerical 
reconstruction and filtration of different RSS maps in 
evolution time. In future work, we intend to develop a 
family of such dynamical versions of the ARRMENN-based 
algorithms for updating the relevant RSS maps in evolution 
discrete time. 
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