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Abstract: An integral nested Sliding Mode (SM) Control is proposed for an Antilock Brake
System (ABS) control problem by employing integral SM and nested SM concepts. This
controller has robustness against matched and unmatched perturbations, and the capability to
reduce the sliding functions gains. Application to an ABS is presented as a simulation example.
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1. INTRODUCTION

The ABS control is a very important problem and its
objective is to obtain desired vehicle motion providing
adequate vehicle stability. The main difficulty arising in
the ABS design is due to the high nonlinearity and
uncertainty in the problem. This problem has been widely
studied and various controllers have been proposed using
SM technique (see Tan and Chin [1991], Drakunov et al.
[1995], Unsal and Pushkin [1999], Hadri et al. [2002], Ming-
Chin and Ming-Chang [2003]). In this work we design
a new controller on the basis of integral Sliding Mode
(SM) (Utkin et al. [2009]) in combination with nested SM
(see González Jiménez and Loukianov [2008] and Huerta
et al. [2008]) in order to achieve robustness to matched,
and unmatched perturbations, and ensure output tracking.
Theorically, this integral nested SM control can guarantee
the robustness of the system throughout the entire
response starting from the initial time instance and reduce
the sliding functions gains in comparison with standard
SM. In spite of the mentioned above works we consider the
real situation: the control input can take only two values
”0” or ”1” depending on the corresponding valve being
open or closed.

The work is organized as follows. The mathematical model
for the longitudinal movement of a vehicle, including the
brake system is presented in Section 2. In Section 3 a
SM controller for ABS is designed. The simulation results
are presented in Section 4 to verify the robustness and
performance of the proposed control strategy. Finally,
some conclusions are presented in Section 5.
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2. MATHEMATICAL MODEL

In this section, the model of a pneumatic brake system
is under consideration. The specific configuration of this
system includes the next: brake disks, which hold the
wheels, as a result of the increment of the air pressure
in the brake cylinder (Fig. 1).

Fig. 1. Pneumatic brake model

The entrance of the air trough the pipes from the central
reservoir and the expulsion from the brake cylinder to the
atmosphere is regulated by a common valve. This valve
allows only one pipe to be open, when 1 is open 2 is closed
and vice versa. The time response of the valve is considered
small, compared with the time constant of the pneumatic
systems.

We study the task of control of the wheels rotation, such
that the longitudinal force, due to the contact of the wheel
with the road, is near from the maximum value in the



period of time valid for the model. This effect is reached
as a result of the ABS valve throttling.

2.1 Wheel motion equations

To describe the wheels motion we will use a partial
mathematical model of the dynamic system (Novozhilov
et al. [2000], Kruchinin et al. [2001] and Magomedov et al.
[2001]), the dynamics of the angular momentum change
relative to the rotation axis are given by

Iy
dΩy
dt

= FR− L (1)

where Ωy is the wheel angular velocity, Iy is the wheel
inertia moment, R is the wheel radius, F is the contact
force and L is the brake torque.

Fig. 2. Model for the contact element of the tire.

The expression for longitudinal component of the contact
force in the motion plane according to experimental results
(Pacejka [1981]) is equal

F = νNφ (s) (2)

where ν is the friction coefficient between the wheel and
the road, N is the normal reaction and s is the slip rate

s =
Vx − ΩyR− dξ̂

dt

Vx
(3)

Vx is the longitudinal velocity of the wheel mass center

and ξ̂ is the longitudinal deformation of the tire contact
area element.
In (2), the function φ(s) represents a friction/slip
characteristic relation between the tyre and road surface.
Here, we use the Pacejka model (Bakker et al. [1989]),
defined as follows
φ (s) =

D sin (C arctan (Bs− E (Bs− arctan (Bs)))) .
(4)

In general, this model produces a good approximation
of the tyre/road friction interface. With the following
parameters B = 10, C = 1.9, D = 1 and E = 0.97 that
function represents the friction relation under a dry surface
condition. A plot of this function is shown in Fig. 3.

The motion equation of the contact element with mass
Mc is described by the tire longitudinal deformation. The
interaction between this element and the rigid part of the
wheel can be described by the following viscoelastic forces
model

Mc
d

dt

(
Vx − ΩyR+

d

dt
ξ̂

)
= F − cx

d

dt
ξ̂ − kxξ̂ (5)

where cx and kx are the longitudinal constants of viscous
and elastic behavior of tire model, respectively. The model
(5) to be used is similar to the description of the first
waveform model in (Jansen et al. [1998]).

The equations (1)-(5) characterize the wheel motion.

Fig. 3. Characteristic function φ (s)

2.2 Pneumatic brake system equations

We suppose that the brake torque L is proportional to the
pressure Pm in the brake cylinder:

L = kLPm (6)

with kL > 0.

For the brake system we use an approximated model of
pressure changes in the brake cylinder due to the opening
of the valve with a first order relation (Clover and Bernard
[1998]):

Te
dPm
dt

+ Pm = P∗ (7)

where P∗ is the valve input signal.

We suppose that opening and closing of the valves are
momentary and the parameters of the equation (7) are
given by the following rules:

• If P∗ = Pc = const then Te = Tin
• If P∗ = Pa = 0 then Te = Tout

where Pc is the pressure inside the central reservoir, Pa is
the atmospheric pressure, that we consider equal to zero;
Tin and Tout are the time constants of internal and external
pipelines, respectively.

2.3 The vehicle motion equation

The vehicle longitudinal motion dynamics are represented
by

M
dVx
dt

= Px − Fax +MVyΩz.

Assuming that there is no the lateral motion, Vy = 0, the
last equation evolves in

M
dVx
dt

= Px − Fax (8)

where M is the vehicle mass; Fax is the aerodynamic drag
force, which is proportional to the vehicle velocity and is
defined as



Fax =
1

2
ρCdAf (Vx + Vwind)

2

where ρ is the air density, Cd is the aerodynamic
coefficient, Af is the frontal area of vehicle, Vwind is the
wind velocity; the contact force Px is modeled of the form

Px = −νNϕ (s)

The dynamic equations of the whole system (1)-(8) can be
rewritten in a more useful form

Iy
dΩy
dt

= −νNRφ (s)− L

Mc
d2ξ̂

dt2
+ cx

dξ̂

dT
+ kxξ̂ =

−McR

Iy
L−

(
McR

2

Iy
+ 1

)
νNφ (s)

Te
dL

dt
− kLP∗ + L = 0

(9)

with

s = 1− Ωy
R

Vx
− 1

Vx

dξ̂

dt
. (10)

3. INTEGRAL NESTED SM CONTROL FOR ABS

To design an integral nested SM control for (9) and (10),
the system is represented using the state variables

x = [x1, x2, x3, x4, x5]
T

=

[
Ωy, Pm, ξ̂,

dξ̂

dt
, Vx

]T
with initial conditions x0 = x(0) results the following form:

ẋ1 = c1 (RF − kLx2)

ẋ2 = −c2x2 + bu

ẋ3 = x4
ẋ4 = −a41x3 − a42x4 − a43x2 − f4(x1, x4)

ẋ5 = −c3 (F + f5(x5))

(11)

with output

y = s = h(x) = 1−Rx1
x5
− x4
x5

where b = c2kLPc, c1 = 1/Iy, c2 = 1/Te, c3 = 1/M , a41 =
kx/Mc, a42 = cx/Mc, a43 = (RkL)/Iy f4(x1) = kνNφ(x1)

and f5(x5) = d
(
x25 + Vwind

)2
, with k =

(
R2/Iy + 1/Mc

)
and d = (ρCdAf )/(2M).

To calculate the control law, we obtain the output
dynamics

ẏ = a1(x1, x5) + a2(x5)x2 + f1(x)

where a1(x1, x5) , a1 = R
Iyx5

(
RF +

FIyx1

Mx5

)
, a2(x5) ,

a2 = (RkL)/(Iyx5) and f1(x4, x5) = −d(x4/x5)
dt +∆(ν). The

term ∆(ν) contains variations of the friction parameter ν.

Throughout the development of the controller, we will use
the following assumptions:

A1) All the state variables are available for measurement.
A2) The term f1(x) includes the friction force variation,
it is considered as unmatched bounded perturbation

‖f1(x)‖ < β1 <∞ (12)

A3) The sign function can be approximated by the
sigmoid function as is shown by the following limit:

lim
ε→∞

sigm (εS) = sign (S) . (13)

The Fig. 3 shows the approximation for various values of
the sigmoid function slope.

Fig. 4. Sigmoid function for various values of the slope ε

3.1 Control formulation

The control objective is to design an Integral Nested
Sliding Mode controller to obtain output trajectory
tracking in despite of the system perturbations. Define
yref (t) as the desired trajectory of the relative slip.

Let yref (t) be a twice differentiable function, but with
unknown derivatives, now define the output tracking error
as e1 = y (t)− yref (t) , α1(x, t) then its derivative is

ė1 = a1 + a2x2 + g1(x, t) (14)

where g1 (x, t) is the unmatched perturbation term defined
by

g1(x, t) = f1(x)− ẏref . (15)

Considering x2 as virtual control in (14), we propose

x2ref = x2,0 + x2,1 (16)

where x2,0 is the nominal part of the virtual control
and x2,1 is the part which will be designed to reject the
perturbation in (14) (see Utkin et al. [2009]). Now, we
define a new error variable e2 as

e2 = x2 − x2ref , α2(x, t) (17)

and two auxiliar variables σ1 and σ2 of the form

σ1 = e1 + w1 (18)

σ2 = e2 + w2 (19)

where x2ref is the desired value of x2 to obtain the control
aim, w1 and w2 are integral variables used to reduce
the control gain, σ1 and σ2 are pseudo-sliding functions
proposed to attenuate the perturbation terms. All the
variables will be designed later. Using equations (16)-(19)
we obtain

x2 = σ2 + x2,0 + x2,1 − w2. (20)

Taking the derivative of σ1 results in

σ̇1 = a1 + a2x2 + ẇ1 + g1(t). (21)

Substituting (20) in (21) yields

σ̇1 = a1 + a2 (σ2 + x2,0 + x2,1 − w2) + ẇ1 + g1(t)



or

σ̇1 = a1 + a2 (e2 + x2,0 + x2,1) + ẇ1 + g1(t). (22)

Choosing the dynamics of the integral variable w1 as

ẇ1 = −a1 − a2 (e2 + x2,0) (23)

with w1(0) = −e1(0), the nominal part x2,0 is designed to
eliminate the old known dynamics in (14) and assign the
desired dynamics −k10e1, k10 > 0

x2,0 = − 1

a2
(a1 + k10e1) . (24)

Substituting (23) and (24) in (22) yields

σ̇1 = a2x2,1 + g1(t). (25)

To attenuate the perturbation term g1 (x, t) in (25) using
the integral SM technique and to enforce a sliding motion
on σ1 = 0 the virtual control x2,1 is chosen as

x2,1 = −k11sigm (ε1σ1)

with k11 > 0.
Using (11) and (17), straightforward calculations reveal

ė2 = −c2e2 + bu+ f2e(x) (26)

where

f2e(x) = −c2x2ref +
∂α2(x, t)

∂x1
ẋ1 +

∂α2(x, t)

∂x3
ẋ3 + . . .

+
∂α2(x, t)

∂σ1
σ̇1 +

∂α2(x, t)

∂x5
ẋ5.

To induce sliding mode in (26) we choose the control signal
as

u = 0.5sign (−e2) + 0.5. (27)

3.2 Stability analysis

Using the new variables e1, e2 and σ1 the extended closed
loop system (11), (22) and (27) is presented as

ė1 = −k10e1 − a2k11sigm(ε1σ1) + g1(x, t) (28)

σ̇1 = −k11sigm(ε1σ1) + g1(x, t) (29)

ė2 = −c2e2 + f2e(x) + 0.5bsign (−e2) + 0.5b (30)

ẋ3 = x4
ẋ4 = −a41x3 − a42x4 − a43x2 − f4(x1, x4)

ẋ5 = −c3 (F + f5(x5)) .

(31)

The stability of (28) - (31) can be is studied step by step:
A) SM stability of the projection motion (30);
B) SM stability of the projection motion (29);
C) SM dynamics (28) stability in the neighborhood of SM
manifold e2 = 0 and σ1 = 0.

We use the following assumptions:

|f2e(x)| 6 α2 |e2|+ β2 (32)

|g1(x, t)| 6 α1 |σ1|+ β1 (33)

|ġ1(x, t)| 6 α0 |σ2|+ β0
ς = σ̇1

(34)

with α0 > 0, α1 > 0, α2 > 0, β0 > 0, β1 > 0, β2 > 0,
c2 > α2 and b > |f2e(x)| .

A) The system (30) can be presented as follows:

Case 1, e2 > 0, then

ė2 = −c2e2 + f2e(x). (35)

In this case, under condition (32) the solution of (30) is
ultimately bounded by (Khalil [2001])

|e2(t)| 6 δ0, δ0 =
β2

c2 − α2
. (36)

Case 2, e2 < 0, then

ė2 = −c2e2 + f2e(x) + b. (37)

In this case ė2 > 0, therefore, there is a time t1 such that

e2(t1) = 0.

B) To analyze stability of (29) we use V1 = (1/2)σ2
1 . Using

(29) we have

V̇1 = σ1 (−k11sigm(ε1σ1) + g1(x, t)) . (38)

Now we establishe the following equality:

sigm(ε1σ1) = sign (σ1)−∆ (ε1, σ1) (39)

where ∆ (ε1, σ1) is the difference between the sign and
sigmoid functions. It is evidently that ∆ (ε1, σ1) is
bounded. That is, there is a constant 0 < γ1 < 1 such
that |∆ (ε1, σ1)| < γ1. Then using (39) the derivative (38)
becomes

V̇1 6 − |σ1| (k11 (1− |∆ (ε1 , σ1)|)− |g1(x, t)|)
6 − |σ1| (k11 (1− γ1)− β1)− α1 |σ1|) .

(40)

Under the condition k1 (1− γ1) > β1 we have V̇1 < 0, and
hence σ1 (t) converges to the region given by

‖σ1(t)‖ 6 δ1, δ1 =
k11 (1− γ1)− β1)

α1
. (41)

Now, consider the derivative ς = σ̇1 (29) described by

ς̇ = −k2ς + ġ1(x, t), k2 = k11ε1(1− tanh2(ε1σ1(1)) (42)

and V2 = (1/2)ς2. Then using (42) and (34) the
straightforward calculations gives

V̇2 = ς (−k2ς + ġ1(x, t)) 6 − |ς| ((k2 − α0) |ς| − β1) (43)

Under the condition k2 > α0 the derivative ς = σ̇1 is
ultimately bounded by

|ς(t)| 6 δ2, δ2 =
β1

k2 − α0
. (44)

C) Stability of the equation (28) in the neighborhood of
the sliding manifold e2 = 0 and σ1 = 0 is studied by
V0 = (1/2)e21. Using (36) and (43) we have

V̇1 = e1[−k10e1 − a2k11sigm(ε1σ1) + g1(x, t)]

6 − |e1| (k10 |e1| − δ0 − δ2)
(45)

If k10 > 0, then the control error e1 (t) converges to an
arbitrary small neighborhood of the equilibrium point,



defined by |e1 (t)| < δ, δ = (δ0 + δ2) /k10. Moreover it is
possible to show that an equilibrium point of the residual
dynamics (31) is exponentially stable, therefore the control
objectives are fulfilled, and the desired performance of the
closed-loop system is obtained.

4. SIMULATION RESULTS

To show the effectiveness of the proposed control law,
simulations have been carried out on one wheel model
design example, the system parameters used are listed in
Table 1. In order to maximize the friction force, in the
simulations we suppose that slip tracks a constant signal.

yref = 0.205

which produces a value close to the maximum of the
function φ(s). The parameters used in the control law are
k10 = 8700, k11 = 1000 and ε1 = 100.

TABLE 1
Values of Parameters

Parameter Value Parameter Value
Cx 10 Vwind -5
Kx 9000 v 0.8
M 2396 B 10
Iy 18.9 C 1.9
R 0.535 D 1
KL 1000 E 0.97
ρ 1.225 N 23504.76
Cd 0.65 Pa 0
Af 6.6 Pc 8

On other hand, to show robustness property of the
control algorithm in presence of parametric variations
we introduce a change of the friction coeficient ν which
produces a diferent contact force, namely F̂ . Then, ν = 0.5
for t < 1 s, ν = 0.52 for t ∈ [1, 2) s, and ν = 0.5 for t > 2 s.
It is worth mentioning that just the nominal values were
considered in the control design.

In the figures 5 and 6 are shown, respectively, the slip and
the friction function φ in the braking process

Fig. 5. Slip performance in the braking process

Fig. 6. Performance of φ in the braking process

while Figs. 7 and 8 summarize the behavior of the error
variables e1 and e2 respectively.

Fig. 7. Tracking error, e1 = y − yref

Fig. 8. Tracking error, e2 = x2 − x2ref



In Fig. 9 the longitudinal speed Vx and the linear wheel
speed ΩyR are showed; it is worth noting that the slip
controller should be turn off when the longitudinal speed
Vx is close to zero. In Fig. 10 the control action is shown.

Fig. 9. Longitudinal speed Vx (solid) and linear wheel
speed ΩyR (dashed)

Fig. 10. Control input

Finally, in Fig. 11 the nominal F , and the F̂ contact force
are shown.

Fig. 11. Nominal F (solid) and F̂ (dashed) contact forces

5. CONCLUSION

In this work an integral nested sliding mode control
for ABS has been proposed. The simulation results
show good performance and robustness of the closed-
loop system in presence of both the matched and
unmatched perturbations, namely, parametric variations
and neglected dynamics.
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