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Facultad de Minas

Cr. 80 No. 65 - 223, Medellı́n, Antioquia, Colombia

Email: [japatin0, begiraldoos, habotero]@unal.edu.co

Abstract—This paper deals with the design of a high order
sliding mode observer for a class of nonlinear systems that can
be described in the so called triangular input observer form. The
mathematical tools required to make the system transformation
to such form are also presented. At last, we show the performance
of the observers with several simulation examples, including the
application of a CSTR process model.

I. INTRODUCTION

Sliding mode approaches have been widely used for the

problems of dynamic systems control and observation due

to its characteristics of finite time convergence, robustness

to uncertainties and insensitivity to external disturbances. In

addition, the state observers have another important properties

like the possibility of obtaining a step by step design and work

with a reduced observation dynamics [1, Ch. 4], [2] . Often,

sliding mode motion is obtained by means of a discontinuous

term depending on the output error, into the controlling or

observing system. Additionally, by using the sign of the error

to drive the sliding mode observer, the observer trajectories

become insensitive to many forms of noise. Hence, some

sliding mode observers have attractive properties similar to

the Kalman filter but with simpler implementation [3].

Several researchers have dealt with the issue of designing

sliding-mode observers for different applications [4], [5],

including the classical problem of non-linear state estimation

[6]. In [7], a sliding-mode observer for non-linear system

based over the equivalent control method is proposed. Some

applications of the sliding mode techniques to control and

robust differentiation are presented in [8] [9] [10]. Noting that

the classical sliding mode techniques are a particular case of

the high order sliding mode concept and can be considered

as a first order sliding mode [11]. The high order sliding

modes allows also take into account the sampling measurement

delays. Some practical examples of the use high order sliding

modes observers can be found in [12], [13]. All of these imply

that high order sliding modes observers are very convenient

for real implantations.

In this work, our purpose is to discuss about observer design

for a system in a triangular input observer form. We discuss

this form, which has been treated previously in [14], because

for a such system it is possible to design a simple observer

which does not use the input derivative. In fact, there are some

applications, mainly in the electrical motor control systems,

where the exact knowledge of the input derivative is very

questionable [14]. Besides this, a system in a triangular input

observer form does not face the problem of singular input.

The another goal of this paper is to show that the proposed

observer can also be applied to a chemical process system like

the CSTR.

In the following, in section II some mathematical

preliminaries are given. In section III a higher order sliding

mode observer for systems in triangular input observer form is

proposed. Three examples of the proposed observer, including

two well-known systems [14], [1, Ch. 4] and a CSTR, are

presented in section IV. Finally, in section V some conclusion

are presented.

II. MATHEMATICAL PRELIMINARIES

In this section, we present the mathematical concepts

required to take a given SISO system to the triangular input

observer form, and its relationship with a robust differentiator.

A. Triangular input observer form

Let us consider the following SISO system

χ̇ = f (χ) + g (χ, u) (1)

y = h (χ)

where χ ∈ R
n is the state, u ∈ R is the input, y ∈ R is the

output and f , g, h are function vectors, with g (x, 0) = 0 for

all x ∈ R
n. In addition for the system (1), lets suppose the

following two conditions

Condition 1. The codistribution

Ωi = span
{

dh, . . . , dLi
fh

}

0 ≤ i ≤ n − 1 (2)

is involutive.

and

Condition 2. For any u ∈ R, the vector field g fulfills

dLgL
i
fh ∈ Ωi ∀i = 1, n − 1 (3)



From (2) the coordinate change
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is a diffeomorphism T (χ) → x
χ7→x

which transforms the system
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ẋ1

ẋ2
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(5)

with ḡi (·, u) = 0 for u = 0, ∀i = 1, n. Where x =
[x1, . . . , xn]

T
. In addition, the equation (3) is equivalent to

dḡi ∈ span {dχ1, . . . , dχi} ∀i ∈ {1, . . . , n} (6)

this reduces the system (5) to the so-called Triangular input

observer form, as follows
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(7)

y = x1

with ḡi (·, u) = 0 for u = 0, ∀i = 1, n

Remark 1. The equation (2) follows from the observability

rank condition

rank
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
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= n (8)

this gives an easy way to check the Condition 1, [15].

B. Arbitrary-order exact robust differentiator

Real-time differentiation is a well-known problem, several

approaches have been proposed to obtain time derivatives for a

given signal. Between these all solutions, sliding mode based

methods have demonstrated high accuracy and robustness. For

the calculation of higher order exact derivatives, successive

implementation of a first order differentiator with finite time

convergence is used in [8]. For the same objective, an

arbitrary-order exact robust differentiator based in a recursive

scheme and which provides the best possible asymptotic

accuracy in presence of input noises and discrete sampling

is proposed in [9]. Let f (t) ∈ Ck̄ [0,∞) be a function to be

differentiate and let k ≤ k̄, then the k-th order differentiator

is defined as follows:

ż0 = v0,

v0 = −λkL
1

k+1 |z0 − f (t)|
k

k+1 sign (z0 − f (t)) + z1

ż1 = v1,

v1 = −λk−1L
1
k |z1 − v0|

k−1

k sign (z1 − v0) + z2

... (9)

żk−1 = vk−1,

vk−1 = −λ1L
1
2 |zk−1 − vk−2|

1
2 sign (zk−1 − vk−2) + zk

żk = −λ0Lsign (zk − vk−1)

where zi is the estimation of the true signal f (i) (t). The

differentiator provides finite time exact estimation under ideal

condition when neither noise nor sampling are present. The

parameters λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5,

λ5 = 8 are suggested for the construction of differentiators up

to the 5-th order. The parameter L is selected such that be a

upper bound for |f (k+1)|. See [9] and [10] for further details

on the estimation of time of convergence, the error bounds for

the signal f (t) and their derivatives in presence of noise or

discrete sampling and other proprieties and constrains of the

differentiator.

III. OBSERVER DESIGN

In this section, based on the equation of the arbitrary-order

exact robust differentiator (9), we propose an observer for a

system represented in the triangular input observer form (7).

The use of high order sliding mode terms allow us to avoid the

use of classic low pass filters employed to obtain the equivalent

controls [4]. Another feature of the differentiator (9) is the

fact that the output does not depend directly on discontinuous

functions but on an integrator output. So high frequency

chattering, which can be very harmful for the systems, can

also be avoided.

Based in the equation (9), we propose the following

observer for (7):

˙̂x1 = ζ1,

ζ1 = x̂2 + ḡ1 (x1, u) − λ1L
1

n+1 |x̂1 − x1|
n

n+1 sign (x̂1 − x1)

˙̂x2 = ζ2,

ζ2 = x̂3 + ḡ2 (x1, x̂2, u) − λ2L
1
n |x̂2 − ζ1|

n−1

n sign (x̂2 − ζ1)

... (10)

˙̂xn = ζn,

ζn = f̄n (x̂) + ḡn (x̂, u) − λnL
1
2 |x̂n − ζn−1|

1
2 sign (x̂n − ζn−1)

For this form, as it is stated in [9] and [10], we can obtain

the convergence of the observation error to zero in finite time.

IV. APPLICATION CASE

We highlight in this section the utility and the advantages

of the high order sliding modes of the previous recalls in the



resolution of the observation problem. At first, we use two

systems previously proposed in the literature [11], [1, Ch. 4].

At last,we apply the same procedure to a Continuous Stirred

Tank Reactor (CSTR) system [16].

A. Example 1

Using a system proposed in [11], let the Bounded Input

Bounded State (BIBS) in finite time presented in the triangular

input observer form

ẋ1 = x2

ẋ2 = x3 − x3
2 + x2u (11)

ẋ3 = −
(

x2
2 + x2

3

)

x3
3 + u

y = x1

The proposed observer as in (10) for the system (11) is shown

in equation (12). The parameter values are L = 400, λ1 = 1.1,

λ2 = 1.5 and λ3 = 2.

˙̂x1 = ζ1,

ζ1 = x̂2 − λ1L
1
4 |x̂1 − x1|

3
4 sign (x̂1 − x1)

˙̂x2 = ζ2, (12)

ζ2 = x̂3 − x̂3
2 + x̂2u − λ2L

1
3 |x̂2 − ζ1|

2
3 sign (x̂2 − ζ1)

˙̂x3 = −
(

x̂2
2 + x̂2

3

)

x̂3
3 + u − λ3L

1
2 |x̂3 − ζ2|

1
2 sign (x̂3 − ζ2)

.
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Fig. 1. Real x1 and observed x̂1(- -) states for system (11)
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Fig. 2. Real x2 and observed x̂2(- -) states for system (11)
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Fig. 3. Real x3 and observed x̂3(- -) states for system (11)

Figures 1, 2 and 3 shows the simulation results for the

system (11). The initial conditions for this system were

x (0) = [1 0.5 0.5]
T

and x̂ (0) = [0 0 0]
T

. The state x̂1

converges to x1 in finite time of 0.25s. Then x̂2 reaches to

x2 in finite time 0.75s. Note that x̂2 only reaches x2 at a time

of 0.75s, and after x̂1 converges to its state. Finally at 1s, x̂3

converges to x3.

B. Example 2

Let us consider the following system in the triangular input

observer form [1, Ch. 4]:

ẋ1 = x2 − x3
1u

ẋ2 = x3 − x1x2u (13)

ẋ3 = −3x3 − 3x2 − x1 − x3
3 − u

y = x1

For the system (13), the observer of equation (10) takes

the form shown in equation (14), with the parameter values

L = 400, λ1 = 1.1, λ2 = 1.5 and λ3 = 2.



˙̂x1 = ζ1,

ζ1 = x̂2 − x3
1u − λ1L

1
4 |x̂1 − x1|

3
4 sign (x̂1 − x1)

˙̂x2 = ζ2, (14)

ζ2 = x̂3 − x1x̂2u + λ2L
1
3 |x̂2 − ζ1|

2
3 sign (x̂2 − ζ1)

˙̂x3 = −3x̂3 − 3x̂2 − x1 − x̂3
3 − u − λ3L

1
2 |x̂3 − ζ2|

1
2 sign (x̂3 − ζ2)

This approach has been tested by simulation with initial

conditions x (0) = [1 0.5 0.5]
T

and x̂ (0) = [0 0 0]
T

. In Figure

4, we see that x̂1 reaches x1 in finite time around 0.5s. In

Figure 5, we see that x̂2 also reaches x2 in finite time of

about 0.75s. But x̂2 will only reach x2 after x̂1 has been able

to get to the value of x1. In Figure 6, we see that x̂3 reaches

x3 in finite time of 1.2s.
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Fig. 4. Real x1 and observed x̂1(- -) states for system (13)
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Fig. 5. Real x2 and observed x̂2(- -) states for system (13)
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Fig. 6. Real x3 and observed x̂3(- -) states for system (13)

C. CSTR Application

The CSTR process is a recognized benchmark frequently

used for controller proofs [16] and represents many processes

typically employed in industry. The model of the CSTR is

described by the set of equations (15). See [16] for a more

in-depth description and modelling of the process and its

parameters. The simulation values for the system were also

extracted from the same reference, and they are summarized

in Table I.

dT

dt
=

F

V
(Tin − T ) −

∆H

ρCp

k0CAe−
E

RT +
UA

ρCpV
(Tj − T )

dCA

dt
=

F

V
(Cin − CA) − k0CAe−

E
RT . (15)

Assuming as the state variables the temperature T of

the reactive mass and the concentration CA of the reactant

respectively, the model in space-state representation is shown

in the set of equations (16). We suppose that T can be

measured and acts as the model output y. The goal is the

estimation of CA (denoted by χ2 from T (denoted by χ1).

χ̇1 =
F

V
(Tin − χ1) −

∆H

ρCp

k0χ2e
−

E
Rχ1 +

UA

ρCpV
(Tj − χ1)

χ̇2 =
F

V
(Cin − χ2) − k0χ2e

−
E

Rχ1 (16)

y = h (χ) = χ1

In order to find an state observer for the system, we have

to describe the process in the triangular input observer form.

From (4),

x1 = χ1 (17)

x2 =
F

V
(Tin − χ1) −

∆H

ρCp

k0χ2e
−

E
Rχ1 +

UA

ρCpV
(Tj − χ1)

,

and the resultant system is:



TABLE I
NOMINAL PARAMETERS OF CSTR

Parameter Value Unit

F 0.1605 m3
· min−1

V 2.4069 m3

Cin 2114.5 gmol · m−3

k0 2.8267·1011 min−1

E 75361.14 J · gmol−1

R 8.3174 J · gmol−1K−1

Tin 295.22 K

∆H -9.0712·104 J · gmol−1

ρ 1000 kg · m−3

Cp 3571.3 J · kg−1

U 2.5552·104 J · (s · m2
· K)−1

A 8,1755 m−2

Tj 279 K

ẋ1 = x2

ẋ2 =

(

k0e
−

E
Rx1 +

F

V
−

Ex2

Rx2
1

)

× (18)

(

F

V
(Tin − x1) +

UA

ρCpV
(Tj − x1) − x2

)

−

(

UA

V ρCp

+
F

V

)

x2 −
CinF∆H

ρCpV
k0e

−
E

Rx1

. The observer obtained for the CSTR, with parameter values

L = 250, λ1 = 2.5 and λ2 = 1 is presented in eq. (19).

˙̂x1 = ζ1,

ζ1 = x̂2 − λ1L
1
3 |x1 − x̂1|

2
3 sign (x̂1 − x1)

˙̂x2 =

(

k0e
−

E
Rx1 +

F

V
−

Ex̂2

Rx2
1

)

× (19)

(

F

V
(Tin − x1) +

UA

ρCpV
(Tj − x1) − x̂2

)

−

(

UA

V ρCp

+
F

V

)

x̂2 −
CinF∆H

ρCpV
k0e

−
E

Rx1 −

λ2L
1
2 |x̂2 − ζ1|

1
2 sign (x̂2 − ζ1)
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Fig. 7. Temperature x1 and its observation x̂1(- -) for CSTR
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Fig. 8. Concentration x2 and its observation x̂2(- -) for CSTR

This approach has been tested by simulation with the the

initial conditions x (0) = [302.24 1504.37]
T

and x̂ (0) =
[190 1000]

T
. In Figure 7, we can see x̂1 reaching the real

temperature value in less than 5 minutes. In Figure 8, we see

that x̂2 also converges to the real value of the concentration

in finite time of about 12 minutes.

V. CONCLUSION

We show in this paper that we can design a high order

sliding mode observer for single output systems which can

be transformed into triangular observer form. From this

form, many observer designs work well, and in this case,

advantages of the sliding mode observer were principally the

design simplicity and the finite time convergence. Moreover,

we also showed the application of the proposed schemes

to a real process model like the CSTR. This model is a

well documented benchmark that includes many dynamical

processes; in this regard, the results of this work can be

expanded towards a plethora of different application cases.
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