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Abstract— The aim of this paper is to present the design
of a robust sliding mode control scheme for a vehicle system
which consists of active brake systems. The proposed control
strategy is based on the combination of high order sliding
mode control methods and integral sliding mode control,
taking advantage of the block control principle. The brake
controller induces the antilock brake system feature by means
of tracking the slip rate of the car, improving the stability in
the braking process and preventing the vehicle from skidding.

Index Terms: Antilock braking systems, Automotive
control, Sliding mode control, Integral control

I. INTRODUCTION

One of the most important control objectives in

automotive systems is to provide adequate safety and to

keep the vehicle occupants comfortable. An example is

the controller design for the brake system. The wheel

skidding is an undesirable phenomena which often results

when the wheels get locked, leading to lose control of the

car. Therefore, it is necessary to design brake controllers

that induce the anti-lock brake system (ABS), preventing

wheels from locking up during hard braking (Petrov et

al., 1977; Rittmannsberger, 1988; Emig et al., 1990).

For many drivers the ABS usually offers improved

vehicle control and decreases stopping distances on dry

and slippery surfaces. In contrast, ABS can significantly

increase braking distance on loose surfaces like gravel or

snow-covered pavement, although still improving vehicle

control (Burton et al., 2004). Generally, the ABS design is

based on the idea of reducing the pressure on the brake

cylinder when the wheel is close to lock. This is done

until the wheel velocity exceeds some threshold value. This

breaking process may be improved by regulating the wheel

slip (Tan and Chin, 1991). Thus, modern ABS systems

not only try to prevent wheels from locking but also try

to maximize the breaking forces generated by the tires to

prevent that the longitudinal slip ratio exceeds an optimal

value (Rajamani, 2011).

The main difficulties arising in the controller design for

the brake system are due to uncertainties and the high

nonlinearity presented in the system model. Therefore, the

ABS has become an attractive examples for research in area

of robust control. As proposals, several works have been

applied the sliding mode (SM) technique to design a slip-

ratio controller for the vehicle stability; some examples are

(Tan and Chin, 1991; Unsal and Pushkin, 1999; Ming-Chin

and Ming-Chang, 2003; Tanelli et al., 2009; Delprat and

Ferreira de Loza, 2011), including the extremum seeking

controllers in order to maximize the friction between the

tire and the road (Chin et al., 1992; Drakunov et al., 1995;

Tunay, 2001).

In this paper, the main purpose is to propose an

ABS controller in presence of external disturbances and

parametric variations, which are supposed to be unknown

but bounded. The solution for the exposed problem is based

on SM algorithms. These algorithms are proposed with

the idea to drive the dynamics of a system to a sliding

manifold, that is an integral manifold with finite reaching

time (Drakunov and Utkin, 1992); exhibiting features

such as SM motion finite time convergence, robustness

to uncertainties including plant parameter variations and

external bounded disturbances (Utkin et al., 2009). To

design the brake controller, a combination of block control

feedback linearization (Loukianov, 2002), integral SM

control (Utkin et al., 2009) and high order quasi-continuous

SM algorithms (Levant, 2005) is used in order to obtain

an exact rejection of the system disturbances, similarly

to the method shown by (Estrada and Fridman, 2010).

The integral SM control methods guarantee the robustness

of the closed-loop system throughout the entire response

starting from the initial time instant, and reduces the sliding

functions gains in comparison with the standard SM control.

This approach is based on the integral nested SM control

technique (Huerta-Avila et al., 2007), which combines the

integral SM control (Utkin et al., 2009) with the nested SM

control (Adhami-Mirhosseini and Yazdanpanah, 2005) and,

has been applied for the ABS design as shown in (Sánchez-

Torres et al., 2013), bounding the effect of disturbances to

an arbitrary small vicinity of zero, however without exact

rejection.

The work is organized as follows: The mathematical

model for the brake system is presented in Section II.

Section III exposes the design of the SM controllers for

the brake, with special emphasis in the sliding manifold

design. The simulation results are presented in Section IV,
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verifying the performance of the proposed control strategy.

Finally, the conclusions are presented in Section V.

II. MATHEMATICAL MODEL

In this section, the dynamic equations which represent

brake system, are presented. This system consider a

quarter of the vehicle model and includes the dynamics of

pneumatic brake system, wheel and vehicle.

A. Pneumatic Brake System Equation

The specific configuration of this system model considers

the brake disk system. The brake holds the wheel, as a result

of the air pressure increment in the brake cylinder. The air

entrance trough the pipes from the central reservoir and the

air expulsion from the brake cylinder to the atmosphere, are

regulated by a common valve.

Considering Figure 1, the brake torque Tb is supposed to

be proportional to the pressure Pb in the brake cylinder

Tb = kbPb (1)

with kb > 0. For the brake system, an approximated first

order model of pressure changes in the brake cylinder

due to the opening of the valve, is applied (Clover and

Bernard, 1998):

τṖb + Pb = Pc (2)

where Pc is the pressure inside the central reservoir, and

τ is the time constant of the pipelines. The atmospheric

pressure, Pa, is considered as equal to zero.
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Fig. 1. Pneumatic brake scheme

B. Wheel Motion Equations

To describe the wheel motion, the mathematical model

derived in (Kruchinin et al., 2001) is used.

r

f(s) = νNmφ (s)

mw

ω

Tb

Nm

v

Fig. 2. Active suspension and wheel forces and torques

Considering Figure 2, the dynamics of the angular

momentum variation relative to the rotation axis, are

represented by

Jω̇ = rf(s)− bbω − Tb (3)

where ω is the wheel angular velocity, J is the wheel inertia

moment, r is the wheel radius, bb is a viscous friction

coefficient due to wheel bearings, f(s) is the contact force

of the wheel and s is the slip rate.

The expression for the longitudinal component of the

contact force in the motion plane is

f(s) = νNmφ (s) (4)

where ν is the nominal friction coefficient between the

wheel and the road, Nm is the normal reaction force in the

wheel and it is defined by Nm = mg, with g the gravity

acceleration and m the mass supported by the wheel.

The function φ(s) represents the longitudinal friction/slip

characteristic relation between the tire and road surface.

In general, its calculation is based on experimental tests

(Bakker et al., 1987). A plot of this function for different

surfaces is shown in Figure 3.
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Fig. 3. Characteristic function φ (s)

To approximate the function φ(s), the Pacejka formula

(Bakker et al., 1987) is used. This model is defined as

follows:

φ (s) = D sin (C arctan (Bs− E (Bs− arctan (Bs))))

where B, C, D and E are the model parameters which are

adjusted by using experimental data.
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Based on the mentioned experimental tests, the Pacejka

formula produces a good approximation of the tire/road

friction interface, fitting accurately the data obtained via

measurement of the road conditions (Pacejka, 1981; Bakker

et al., 1989; Pacejka, 2012). Table I shows the estimated

parameters for different road conditions.

Surface B C D E

Dry Tarmac 10 1.9 1 0.97

Wet Tarmac 12 2.3 0.82 1

Snow 5 2 0.30 1

Ice 4 2 0.10 1

TABLE I

PACEJKA MODEL PARAMETERS FOR DIFFERENT ROAD SURFACES.

The slip rate s is defined as

s =
v − rω

v
(5)

where v is the longitudinal velocity of the wheel mass

center. For s > 0, the function φ(s) represents braking

conditions. In Figure 3, s∗ represents the desired value for

the slip rate s. A suitable choice of s∗ is value in the small

interval 0.15 ≤ s∗ ≤ 0.25, this selection ensures a high

longitudinal friction for the different road conditions.

The equations (3)-(5) characterize the wheel motion.

C. The Vehicle Motion Equation

The vehicle longitudinal dynamics considered without

lateral motion, are described by

Mv̇ = −F (s)− Fa(v, t) (6)

where M is the total vehicle mass, Fa is the aerodynamic

drag force which is proportional to the vehicle velocity. This

force is defined as

Fa(v, t) =
1

2
ρCdAf (v + vw(t))

2

where ρ is the air density, Cd is the aerodynamic coefficient,

Af is the frontal area of vehicle, vw is the wind velocity,

and the contact force of the vehicle F (s) is modeled of the

form

F (s) = νNMφ (s) (7)

where NM is the normal reaction force of the vehicle,

defined as NM = Mg.

D. State Space Equations

The complete system (2)-(6), using the state variables

x =
[

x1 x2 x3

]T
=

[

ω Pb v
]T

, is presented in

the following form:

ẋ1 = −a1x1 + a2f (s)− a3x2

ẋ2 = −a4x2 + bu

ẋ3 = −a5F (s)− a5Fa(x3, t)

(8)

with the output

y = x1 (9)

where a1 = bb/J , a2 = r/J , a3 = kb/J , a4 = 1/τ ,

a5 = 1/M , b = 1/τ , u = Pc.

III. CONTROLLER DESIGN

The task of controlling the wheels rotation is studied

in this section. The controller is designed such that the

longitudinal force due to the contact of the wheel with the

road, is near to the maximum value in the time period valid

for the model. This maximum value is reached as a result

of the brake valve effort (see Figure 1).

Considering the direct action of the pressure Pb in the

brake cylinder over the wheel, the output tracking error

e1 = x1 −
1− s∗

r
x3. (10)

is defined.

From (8) and (10), with the variables x1 and x3 written

in terms of e1, it follows that

ė1 = f1 (e1) + b1x2 +∆1(x, t) (11)

where f1 (e1) =
[

a2Nm + 1−s∗

r
a5NM

]

νφ (s)− a1x1 and

b1 = −a3. The disturbance term ∆1(x, t) in (11) contains

the unknown aerodynamic drag force − 1−s∗

r
a5Fa(x3, t),

the reference derivative ṡ∗ and, the variations of the friction

parameter ν. In the control design, the term ∆1(x, t) will

be considered as a bounded disturbance.

To stabilize the dynamics for e1 in (11), x2 can be

selected as a stabilizing term in form of a virtual controller,

the desired value for x2, x2des is determined as

x2des = x0
2des + x1

2des (12)

where x1
2des will be designed to reject the disturbance

∆1(x, t) in finite time by using the integral sliding mode

technique (Utkin et al., 2009) in combination quasi-

continuous SM control (Levant, 2005). The term x0
2des is

such that e1 converges exponentially to zero.

In order to establish the control x2des in (11), the error

variable e2 is defined as

e2 = x2 − x2des (13)

and (11) is rewritten as

ė1 = f1 (e1) + b1e2 + b1x2des +∆1(x, t). (14)

To calculate the term x1
2des, the variable σ1 is proposed

as

σ1 = e1 + z1 (15)

where z1 is a SM integral variable to be defined below.

From (11) and (15), the dynamics for σ1 are given by

σ̇1 = f1 (e1) + b1x
0
2des + b1x

1
2des + b1e2

+∆1(x, t) + ż1
(16)
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where the derivative ż1 is assigned of the form

ż1 = −f1 (e1)− b1x
0
2des (17)

with z1 (0) = −e1 (0) in order to fulfill the requirement

σ1(0) = 0. With this selection of ż1, the system (16) reduces

to

σ̇1 = b1x
1
2des + b1e2 +∆1(x, t). (18)

To enforce sliding motion on the manifold σ1 = 0 despite

of the disturbance ∆1(x, t), the term x1
2des in (18) is chosen

as

x1
2des = b−1

1 ξ (19)

with ξ the solution of

ξ̇ = −α
σ̇1 + β |σ1|

1

2 sign (σ1)

|σ̇1|+ β |σ1|
1

2

(20)

where α > 0 and β > 0.

When the motion on the manifold σ1 = 0 is reached, the

solution of σ̇1 = 0 in (16)

b1
{

x1
2des

}

eq
= ∆1(x, t). (21)

shows that the disturbance ∆1(x, t) is rejected by the

equivalent control b1
{

x1
2des

}

eq
(Utkin, 1992). Therefore, the

dynamics on σ1 = 0 is given by

ė1 = f1 (e1) + b1x
0
2des. (22)

Thus, the desired dynamics −k1e1 for ė1 in (22) are

introduced by means of

x0
2des = b−1

1 [−f1 (e1)− k1e1] (23)

where k1 > 0. Hence, with (23) in (17), ż1 reduces to

ż1 = k1e1. (24)

From (13), it follows that

ė2 = bu−∆2(x, t) (25)

where the term ∆2(xb, t) = ẋ2des is a bounded disturbance.

Considering the types of valve that can vary its position

in a continuous range, the integral SM control method is

applied to (25) in order to induce a sliding mode on the

manifold e2 = 0 in spite of the disturbance ∆2(x, t). With

this aim, the control u is decomposed as

u = u0 + u1 (26)

where u1 will reject the disturbance ∆2(x, t) in finite time

and u0 is designed to stabilize e2 in finite time.

To calculate the term u1, the variable σ2 is proposed as

σ2 = e2 + z2 (27)

where z2 is a SM integral and it will be defined below.

Considering the equations (25) and (27), the dynamics

for σ2 are given by

σ̇2 = bu0 + bu1 −∆2(x, t) + ż2. (28)

Selecting ż2 as

ż2 = −bu0 (29)

the system (28) reduces to

σ̇2 = bu1 −∆2(x, t). (30)

To enforce sliding motion on the manifold σ2 = 0 despite

of the disturbance ∆2(x, t), the term u1 in (30) is chosen

as the super-twisting algorithm (Levant, 1993)

u1 = b−1(u11 + u12) (31)

where u11 = −k11|σ2|
1

2 sign(σ2) and u̇12 = −k12sign(σ2),
with k11 > 0 and k12 > 0.

On the manifold σ2 = 0, the solution of σ̇2 = 0 in (28)

leads to

b {u1}eq = ∆2(x, t). (32)

showing that the disturbance ∆2(x, t) is rejected by

the equivalent control b {u1}eq (Utkin, 1992). Thus, the

dynamics for e2 = 0 is given by

ė2 = bu0. (33)

Finally, the desired dynamics for ė2 in (33) are introduced

with

u0 = −k2b
−1|e2|

1

2 sign(e2) (34)

where k2 > 0. Thus, with (34) in (29), ż2 yields to

ż2 = k2|e2|
1

2 sign(e2). (35)

Using the nonsingular transformation (10), (13), (19) and

(23)

e1 = x1 −
1− s∗

r
x3

e2 = x2 + b−1
1 [−f1 (e1)− k1e1] + b−1

1 ξ

σ1 = e1 + z1

σ2 = e2 + z2

with the integral variables z1, z2 and ξ defined by (24), (35)

and (20), respectively; the extended closed loop system (11)

and (25) is presented as
{

ė1 = −k1e1 + ξ + b1e2 +∆1(xb, t) (36)






σ̇1 = ξ + b1e2 +∆1(xb, t)

ξ̇ = −α σ̇1+β|σ1|
1

2 sign(σ1)

|σ̇1|+β|σ1|
1

2

(37)

{

ė2 = −k2|e2|
1

2 sign(e2)− k11|σ2|
1

2 sign(σ2)

+u̇12 +∆2(x, t)
(38)

{

σ̇2 = −k11|σ2|
1

2 sign(σ2) + u12 +∆2(x, t)

u̇12 = −k12sign(σ2).
(39)

Considering the disturbances in the closed-loop system

(36) - (39) as fulfilling the following conditions:
∣

∣

∣
∆̇1(x, t)

∣

∣

∣
≤ L1 (40)

∣

∣

∣
∆̇2(x, t)

∣

∣

∣
≤ L2 (41)
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in some admissible region Ω0 with L1 > 0 and L2 > 0, the

stability of the closed-loop system (36) - (39) is outlined in

the stepwise procedure

Step A) The SM stability of the projection motion (39).

Step B) Reaching phase of the projection motion (38).

Step C) The SM stability of the projection motion (37).

Step D) The SM motion stability of (36) on the manifold

e2 = 0.

Step A) Using the transformation q = u12 + ∆2(x, t),
the system (39) yields to

σ̇2 = −k11|σ2|
1

2 sign(σ2) + q

q̇ = −k12sign(σ2) + ∆̇2(x, t).
(42)

Under the assumption (41), it follows that if k11 > 0

and k22 > 3L2 + 4
(

L2

k11

)2

, then (σ2, q) = (0, 0) in

finite time despite of the perturbation ∆2(x, t) (Moreno and

Osorio, 2008).

Step B) In (38), the motion on the manifold σ2 = 0 is

given by

ė2 = −k2|e2|
1

2 sign(e2). (43)

Let the Lyapunov candidate V = 1
2e

2
2. From (43), it

follows

V̇ = −k22
3

2V
3

4 . (44)

Therefore, e2 converges to zero in finite time; establishing

a SM in the manifold e2 = 0.

Step C) For (37), the motion on the manifold e2 = 0 is

given by

σ̇1 = ξ +∆1(x, t)

ξ̇ = −α
σ̇1 + β |σ1|

1

2 sign (σ1)

|σ̇1|+ β |σ1|
1

2

.
(45)

With the transformation ϕ1 = σ1 and ϕ2 = σ̇1, the

system (45) is written as

ϕ̇1 = ϕ2

ϕ̇2 = −α
ϕ2 + β|ϕ1|

1

2 sign(ϕ1)

|ϕ2|+ β|ϕ1|
1

2

+ ∆̇1(x, t).
(46)

Under the condition (40), there exist α > 0 and β > 0
such that the system (46) is finite time stable (Levant, 2005),

i.e, its solution converges in finite time to the origin

(ϕ1, ϕ2) = (σ1, σ̇1) = (0, 0), inducing a SM on σ1 = 0.

Step D) The motion for (36) on the set (e2, σ1) = (0, 0)
is given by the system

ė1 = −k1e1 (47)

which is exponentially stable.

Note that during the braking process x3 > 0 and with

s ≈ s∗, due to the control action, the dynamics for x3

becomes

ẋ3 = −a5F (s∗)− a5Fa(x3, t). (48)

From the vehicle mechanics, the term a5Fa(x3, t) can be

considered to be bounded |a5Fa(x3, t)| ≤ δ3, with δ3 > 0.

In addition, it can be considered that a11F (s∗) ≫ δ7.

Therefore, let γ = a11F (s∗) − δ7, and W = 1
2x

2
3,

then Ẇ = −x3 [a5F (s∗) + a5Fa(x3, t)] < −γx3. Hence,

Ẇ < −γ0
√
W , where γ0 = γ

√
2. Thus, x3 = 0 in finite

time. Also, from (10) it follows that x1 = 0 in finite time.

IV. SIMULATION RESULTS

To show the effectiveness of the proposed control law,

simulations are carried out on the vehicle model, the system

parameters used are listed in Table II.

Parameter Value Parameter Value Parameter Value

mc 1800 τ 0.0043 Cd 0.65

mw 50 J 18.9 ρ 1.225

Af 6.6 kb 100 vw -6

bb 0.08 g 9.81 r 0.35

ν 0.95 - - - -

TABLE II

VALUES OF THE SYSTEM PARAMETERS (MKS UNITS).

To expose the performance, the proposed controllers are

simulated in iced road conditions. The numerical integration

was carried by applying the Euler method with a step time

of 10−3 s. The parameters for this case are given in Table I.

For the proposed SM controller, the parameters used in the

control law for the brake are α = 30, β = 0.001, k1 = 70,

k11 = 10, k12 = 50 and k2 = 100.

In order to increase the longitudinal friction force, it

is supposed that slip tracks a constant signal s∗ = 0.2.

In Figure 3 it can be seen that the selected reference s∗

produces a value close to the maximum of the function

φ(s) in every road condition.

On the other hand, to show robustness property of

the control algorithm in presence of parametric variations

we introduce a change of the friction coeficient ν which

produces different contact forces, namely F (s) and f(s).
Then, ν = 0.8 for t < 10 s, ν = 0.95 for t ∈ [10, 25) s,

and ν = 0.9 for t ≥ 25 s. It is worth mentioning that just

the nominal values were considered in the control design.

The figure 4 shows the wheel speed x1. The figure 5

presents the longitudinal speed x3. The brake controller

should be turned off when the longitudinal speed is close

to zero.
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Fig. 4. Wheel velocity x1
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Fig. 5. Vehicle velocity x3

The figures 6 and 7 shows the tracking error e1 for the

slip and the error e2 respectively.
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Fig. 6. Tracking error e1
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The control signal u response for the brake is presented

in Figure 8.
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Fig. 8. Control signal u

V. CONCLUSIONS

In this work a robust control scheme was designed for

the brake systems using integral SM control technique

combined with quasi-continuous SM algorithms. The

controller uses the SM control for achieve the error tracking

asymptotically to a zero and the integral SM guarantees

the disturbance rejection. The simulation results show good

performance.
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