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Abstract—In this paper, we perform a comparative study of 

two recently proposed high-resolution radar imaging paradigms: 
the descriptive experiment design regularization (DEDR) and the 
fused Bayesian regularization (FBR) methods. The first one, the 
DEDR, employs aggregation of the descriptive regularization and 
worst-case statistical performance (WCSP) optimization 
approaches to enhanced radar/SAR imaging. The second one, the 
FBR, performs image reconstruction as a solution of the ill-
conditioned inverse spatial spectrum pattern (SSP) estimation 
problem with model uncertainties via unifying the Bayesian 
minimum risk (MR) estimation strategy with the maximum 
entropy (ME) randomized a priori image model and other 
projection-type regularization constraints imposed on the 
solution. Although the DEDR and the FBR are inferred from 
different descriptive and statistical constrained optimization 
paradigms, we examine how these two methods lead to 
structurally similar techniques that may be further transformed 
into new computationally more efficient robust adaptive imaging 
methods that enable one to derive efficient and consistent 
estimates of the SSP via unifying both the robust DEDR and FBR 
considerations. We present the results of extended comparative 
simulation study of the family of the image formation/ 
enhancement algorithms that employ the proposed robustified 
FBR and DEDR methods for high-resolution reconstruction of 
the SSP in a virtually real time. The computational complexity of 
different methods are analyzed and reported together with the 
scene imaging protocols. The advantages of the well designed 
SAR imaging experiments (that employ the FBR-based and 
DEDR-related robust estimators) over the cases of poorer 
designed experiments (that employ the conventional matched 
spatial filtering as well as the least squares techniques) are 
verified trough the simulation study. 

 
Index Terms—Bayesian estimation, maximum entropy, radar 

imaging, regularization, remote sensing, spatial spectrum 
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I. INTRODUCTION 

HE goal of this study is to address and discuss a new 

computationally efficient approach to high-resolution 

radar/SAR imaging as an ill-conditioned inverse problem of 

estimating the spatial spectrum pattern (SSP) of the wavefield 

sources scattered from the probing surface (referred to as the 

radar/SAR image). The SSP estimation problem is a statistical 

ill-conditioned nonlinear inverse problem [6], [7]. Because of 

the stochastic nature and nonlinearity, no unique regular 

method exists for reconstructing the SSP from the finite-

dimensional measurement data in an analytic closed form. 

Hence, the particular solution strategy to be developed and 

applied must unify the practical data observation method with 

some form of statistical regularization that incorporates the a 

priori model knowledge about the SSP to alleviate the 

problem ill-poseness. The classical imaging with radar or SAR 

implies application of the method called “matched spatial 

filtering” (MSF) that originates from the celebrated maximum 

likelihood (ML) estimation strategy [14]. In the statistical 

terms [2], [6], [14] such a method implies application of the 

adjoint SFO to the recorded data, computation of the squared 

norm of a filter outputs and their averaging over the actually 

recorded samples (the so-called snapshots [10]) of the 

independent data observations. As it was analyzed in many 

works, e.g. [1] – [27], the MSF method does not exploit all the 

“degrees of freedom” of the inverse problem at hand, thus 

manifests low spatial resolution performances. The recent 

non-parametric approaches to high-resolution enhanced 

radar/SAR imaging are based on treatment the problem at 

hand as an ill-posed (ill-conditioned) nonlinear inverse 

problem with model uncertainties [6] – [8], [15], [16].  The 

principal idea is to employ different regularization paradigms, 

e.g. [6] – [8] to resolve the SSP estimation inverse problem 

with minimum risk (i.e. maximum spatial resolution balanced 

with noise suppression) subject to some non-trivial ME and 

other projection-type constraints imposed on the solution (i.e. 

incorporate the a priori model information with minimum 

subjective decision making). In this study, we provide an 

overview of the recently developed descriptive experiment 

design regularization (DEDR) and the fused Bayesian 
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regularization (FBR) non-parametric paradigms for super-

high-resolution radar/SAR image formation and enhancement/ 

reconstruction. The first one, the DEDR, developed in [26], 

[27] employs aggregation of the descriptive regularization and 

worst-case statistical performance (WCSP) optimization 

approaches to enhanced radar/SAR imaging. The second one, 

the FBR, developed in [7], [8], [25],  performs image 

reconstruction as a solution of the ill-conditioned inverse 

spatial spectrum pattern (SSP) estimation problem with model 

uncertainties via unifying the Bayesian minimum risk (MR) 

estimation strategy with the maximum entropy (ME) 

randomized a priori image model that incorporates the 

projection-type regularization constraints imposed on the 

solution. Although the DEDR and the FBR are inferred from 

different descriptive and statistical constrained optimization 

paradigms, we examine how these two methods lead to 

structurally similar techniques that may be further transformed 

into new computationally more efficient robust adaptive 

imaging methods that enable one to derive efficient and 

consistent estimates of the SSP via unifying both the robust 

DEDR and FBR considerations. The principal innovative 

contribution of this study may be briefly summarized as 

follows: 

" Unification of the family of the DEDR-related and FBR-
related enhanced RS imaging techniques via comparative 
analysis of their operational computational structures.  

" Development of the robustified versions of the DEDR and 
FBR methods via alleviating the ill-poseness of the nonlinear 
adaptive operator inversions in the overall image 
reconstruction procedures.   

" Design of efficient computational algorithms that perform 
robust adaptive spatial processing for enhanced RS image 
formation in a virtually real computational time.  

Also, we are going to present the results of extended 
comparative simulation studies of the family of the robustified 
DEDR-related and FBR-related  SSP estimation algorithms 
using the MATLAB as simulation tools that provide 
efficiency and flexibility in performing all simulation 
experiments.  

II. PROBLEM MODEL AND EXPERIMENT DESIGN 

CONSIDERATIONS 

Consider a remote sensing experiment performed with a 
coherent array imaging radar or SAR (radar/SAR) that is 
traditionally referred to as radar imaging (RI) problem ([6] – 
[9]). The measurement sensor/SAR data wavefield u(y) = s(y) 
+ n(y) modeled as a superposition of the echo signals s and 
additive noise n is assumed to be available for observations 
and recordings within the prescribed time-space observation 

domain Y#y, where y = (t, p)T defines the time-space points in 

the observation domain Y = T$P. 
 

A. RS motivated problem model 

The model of the observation wavefield u is specified by 
the linear stochastic equation of observation (EO) of operator 
form: 

u = Se + n;   e % E;     u, n % U;  S: E & U (1) 
 
on the Hilbert signal spaces  E and U with the metric 
structures induced by the inner products, 
 

[e1,
 e2]E =

21( ) ( )
X

e e d'( x x x        and 

[u1,
 u2]U =

21( ) ( )
Y

u u d'( y y y , 
(2) 

 
respectively, where asterisk stands for complex conjugate. In 
(1), the S is referred to as the regular signal formation operator 
(SFO). It defines the transform of random scattered signals 

e(x)%E(X) distributed over the remotely sensed scene 

(probing surface) X#x into the echo signals (Se(x))(y)%U(Y) 

over the time-space observation domain Y = T$P; t%T, p%P. 
In the functional terms [6], [9], such a transform is referred to 

as the operator S: E&U that maps the scene signal space E 
(the space of the signals scattered from the remotely sensed 
scene) onto the observation data signal space U. This operator 
model (1) in the conventional integral form [6] may be 
rewritten as 
 

u(y) = ( , )
X

S( y x e(x) dx + n(y) , (3) 

e(x) = e(f; ), *) = + ,; ,
F

e t( ! "  exp (–i2- f t) dt (4) 

 
where the functional kernel ( , )S y x  of the SFO S given by (1) 

defines the signal wavefield formation model [9], [11]. 
Following the multi-scale array/SAR radar RS problem 
phenomenology [6], [9], we adopt here an incoherent model 
of the backscattered field ( )e x  in the frequency-space 

observation domain X = F$ R = F$ P$ ., i.e. over the slant 

range )%P and azimuth angle *%. domains, respectively. 
When tackling the RS spatial analysis problems, the radar 
engineers typically work in the frequency-space domain, x = 

(f; ), *)T%X = F$ P$ .  [6], [7], [9]. However, because of the 
one-to-one mapping, only the spatial cross range coordinates   

r = (), *) may be associated with x = r as well [9], [11]. Such 
interpretation is valid if one assumes the narrowband system 
model [9], [11], [12] and incoherent nature of the 

backscattered field ( )e x .  

It is naturally inherent to the RS imaging experiments [7], 
[8], [11] to  consider the phasor e(f,r) in (3) to be an 
independent random variable at each frequency f, and spatial 

coordinates r, * with the zero mean value and /-form 

correlation function, Re( f,  f0 ; r,  r0) = 1 e(f; r)e*(f0, r0)2=           

= B(f, r)/(f –  f0 )/(r – r0) that enables one to introduce the 
following definition of the spatial spectrum pattern (SSP) of 
the wavefield sources distributed in the RS observation 
environment [9], [27] 
 

B(r) = Aver(2){e(r)} = 2| ( , ) |
F

e f( r |H(f )|
2

 df ; r %R. (5) 
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Here, 132 represents the ensemble averaging operator, while 
Aver(2) is referred to as the second order (i.e. nonlinear) 
statistical averaging operator defined by (5). Also in (5), H(f) 

represents the given transfer function of the radar receive 
channels that we assume to be identical for all antenna array 
elements and impose the conventional normalization,       

|H(f)|2 = 1 for all frequencies f%F  in the radar receiver 
frequency integrating band F [9]. In the conventional radar 
imaging setting [9], [18], [21], the initial RS imaging problem 

is to form an estimate ˆ( )B x  of the SSP distribution B(r) over 

the remotely sensed scene R#r by processing whatever values 

of measurements of the data field, u(y);  y%Y, are available.  
Next, following the RS data analysis methodology [1], [2], 

[20], [22] any particular physical signature of interest 4̂ (x) 

could be extracted from the reconstructed RS image B̂ (x) 
applying the so-called deterministic signature extraction 

operator 4. Hence, the particular RS signature (RSS) is 

mapped applying 4  to the reconstructed image, i.e. 
 

4̂ (x)  = 4( B̂ (x)). (6) 

 
Last, taking into account the RSS extraction model (6), we 

can reformulate now the RSS reconstruction problem as 
follows: to map the reconstructed particular RSS of interest 

4̂ (x) = 4( B̂ (x)) over the observation scene X#x via post-
processing whatever available values of the reconstructed 

scene image B̂ (x); x%X. 
 

B. Numerical model of the problem 

Viewing it as an approximation problem leads one to the 
projection concept for a transformation of the continuous data 

field u(y) to the  M$1 vector U = (U1, …, UM)T of sampled 
spatial-temporal data recordings. The M-d observations in the 
terms of projections [7], [8] can be expressed as 

 

u(M) (y) = (PU(M) u)(y) = 
1

( )
M

m mm
U 5

67 y  (7) 

 
with coefficients {Um = [u, hm]U} where PU(M) represents a 
projector onto the M-d subspace 

 

U(M) = PU(M)U = Span{8m(y)} (8) 
 

uniquely defined by a set of the orthogonal functions       

{8m(y) = ||hm(y)||–2hm(y);  m = 1, …, M} that are related to 

{hm(y)} as a dual basis in U(M) i.e. [hm, 8n]U = /mn 9 m, n = 1, 

…, M.  In the observation scene X#x , the discretization of the 

scattering field e(x) is traditionally performed over a  Q$N  
rectangular grid where Q defines the dimension of the grid 
over the horizontal (azimuth) coordinate x1 and N defines the 
grid dimension over the orthogonal coordinate x2 (the number 
of the range gates projected onto the scene). The discretized 
complex scattering function is represented by coefficients [7], 

[8] Ek = E(q,n) = [e, gk]E = ( ) ( )k

X

e g d( x x x ; k = 1,…, K = Q$N, of 

it decomposition over the grid composed of such identical 

shifted rectangular functions {gk(x)=g(q,n)(x)=1 if x%)(q,n)(x)= 

= rect(q,n)(x1, x2) and gk(x) = 0 for other x:)(q,n)(x) for all q = 

1, …, Q; n = 1, …, N; k = 1, …, K = Q$N}. Hence, the K-d 
approximation of the scattering field becomes 
 

e(K)(x)  = (PE(K) e)(x) = 
1

( )
K

k kk
E g

67 x  (9) 

 
where PE(K)  represents a projector onto such K-d signal 
approximation subspace 

 
E(K)  = PE(K)E = Span{gk(x)} (10) 

 
spanned by K orthogonal grid functions (pixels) {gk(x)}. 
Using such approximations, it is possible to proceed from the 
operator form (4) to its conventional numerical (vector) form 

 
U = S E + N , (11) 

 
where U, N and E define the vectors composed of the 
coefficients Um , Nm and Ek of the finite-dimensional 
approximations of the fields u, n and e, respectively, and S is 
the matrix-form representation of the SFO with elements    

{Smk = [Sgk , hm]U = *( ( ))( ) ( )k m

Y

Sg h d( x y y y ; k = 1, …, K; m = 1, 

…, M} [6]. Zero-mean Gaussian vectors E, N and U in (11) 
are characterized by the correlation matrices, RE , RN  and  RU 
= SRES+ + RN , respectively, where superscript + defines the 
Hermitian conjugate when it stands with a matrix or a vector. 
Because of the incoherent nature of the scattering field e(x), 
the vector E has a diagonal correlation matrix, RE=diag(B) = 

D(B) , in which the K$1 vector of the principal diagonal B is 

composed of elements Bk = 1EkEk
*2; k = 1, …, K. This vector 

B is referred to as a vector-form representation of the SSP. 
Hence, using the definition (6) the K-d approximation of the 

desired RS signature estimate 
( )

ˆ ( )K4 x  as a continuous 

function of x%X over the probing scene X is now expressed as 
follows 

 

( )
ˆ ( )K4 x = est{4< | e(K) (x) |

2 >} = 
1

ˆ( ) ( )
K

k kk
B g4

67 x ;    

x % X. 
(12) 

 
Analyzing (12), one may deduce that in every particular 

measurement scenario (specified by the corresponding 
approximation spaces U(M) and E(K)) one has to derive the 

estimate B̂  of a vector-form approximation of the SSP that 
uniquely defines via (12) the approximated continuous pixel-

format reconstructed map ( )
ˆ ( )K4 x  of the desired RS signature 

distributed over the observed scene X#x. Hence, the vector 
 

#̂ = vec{4( ˆ
kB ); k = 1, …, K} (13) 

 
represents the numerical (i.e., vector-form) model of the 
reconstructed RS signature (RSS) in the conventional pixel 
format. Thus, the desired continuous-form RSS is uniquely 
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reconstructed from the estimate B̂  of the SSP vector (pixel-
formatted image) via (12).  

C. Experiment-design considerations 

The experiment design (ED) aspects of the problem at hand 
implies the analysis of how to choose (finely adjust) the basis 
functions {gk(r)} that span the signal representation subspace 
E(K) = PE(K)E = Span{gk} for a given observation subspace  

U(M) = Span{5m} [6], [8], [12]. Here, we formalize such the 
ED considerations via imposing the metrics structure in the 
solution space [6], [8] defined by the inner product 
 

||B||2B(K) = [B, MB] (14) 
 
where B(K) represents the so-called correctness convex 
solution set [6], and M is referred to as the metrics inducing 
operator. Hence, the selection of M provides additional 
geometrical ED degrees of freedom of the problem model. In 
this study, we specify the model for M that corresponds to the 
numerical approximation of the Tikhonov’s stabilizer of the 
second order [6], [8]. Next, following [6], we incorporate the 
projection-type a priori information, in which case the SSP 
vector B satisfies the linear constraint equation 

 
GB = C,    i.e.  G–GB = BP (15) 

 
where BP = G–C and  G– is the Moore-Penrose pseudoinverse 

of a given projection constraint operator G: B(K) & B(Q), and 

the constraint vector C% B(Q)  and the constraint subspace           
B(Q) (Q

 < K) are assumed to be given [8]. In (15), the constraint 
operator G projects the portion of the unknown SSP onto the 
subspace where the SSP values are fixed by C. In practice, 
such limitations may specify also the system calibration [15], 
[22].  

III. HIGH-RESOLUTION NONPARAMETRIC IMAGING  

A.  DEDR method 

In the descriptive statistical formalism, the desired SSP 

vector B̂  is recognized to be the vector of the principal 
diagonal of an estimate of the correlation matrix RE(B), i.e. 

B̂ = { ˆ
ER }diag. Thus, one can seek to estimate B̂  = { ˆ

ER }diag  

given the data correlation matrix RU pre-estimated via 
averaging J ; 1 independent sampled correlations [1], [24]  

 

ˆ
UR = Y = 

Jj%
aver {U(j)U

+
(j)} = 

( ) ( )1

1
j j

J

jJ

<
67 U U , (16) 

 
and determining the solution operator (SO) F such that   
 

B̂  = { ˆ
ER }diag = {FYF+}diag . (17) 

 
To optimize the search for the desired SO F we reformulate 

here the DEDR strategy [26], [27] 
    

F = arg {min
F

= (F)}   subject to    <||$ ||2 >p($ ) > /  (18) 

 
where the conditioning term represents the statistical worst-
case statistical performance (WCSP) regularization constraint 
imposed on the unknown particular disturbed component of 

the uncertain SFO matrix [26], S!  = S + $ , where S 

represents the regular SFO, $  represents the random SFO 
perturbation term, and the DEDR “augmented risk” functional 
is defined as 
 

= (F) = tr{<(F S!  – I)A(F S!  – I)+> p($ )}  

+ ?tr{FRNF+}. 
(19) 

 
The DEDR strategy (18) implies the minimization of the 

weighted sum of the systematic and fluctuation errors (19) in 
the desired estimate (17), in which the unknown disturbances 
of the SFO $  are treated through the WCSP bounding 
constraint (18) imposed onto the averaged squared norm of 
$ . The selection (adjustment) of the regularization parameter 

? and the weight matrix A provides the additional DEDR 
“degrees of freedom” incorporating any descriptive properties 
of a solution if those are known a priori [26], [27]. We 
incorporate also two additional requirements into such DEDR 
strategy: (i) the SO must involve the adjoint SFO S+ (to satisfy 
the observability condition [26]); (ii) the resulting SO must 
admit a representation form that does not involve the 
inversion of Y (to be applicable to the scenarios with the low-
rank Y, e.g. SAR imaging). These additional requirements 
constitute the principal distinguishing aspects of the pursued 
DEDR approach from the conventional minimum risk 
strategies [9], [14], [24] and lead to the following 
reformulated conditional optimization problem [26], [27]     

 

F =  arg 
F

min
/>2@1 @)(

2||||
max

p

 {= (F)} . 
(20) 

 
To proceed with the derivation of the SO (20), in [26], [27] 

the following was performed: (i) decomposition of risk (19); 
(ii) evaluation of the maximum value A  of the bounding 

constraint in (20) applying the Cauchy-Schwarz inequality. 
Doing this, we translate the original min-max problem (20) 
into the equivalent (under the specified constraints) 
aggregated optimization problem  
 

F = arg {min
F

=DEDR(F)} (21) 

 
with the aggregated DEDR risk functional, 
 

=DEDR(F)} = tr{(FS – I)A(FS – I)+} + ?tr{F BR F+} (22) 

 
where 
 

( )AB B6R R  = (RN + A I); /A / ?6 ;  0. (23) 

                                    
The solution of the minimization problem (21) was derived 

and detailed in [26], [27]; the resulting SO has the following 
representation  
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FDEDR = KA,?,AS+ 1C
BR  (24) 

i.e., is a composition of the whitening filter, 1C
BR , the matched 

spatial filter,  S+, and the regularized reconstruction operator 
 

KA,?,A = (S+ 1C
BR S + ?A–1)–1. (25) 

                       
Note that the derived SO (24) involves S+ (i.e. satisfies the 

DED-observability constraints) and does not involve the 
inversion of Y (i.e. is applicable to reconstructive SAR 
imaging problems with only one recorded realization of the 
trajectory data signal available for further processing, J = 1).  
 

B.  FBR method 

The robustified numerical version of the fused Bayesian-
regularization (FBR) method for reconstruction of the power 
spatial spectrum pattern (SSP) of the wave field scattered from 
a remotely sensing scene (that is referred to as a desired RS 
image) given a finite set of array radar/SAR signal recordings 
was developed originally in [7]. Since the SSP estimation is in 
essence a nonlinear numerical inverse problem, the 
proposition in [7], [8] was to alleviate the problem ill-
poseness by robustification of the Bayesian estimation 
strategy [14], [24] via performing the non adaptive 
approximations of the reconstructive operators that 
incorporate the non trivial metrics considerations for 
designing the proper solution space and different 
regularization constraints imposed on a solution.  

The estimator that produces the high-resolution optimal (in 

the sense of the Bayesian minimum risk strategy) estimate B̂  
of the SSP vector via processing the M-d data recordings U 
applying the FBR estimation strategy that incorporates also 
nontrivial a priori geometrical and projection-type model 
information was developed in [7] and [8]. Such optimal FBR 
estimate of the SSP is given by the nonlinear equation  
 

B̂  = BP + PB0 + W( B̂ ){V( B̂ ) – Z( B̂ )}. (26) 

 
In (26), the constraint BP is specified by (15) and B0 

represents the a priori SSP distribution to be considered as a 

zero step approximation to the desires SSP estimate B̂ . The 

sufficient statistics (SS) vector V( B̂ ) = {F( B̂ )UU+F+( B̂ )}diag 

(vector composed of the principal diagonal of the embraced 
matrix) is formed via applying to the measured data vector U, 
the solution-dependent SS formation operator [7] 
 

F = F( B̂ ) = D( B̂ )(I + S+ 1C
NR SD( B̂ ))–1S+ 1C

NR . (27) 

 

The SS shift vector in (26) is defined as Z( B̂ ) [7], and the 
composite solution-dependent smoothing-projection window 
operator  
 

W( B̂ ) = PWD ˆ( )B  (28) 

 

is composed of the projector 
 

PW = (I – G–G) (29) 
 
and the solution dependent smoothing window 
 

D( B̂ ) = [diag({S+F+FS}diag) + ?̂ D2( B̂ )M( B̂ ) ]
–1, (30) 

 

in which the regularization parameter ?̂  is to be adaptively 

adjusted using the system calibration data [7], [8]. The 
resulting FBR-optimal estimate in the numerical (discrete 
pixel) format is given by 
 

ˆ
FBRB = BP + PB0 + W( B̂ ){V( B̂ ) – Z( B̂ )}. (31) 

 
Because of the non-linearity and complexity of the solution-

dependent K-d operator inversions needed to be performed to 

compute the SS V( B̂ ), the window W( B̂ )  and SS shift 

Z( B̂ ), the computational load of such optimal FBR estimator 
(26), (31) developed originally in [7], [8] is extremely high to 
address that as a practically realizable estimator of the SSP 
and RSS (i.e. practical high-resolution RS radar imaging and 
signature mapping technique realizable to operate in a real-
time mode). 
 

C. DEDR-related and FBR-related robust spatial filtering 
(RSF) techniques 

The robustification scheme for real-time implementation of 
the DEDR estimator (17) and the FBR estimator (26), (31) 
enables one to reduce drastically the computation load of the 
image formation procedure without substantial degradation in 
the resolution and overall image performances. Here first, we 
propose the robustified versions of the DEDR estimator 
defined by (17) and the FBR estimator given by (26) that we 
refer to as the robust FBR reconstructive filtering (RFBR) 
method. This method is a direct generalization of the previous 
one proposed in [7] and [8] that we perform here via roughing 
PW = I and approximating both the SS formation operator 

F( B̂ ) and the smoothing window D( B̂ ) in (26) by roughing 

D( B̂ ) E D = b0I, where b0 represents the expected a priori 
image grey level [7], [8]. Hence, the robustified SS formation 
operator 

 

F = A–1())S+    with    A()) = S+S + )–1I (32) 
 

becomes the regularized inverse of the SFO S with 

regularization parameter )–1, the inverse of the signal-to-noise 

ratio (SNR) ) = b0/N0 for the adopted white observation noise 
model, RN = N0I with intensity N0. In that case, the robust 
smoothing window 

 

W = D = (w0I + M)–1 (33) 
 
is completely defined by the matrix M that induces the metrics 
structure in the solution space [6] with the scaling factor w0 = 
tr{S+F+FS}/K. Such robustified W can be pre-computed a 
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priori for a family of different admissible ) as it was proposed 
in the previous studies [7], [8]. Here, we employ a practical 

constraints of high SNR operational conditions [22], ) >> 1, 
in which case one can neglect also the constant bias Z = Z0I in 
(26) because it does not affect the pattern of the SSP estimate 
(it influences only the constant grey level in the resulting 

solution but Z0 << A for  ) >> 1). Following these practically 
motivated assumptions, the resulting RFBR estimator for the 
SSP becomes 

 
ˆ

RFBRB = B0 + DV , (34) 

 
where V = {FUU+F+}diag  represents now the robust SS vector.  
 

D. Matched spatial filtering (MSF) algorithm 

The simplest rough SSP and RSS estimators can be 
constructed as further simplification of (34) if the trivial a 
priori model information (PW = I and B0 = b0I) is adopted, and 
roughly approximate the SS formation operator F by the 
adjoint SFO, i.e. the matched filter 

 

F E F0S
+ (35) 

 

where the  normalizing  constant  F0  provides  balance  of  the  

operator norms 2

0!  = tr-1{S+SS+S}tr{FSS+F+} [6]. In that case, 

the estimator (34) is simplified to its rough matched spatial 
filter (MSF) version 

 
ˆ

MSFB  = D G , (36) 

 

where the rough SS, G = 2

0! {S+UU+S }diag , is now formed 

applying the adjoint operator (i.e. the matched spatial filter) 

S+, and the windowing of the rough SS G is performed 

applying the smoothing filter D = (w0I + M)–1 with the 
nonnegative entry [7], [8]. The (36) is referred to as matched 
spatial filtering (MSF) algorithm for estimation of the SSP. 
Equation (36) is recognized to be a vector-form representation 
of the conventional kernel SSP estimation algorithm [9], [24], 
in which the SS is formed as the squared modulus of the 
outcomes of the matched spatial filter applied to the recorded 
data signal (trajectory signal in the SAR terminology [12], 
[23]). Thus, in the framework of the FBR inference-based 
approach to RS imaging [6], the traditional MSF technique 
(36) can be viewed as a rough simplified version of the RFBR 
algorithm (34).  
 

E. Robust adaptive spatial filtering (RASF) algorithm  

The RASF solution operator (SO) is a modification of the 
(27) for the case of an arbitrary zero-mean noise with the 
correlation matrix RN, the equal importance of the systematic 

and noise error measures, i.e. ?  = 1, and the solution 

dependent weight matrix A = 1ˆ CD . In this case, the SO is 
recognized to be the robust adaptive spatial filter (RASF) 
 

FRASF = (S+ 1C
NR S + 1ˆ CD )–1S+ 1C

NR  . (37) 

IV. QUALITY METRICS 

The traditional quantitative quality metric [1] for RS images 
is the so-called Improvement in the Output Signal to Noise 
Ratio (IOSNR), which provides the metrics for performance 
gains attained with different employed estimators in dB scale 

 

+ ,
+ ,

2
( )

1

10 2
( )

1

ˆ

( ) 10 log  ,
ˆ

                     1,...,  , 

K MSF

k kk

K p

k kk

b b
IOSNR dB

b b

p P

6

6

H ICJ K6 3 J K
J KCL M

6

7
7  (38) 

 
where  bk  represents the value of the k-th element (pixel) of 

the original SSP, ( )ˆ MSF

kb  represents the value of the k-th 

element (pixel) of the rough SSP estimate formed applying the 

matched spatial filtering (MSF) method, and ( )ˆ p

kb  represents 

the value of the  k-th element (pixel) of the enhanced SSP 
estimate formed applying the pth enhanced imaging method         
(p = 1,…,P), respectively.  

The percentage IOSNR (PIOSNR) quality metric is a 
modification of the IOSNR metric [22]; it expresses the 
percentage of the gained reconstruction improvement 
specified as follows 
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Finally, the total Mean Square Error (MSE) is a quality 

metric defined as [24] 
 

* +2
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MSE b b p P

!
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The quality metrics specified by (38), (39) and (40) allow to 

quantify the performances of the employed SSP and RSS 
reconstructive estimation methods (enumerated by p = 
1,…,P).  

V. SIMULATIONS 

The first simulation experiment was performed for the test 
(artificially synthesized) scenes imaging applying the SAR 
with partially synthesized aperture as an RS imaging system 
[8]. The SFO of all RS images were factorized along two axes 
in the image plane: the azimuth (horizontal axis, x1) and the 
range (vertical axis, x2). Following the common practically 
motivated technical considerations [5], [12], [23] we modelled 
a triangular shape of the SAR range ambiguity function (AF) 

,r(x2) in the x2 direction, and a |sinc|2 shape of the side-

looking SAR azimuth AF ,a(x1) in the x1 direction at the zero 
crossing level for the simulated SAR system with fractionally 
synthesized array [8], [23], [24].  
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The behavior and performance indices of the described 

estimators were examined for five RS system configurations 

applied to three test scenes as specified below. 

In the first simulation scenario, the assigned values of the 

AF widths were: 5 pixels width for ,r(x2) and 10 pixels width 

for ,a(x1). In the simulations reported in Fig. 1, we considered 

the case of white Gaussian observation noise with the SNR of 

30 dB. Figure 1(a) shows the 512×512-pixel original 

synthesized test scene. Figure 1(b) reports the image formed 

implementing the MSF method. Figure 1(c) presents the 

reconstructed (enhanced) synthesized image formed using the 

RASF estimator. Figure 1(d) shows the reconstructed 

(enhanced) synthesized image formed using the DEDR 

estimator. Figure 1(e) presents the reconstructed (enhanced) 

synthesized image formed using the FBR estimator. Last, 

Figure 1(f) shows the reconstructed (enhanced) synthesized 

image formed using the RFBR estimator. The quantitative 

quality metrics of the IOSNR, PIOSNR and MSE gained with 

the employed enhanced imaging methods for the simulated 

fractional aperture synthesis scenarios with different levels of 

noise are reported in Table 1. 

In the second simulation scenarios, the high-resolution real-

world environmental images were used as test scenes [4]. The 

first tested scene is shown in Fig. 2(a) and the second tested 

scene is shown in Fig. 3(a). The simulation experiments were 

run with the following system-level specifications: 5 pixels 

width for ,r(x2) and 20 pixels width for ,a(x1), respectively. 

In the basic simulations, we considered the case of white 

Gaussian observation noise with the SNR of 30 dB. Figures 

2(b) and 3(b) show the images formed via implementing the 

MSF method with the system parameters specified in the 

figure captions. Figures 2(c) and 3(c) present the 

reconstructed (enhanced) images formed using the RASF 

estimator. Figures 2(d) and 3(d) show the enhanced images 

reconstructed with the DEDR method. Figures 2(e) and 3(e) 

present the reconstructed (enhanced) images formed using the 

FBR estimator. Figures 2(f) and 3(f) show the enhanced 

images reconstructed with the RFBR method. The quantitative 

quality metrics of the IOSNR, PIOSNR and MSE gained with 

different tested enhanced imaging methods for the simulated 

fractional aperture synthesis scenarios with different levels of 

noise are reported in Tables 2 and 3, respectively. 

In the third reported here simulation scenario that was run 

with the second real-world SAR scene, the system-level 

specifications were as follows: 5 pixels width for ,r(x2), 40 

pixels width for ,a(x1) for the first (1st) system and 50 pixels 

width for ,a(x1) for the second (2nd) simulated fractional SAR 

imaging system with SNR of 30 dB. Figures 4(a) and 5(a) 

show the 512×512-pixel high-resolution original scene. 

Figures 4(b) and 5(b) present the images of the same scene 

formed implementing the MSF method. Figures 4(c) and 5(c) 

display the reconstructed (enhanced) scene images formed 

using the RASF estimator. Figures 4(d) and 5(d) show the 

enhanced images reconstructed with the DEDR method. 

Figures 4(e) and 5(e) display the enhanced scene images 

reconstructed using the FBR estimator. Last, figures 4(f) and 

5(f) present the reconstructed (enhanced) images formed using 

the RFBR technique. The IOSNR, PIOSNR and MSE 

quantitative quality metrics gained with different simulated 

enhanced imaging methods for different fractional SAR 

operational scenarios and different levels of noise are reported 

in Tables 4 and 5, respectively. The presented simulation 

protocols are indicative of improvements both in the 

qualitative and quantitative metrics gained with the proposed 

robust DEDR and FBR-related techniques in comparison with 

the conventional MSF and RSF algorithms.  

VI. COMPUTATIONAL COMPLEXITY  

Real-time computing is traditionally referred to as study of 

software systems which are subject to some real-time 

operational constraints [1] (e.g., operational deadlines from en 

event to a system response) [19]. By contrast, a non-real-time 

system is one for which there is no deadline, even if fast 

response or high performance is desired or preferred [1], [19]. 

The needs of real-time software are often addressed in the 

context of real-time operating systems [1], and synchronous 

programming languages [2], which provide frameworks on 

which to build up the real-time application software [2], [3]. 

A real time RS data processing/imaging system is one, 

which performances can be considered (within a particular RS 

context) to be mission critical [3]. Real-time computations can 

be said to have failed if they are not completed before their 

deadline, where the deadline is relative to an RS event [19]. A 

real-time deadline must be met, regardless of system load [1]. 

For the previously described image enhancement and 

SSP/RSS mapping methodologies, it is reasonable to define 

the computational complexity via determining the number of 

computational operations needed to perform the particular 

employed algorithms [10]. Consider K as a matrix, I as an 

inverse matrix. Let suffix n represents the number of matrix 

multiplications and/or inversions required to complete the 

mathematical operations (e.g., K(4) represents a quadruple 

matrix multiplication, I(2) represents a double matrix 

inversion, etc.). For the particular employed simulation 

formats, K and I are 512×512 matrixes. The number of 

operations needed to complete one reconstruction cycle for the 

tested and compared methods are reported in Table 6. With 

these results, one can analyze the processing time (in 

operation cycles) needed to perform computationally each 

proposed/employed algorithm. Last, Table 7 reports the 

computational times required for completing the compared 

SSP/RSS reconstructive techniques with three different typical 

computer processing unit (CPU) clock speeds: (i) with a 

personal computer (PC) running at 2.66 GHz with a single 

processor; (ii) with a workstation (WS) running at 3.80 GHz 
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with a duo processor, and (iii) with a dedicated hardware 

(DH) running at 300 MHz with a single processor. 

The presented results of comparative simulation analysis 

illustrate the behavior and overall imaging performance 

improvements gained with the proposed robust DEDR and 

FBR-related approaches compared with other previously 

developed methods [1], [4], [12], [20] in both the 

reconstruction quality metrics and computational complexity 

reduction. The advantages of the well designed robust 

imaging experiments (that employ the RASF, DEDR, and 

RFBR methods) over the cases of poorer designed 

experiments (that employ the conventional MSF and RSF 

algorithms) were investigated through extensive simulation 

study and reported here for different multi-grade test scenes. 

 
 

 

 

 

 

a. Original artificially synthesized test scene.  b. Low-resolution scene image formed applying the MSF method. 

 

 

 

c. Test scene reconstruction using the RASF estimator.  d. Test scene reconstruction using the DEDR estimator. 

 

 

 

e. Test scene reconstruction using the FBR estimator.  f. Test scene reconstruction using the robust RFBR estimator. 

Fig. 1. Simulation results of the synthesized test scene SSP reconstruction. Specifications of the simulation experiment are summarized in Table 1. 
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a. First real-world original high-resolution scene.  b. Low-resolution scene image formed applying the MSF method. 

 

 

 

c. Scene reconstruction using the RASF estimator.  d. Scene reconstruction using the DEDR estimator. 

 

 

 

e. Scene reconstruction using the FBR estimator.  f. Scene reconstruction using the robust RFBR estimator. 

Fig. 2. Simulation results of the first real-world SAR scene imaging with SSP reconstruction performed with the 1st system.  
Specifications of the simulation experiment are summarized in Table 2. 

 
 

42 R&I, 2008, № 1



 
 

 

 

 

 

a First real-world original high-resolution scene.  b. Low-resolution scene image formed applying the MSF method. 

 

 

 

c. Scene reconstruction using the RASF estimator.  d. Scene reconstruction using the DEDR estimator. 

 

 

 

e. Scene reconstruction using the FBR estimator.  f. Scene reconstruction using the robust RFBR estimator. 

Fig. 3. Simulation results of the first real-world SAR scene imaging with SSP reconstruction performed with the 2nd system.  
Specifications of the simulation experiment are summarized in Table 3. 
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a. Second real-world original high-resolution scene.  b. Low-resolution scene image formed applying the MSF method. 

 

 

 

c. Scene reconstruction using the RASF estimator.  d. Scene reconstruction using the DEDR estimator. 

 

 

 

e. Scene reconstruction using the FBR estimator.  f. Scene reconstruction using the robust RFBR estimator. 

Fig. 4. Simulation results of the first real-world SAR scene imaging with SSP reconstruction performed with the 1st system.  
Specifications of the simulation experiment are summarized in Table 4. 
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a. Second real-world original high-resolution scene.  b. Low-resolution scene image formed applying the MSF method. 

 

 

 

c. Scene reconstruction using the RASF estimator.  d. Scene reconstruction using the DEDR estimator. 

 

 

 

e. Scene reconstruction using the FBR estimator.  f. Scene reconstruction using the robust RFBR estimator. 

Fig. 5. Simulation results of the first real-world SAR scene imaging with SSP reconstruction performed with the 2nd system.  
Specifications of the simulation experiment are summarized in Table 5. 
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TABLE 1 

COMPARATIVE TABLE OF THE QUALITY METRICS GAINED WITH DIFFERENT ESTIMATION METHODS FOR THREE LEVELS OF NOISE (SNR).  
RESULTS ARE REPORTED FOR THE SYNTHESIZED TEST SCENE.  

SYSTEM SPECIFICATIONS: RANGE TRIANGULAR SHAPE OF AF ,R(X2) = 5 PIXELS WIDTH; AZIMUTH |SINC|2 SHAPE OF AF ,A(X1) = 10 PIXELS WIDTH. 

Method ! RASF DEDR FBR RFBR 

SNR [dB] ! 20 25 30 20 25 30 20 25 30 20 25 30 

IOSNR 
[dB] 

15.65 20.84 25.23 13.54 18.85 23.45 10.26 14.76 17.37 11.16 15.53 18.36 

PIOSNR 
(%) 

72.34 78.16 77.06 76.74 84.77 79.69 92.82 92.75 95.54 91.73 91.43 94.33 

M
et

ri
cs

 

MSF 0.20 0.50 0.60 0.23 0.40 0.50 0.03 0.20 0.10 0.04 0.22 0.14 

 
 
 

TABLE 2 
COMPARATIVE TABLE OF THE QUALITY METRICS GAINED WITH DIFFERENT ESTIMATION METHODS FOR THREE LEVELS OF NOISE (SNR).  

RESULTS ARE REPORTED FOR THE 1ST
 SYSTEM APPLIED TO THE FIRST SAR SCENE.  

SYSTEM SPECIFICATIONS: RANGE TRIANGULAR SHAPE OF AF ,R(X2) = 5 PIXELS WIDTH; AZIMUTH |SINC|2 SHAPE OF AF ,A(X1) = 20 PIXELS WIDTH. 

Method ! RASF DEDR FBR RFBR 

SNR [dB] ! 15 20 25 15 20 25 15 20 25 15 20 25 

IOSNR 
[dB] 

10.15 15.32 20.25 8.76 13.74 18.84 5.47 9.85 12.63 6.15 10.62 13.04 

PIOSNR 
(%) 

81.37 86.62 85.24 83.22 91.14 90.21 96.63 91.68 99.10 95.18 90.29 98.24 

M
et

ri
cs

 

MSF 0.16 0.46 0.57 0.18 0.37 0.46 0.02 0.24 0.24 0.03 0.29 0.34 

 
 
 

TABLE 3 
COMPARATIVE TABLE OF THE QUALITY METRICS GAINED WITH DIFFERENT ESTIMATION METHODS FOR THREE LEVELS OF NOISE (SNR).  

RESULTS ARE REPORTED FOR THE 2ND
 SYSTEM APPLIED TO THE FIRST SAR SCENE.  

SYSTEM SPECIFICATIONS: RANGE TRIANGULAR SHAPE OF AF ,R(X2) = 5 PIXELS WIDTH; AZIMUTH |SINC|2 SHAPE OF AF ,A(X1) = 30 PIXELS WIDTH. 

Method ! RASF DEDR FBR RFBR 

SNR [dB] ! 15 20 25 15 20 25 15 20 25 15 20 25 

IOSNR 
[dB] 

9.42 14.87 19.37 7.83 12.96 17.24 5.92 10.23 15.37 6.23 11.73 15.96 

PIOSNR 
(%) 

77.37 82.74 81.24 79.32 87.74 86.41 97.83 94.28 99.26 96.28 93.29 98.64 

M
et

ri
cs

 

MSF 0.30 0.60 0.70 0.33 0.50 0.60 0.13 0.30 0.20 0.14 0.32 0.24 

 
 
 

TABLE 4 
COMPARATIVE TABLE OF THE QUALITY METRICS GAINED WITH DIFFERENT ESTIMATION METHODS FOR THREE LEVELS OF NOISE (SNR).  

RESULTS ARE REPORTED FOR THE 1ST
 SYSTEM APPLIED TO THE SECOND SAR SCENE.  

SYSTEM SPECIFICATIONS: RANGE TRIANGULAR SHAPE OF AF ,R(X2) = 5 PIXELS WIDTH; AZIMUTH |SINC|2 SHAPE OF AF ,A(X1) = 40 PIXELS WIDTH. 

Method ! RASF DEDR FBR RFBR 

Noise [dB] ! 15 20 25 15 20 25 15 20 25 15 20 25 

IOSNR 
[dB] 

12.42 17.82 22.75 9.42 14.72 19.64 5.23 10.22 15.33 6.24 11.25 16.45 

PIOSNR 
(%) 

65.77 70.84 69.96 67.28 75.44 74.43 90.33 87.38 93.70 89.18 86.39 92.54 

M
et

ri
cs

 

MSF 0.26 0.56 0.66 0.29 0.46 0.56 0.14 0.26 0.16 0.10 0.28 0.20 
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TABLE 5 

COMPARATIVE TABLE OF THE QUALITY METRICS GAINED WITH DIFFERENT ESTIMATION METHODS FOR THREE LEVELS OF NOISE (SNR).  
RESULTS ARE REPORTED FOR THE 2ND

 SYSTEM APPLIED TO THE SECOND SAR SCENE.  

SYSTEM SPECIFICATIONS: RANGE TRIANGULAR SHAPE OF AF ,R(X2) = 5 PIXELS WIDTH; AZIMUTH |SINC|2 SHAPE OF AF ,A(X1) = 50 PIXELS WIDTH. 

Method ! RASF DEDR FBR RFBR 

SNR [dB] ! 15 20 25 15 20 25 15 20 25 15 20 25 

IOSNR 
[dB] 

13.64 18.32 23.74 10.45 15.76 20.73 6.37 11.52 16.75 7.43 12.53 17.89 

PIOSNR 
(%) 

74.77 79.74 78.42 76.32 84.44 83.41 94.63 91.53 97.12 93.58 90.89 96.74 

M
et

ri
cs

 

MSF 0.25 0.55 0.65 0.28 0.45 0.55 0.08 0.25 0.15 0.09 0.27 0.19 

 
 

TABLE 6 
NUMBER OF OPERATIONS PER CYCLE FOR COMPUTATIONAL IMPLEMENTATION OF DIFFERENT ENHANCED IMAGING METHODS. 

RESULTS ARE REPORTED FOR EACH ANALYZED METHOD. 

Method Equation Processing Algorithm Operations per cycle 

DEDR ( 24 ) FDEDR = KA,-,.S
+ 1$

/R  ! K
(2)·I 

FBR ( 31 ) ˆ
FBRB = BP + PB0 + W( B̂ ){V( B̂ ) – Z( B̂ )} ! K + K(2) + K(4)·

I 

RFBR ( 34 ) ˆ
RFBRB = B0 + 0V ! K + K(2) ·I 

MSF ( 36 ) ˆ
MSFB  = 0 1 ! K·I

RASF ( 37 ) FRASF = (S+ 1$
NR S + 1ˆ $D )–1S+ 1$

NR  ! K·I(2) 

 
 

TABLE 7 
COMPARATIVE TABLE OF THE REQUIRED PROCESSING TIME FOR THE COMPARED ENHANCED IMAGING METHODS.  

THE RESULTS ARE REPORTED IN SECONDS. 
NOTE – PROCESSING TIMES ARE CALCULATED CONSIDERING ALL THE CPU CLOCK SPEED IS DEDICATED;  

RESULTS MAY VARY DEPENDING ON THE PROCESSOR TYPE, CPU MEMORY AND SOFTWARE USED. 

Method Operation per cycle Total operations 
PC Time 
[seconds] 

WS Time 
[seconds] 

DH Time 
[seconds] 

DEDR K
(2)·I 1.34x108 0.05 0.035 0.45 

FBR K + K(2) + K(4)·
I 3.48x1013 1.30x104 9.15x103 11.60x103 

RFBR K + K(2) ·I 6.92x1010 26.15 18.21 230.66 

MSF K·I 1.34x108 0.05 0.035 0.45 

ASF K·I(2) 6.76x1010 25.41 17.69 225.12 

 
 

                         VII.   CONCLUDING REMARKS 

We have performed the detailed comparative study of 
different proposed robust numerical versions of two recently 
developed high-resolution adaptive radar/SAR imaging 
methodologies: DEDR and FBR techniques. The undergone 
study revealed structural similarity of the robustified 
algorithms invoked from both methodologies, in particular, 
structural similarity of the RASF (DEDR-related) and the 
RFBR (robust FBR-related) methods. The performed 
comparative analysis of the computational complexities of 
different imaging techniques based on the robust SSP and 
RSS estimators revealed that the DEDR-related and FBR-
related robust imaging algorithms manifest user-controlled 

real-time implementation performances because the RS 
deadline event is completed in each stage of the image 
reconstruction process to provide the system response in a 
virtually “real” (i.e., user-required) time.   

In the RS applications related to the real-world 5122512-

pixel scene image enhancement/reconstruction scenarios, the 

computational complexity for performing the enhanced RS 

imaging with the proposed RFBR algorithm in comparison 

with the original FBR method was drastically decreased, i.e., 

approximately 105 times and required 27 seconds of the 

overall computational time. In the same manner, the 

computation time required for performing the DEDR-related 

robust RASF imaging algorithm was decreased even more 
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drastically, approximately 1015 times with respect to the 

adaptive (non-robust) original FBR method and required 

approximately only 0.50 seconds of the overall computational 

time. Also, the simulation protocols reported for different 

testes scenarios verify in more details the substantial 

efficiency of the proposed here high-resolution robust 

radar/SAR imaging techniques. 
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