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Abstract 

Ancient masonry towers constitute a relevant part of the cultural heritage of humanity. Their 

earthquake protection is a topic of great concern among researchers due to the strong damage suffered 

by these brittle and massive structures through the history. The identification of the seismic behavior 

and failure of towers under seismic loading is complex. This strongly depends on many factors such as 

soil characteristics, geometry, mechanical properties of masonry and heavy mass, as well as the 

earthquake frequency content. A deep understanding of these aspects is the key for the correct seismic 

vulnerability evaluation of towers and to design the most suitable retrofitting measure. Recent 

tendencies on the seismic retrofitting of historical structures by means of prestressing are related to the 

use of smart materials. The most famous cases of application of prestressing in towers were discussed. 

Compared to horizontal prestressing, vertical post-tensioning is aimed at improving the seismic 

behavior of towers by reducing damage with the application of an overall distribution of compressive 

stresses at key locations. 
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1.  Introduction 

Existing ancient masonry towers (AMT) with different characteristics and functions are 

distributed all over the world and constitute a relevant part of the architectural and cultural heritage 

of humanity. These vertical structures were built either isolated or commonly included in different 

manners into the urban context, such as built as part of churches, castles, municipal buildings and 

city walls. Bell and clock towers (see Fig. 1), also named civic towers, were built quite tall for 

informing people visually and with sounds about time and extraordinary events such as civil 

defence or fire alarm, and to call the community to social meetings. Another reason that led to the 

construction of tall civic towers in the medieval cities of Italy was that they were seen as a symbol 

of richness and power of the great families.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strong damage or complete loss suffered by the cultural patrimony due to earthquake (EQ) has 

been occurring through the history of humanity as illustrated in Fig. 2, which shows the effects of 

the historical EQ occurred in Naples, Italy in 1805. Risk management of existing buildings located 

in EQ prone zones is integrated by two huge stages, the risk assessment and its reduction 

(Preciado, 2011). Nowadays there is an enormous variety of methods to assess the seismic risk of 

buildings (Carreño et al. 2012) and exists different opinions within the scientific community 

regarding which is the best procedure to follow for assessing this risk and the reduction measures. 

      

(a)  Italian bell towers 

 

(b) Clock tower 

Fig. 1 Historical masonry civic towers 
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Recent studies in EQ engineering are oriented to the development, validation and application of 

techniques to assess the seismic vulnerability of existing buildings (Carreño, et al., 2007; Barbat, 

et al., 2008; Lantada, et al., 2009, Pujades, 2012, Preciado and Orduña 2014 and Preciado et al., 

2014, 2015). 

 

 

Fig. 2 Earthquake of Naples, Italy on July 26th, 1805 (Kozak and Thompson, 1991) 

 

2.  Seismic vulnerability aspects on ancient masonry towers 

The occurrence of unexpected and unavoidable events such as EQs has demonstrated that AMT 

are one of the most vulnerable structural types to suffer strong damage or collapse as depicted in 

Fig. 3. Their protection is a topic of great concern among the scientific community. This concern 

mainly arises from the observed damages after every considerable EQ and the need and interest to 

preserve these structures. Although the recent progress in technology, seismology and EQ 

engineering, the preservation of these brittle and massive monuments stills represents a major 

challenge. These vertical structures are slender by nature, where bending plays an important role in 

the seismic performance. Moreover, the seismic vulnerability of masonry towers is increased by 

certain important aspects such as soil characteristics, adjacent buildings, large openings at belfries, 

nonlinear behavior of masonry due to its poor tensile strength, lack of good connection between 

structural elements, high vertical loading and progressive degradation. 
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Fig. 3 San Bernardino church in original conditions and observed damage after the 6.3 magnitude 

earthquake of L’Aquila, Italy on April 6th 2009 

  

2.1. Slenderness 

Probably the single most decisive factor affecting the seismic behavior of a wall is its 

slenderness, commonly expressed in terms of aspect ratio (H/L). High slenderness walls (H/L ≥ 2) 

are characterized by a ductile behavior, failing in a predominant bending mechanism similar to the 

presented by cantilever beams. In low slenderness structures or compact walls (H/L ≤ 1), the 

determining factor of the seismic performance is shear (Penelis and Kappos, 1997). NTCDF 

(2004) and Bazan and Meli (2003) affirm that the seismic behavior of walls importantly differs 

depending of their slenderness. Compact masonry walls (H/L ≤ 2) are mainly dominated by shear 

behavior, presenting a brittle failure. On the other hand, slender walls (H/L ≥ 2) are mainly 

governed by bending behavior and a ductile failure. If H/L > 4, the structure could be considered 

as excessively slender, being the case of most of AMT as depicted in Fig. 6. This could cause the 

failure by bending, shear, overturning by instability and transmission of elevated vertical loads to 

the foundation and soil (Fig. 4). 
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2.2. Boundary conditions 

The position of a masonry tower in the urban context is a very important aspect that influences 

the vulnerability of the structure (Sepe et al., 2008). These boundary conditions (see Fig. 5) could 

strongly modify its seismic behavior and have enormous impact in the generation of different 

failure mechanisms. Non-isolated towers were commonly built as part of churches or next to 

another building. The presence of adjacent walls or façades with different heights than the tower 

and the lack of connection between elements induce during an EQ a detachment of the different 

bodies, vibrating in an independent way and hitting each other, leading to serious damages. Curti 

et al. (2008) assessed the damage presented in 31 Italian bell towers (16 isolated and 15 with one 

or two shared sides with the church) due to the 1976 Friuli EQs (May M6.4 and September M6.1). 

The authors concluded that the presence of walls and façades adjacent to any tower at different 

heights are horizontal constraints increasing the seismic vulnerability by limiting the slenderness 

(short column effect). Moreover, induce localized stiffening zones that could cause the 

concentration of important stresses. 

 

 

 

 

 

 

 

 

 

(a) Bending 

 

(b) Diagonal shear 

 

(c) Rocking base  

 

(d) Foundation uplifting 

Fig. 4 Failure modes of slender masonry structures (Bazan and Meli, 2003) 
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Fig. 5 Position of the tower in the urban context (Sepe et al., 2008) 

 

2.3. Long-term heavy loads  

AMT were built as most of the cultural patrimony to mainly withstand the vertical loading 

generated by their self weight. The wall thickness of towers used to be determined by means of 

empirical rules transmitted from generation to generation by trial and error mainly based on the 

height (in some cases taller than 60 m) and observed damages after EQs. This led to the 

construction of walls with enormous thicknesses higher than 2 m. The roof system of masonry 

towers was usually made of the same material of walls. Even when reduced thicknesses were 

considered, the elevated mass of masonry generated problems of instability that could lead to its 

collapse during the construction works. Due to this, is quite frequent to especially find in Italy 

masonry towers with a plane or leaned roof system integrated by timber beams and fired-clay 

bricks. In Germany the masonry towers usually have a triangular timber roof externally covered by 

thin copper plates. On the other hand, fired-clay bricks were frequently used in Mexico and in 

some cases volcanic stones of low density or artisanal clay vessels to make lighter the roof system. 

Towers are slender structures under high vertical loading due to the height, wall thickness, 

presence of a roof system, high density of masonry and heavy bells, leading to the concentration of 

high compressive stresses at the base. All these issues and the deterioration of masonry through the 

centuries (progressive damage) make AMT extremely vulnerable to suffer a sudden collapse by an 

exceeding of their compressive strength or foundation failure. These sudden collapses have been 

occurring since centuries ago in this type of structures. The most famous cases are reported e. g. in 

Binda et al. (1992), Macchi (1993), GES (1993) and Binda (2008). They correspond to the sudden 

collapses of the bell tower of “Piazza San Marco”, Venice in 1902 (a replica was built as depicted 

mailto:adolfo.preciado@upzmg.edu.mx
mailto:adolfo.preciado@upzmg.edu.mx


 

*Adolfo Preciado, Professor in Structural Engineering, E-mail: adolfo.preciado@upzmg.edu.mx 
aPh.D., E-mail: adolfo.preciado@upzmg.edu.mx 
bPh.D., E-mail gianni.bartoli@unifi.it 
cPh.D., E-mail: h.budelmann@ibmb.tu-bs.de 

 

 

 

in Fig. 6), the civic tower of Pavia in 1989 (see Fig. 7) and the bell tower of the church of “St. 

Maria Magdalena” in Goch, Germany in 1992. 

 

       

Fig. 6 Replica of the collapsed bell tower of “Piazza San Marco” in Venice, Italy 

 

       

Fig. 7 The collapse of the historical civic tower of Pavia in 1989 (Binda, 2008) 
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2.4. Local site effects and soil-structure interaction 

Seismic hazard characteristics and soil conditions of the site are important aspects that 

determine the vulnerability of AMT. Seismic hazard of a certain site is the probability of 

occurrence of a destructive EQ. This depends on the proximity to a seismic source with events of 

enough magnitude to generate significant intensities at the site under study. The EQ source is 

mainly due to the released energy generated by the abrupt movements of the tectonic plates of the 

earth´s crust. The stresses are presented at the contact zone between plates or in geological faults 

inside of a plate. Ground motion strongly depends on the geology and topography conditions of 

the site as well as the inherent EQ characteristics.  

 

       

Fig. 8 General view of the leaning tower of Pisa, Italy 

 

The city of Tenochtitlan (now the historical center of Mexico City) was built by the Aztecs 

upon raised islets in the Texcoco Lake. Due to this, the soil presents bad conditions, is very soft, 

and this modifies the basic characteristics of the seismic source by amplifying the ground motion, 

represented by low frequencies and high periods. This was the case of the M8.1 EQ of 1985 in the 

Pacific coast of Michoacan, Mexico, causing thousands of deaths and strong damage to the built 

environment, mainly in Mexico City, which is located more than 350 km away from the epicenter. 

These low frequencies, mainly affect slender structures like masonry towers because their 

fundamental vibrations are in the range of the predominant frequency of the ground motion 

(resonance phenomena). The high mass of the tower and its natural bending behavior generate that 

the structure presents during an EQ important top displacements. On the other hand, high 

frequencies and low periods mainly affect compact structures like most of the historical buildings. 

Liquefaction due to ground motion and instability conditions by soil settlements are geotechnical 

issues that depend on the site. The latter issue has been observed at the Metropolitan Cathedral of 
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Mexico City since decades due to soft soil conditions. The most famous case presented in AMT is 

the leaning tower of Pisa, Italy. Since its construction in the XII century, it started to lean due to 

irregularities in the soil conditions, being as a result quite vulnerable to overturning (see Fig. 8). 

 

2.5. Seismic behavior and failure mechanisms  

Compared to other compact structures, masonry towers fail ductile in a predominant bending 

behavior due to the excessive slenderness (H/L > 4). Due to the slenderness and heavy mass, the 

lateral vibration at the top of the tower during an EQ is considerably more amplified than the base, 

inducing important displacements and inertia forces transmitted in-plane and out-of-plane. This 

behavior could cause as aforementioned different failure mechanisms (Fig. 4). Meli (1998) 

describes that during an EQ masonry towers present important horizontal top displacements. 

Bending generates horizontal cracks but rarely the overturning of the structure. This is due to the 

direction alternation of the movement that causes an opening and closing effect of these cracks, 

dissipating with the impact an important part of the induced EQ energy.  

 

 

On the other hand, at bell towers, the presence of large openings at belfry could increase the 

vulnerability of the structure, being more frequent the failure by shear at this failure points. The 

belfry could collapse by instability due to the strong damage, endangering the adjacent buildings 

and people who could be inside or in the surroundings (see Fig. 9). The last almost happened due 

to the M7.5 Colima EQ in 2003, where one belfry collapsed by overturning on the basketball court 

 

(a) Failure at belfries (Meli, 1998) 

  

(b) Effects of the Colima EQ M7.5 (2003) at bell towers 

Fig. 9 Typical failure modes of bell towers 
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of a neighbor building (see Fig. 9b). The remaining damaged belfry was removed during the 

rehabilitation and retrofitting works, and in the end, it was decided to leave the church without 

belfries for security reasons. The state of Colima is located in the Mexican Littoral in the Pacific 

Ocean. At national level, the seismic hazard of Mexico is divided in four main zones ranging from 

A to D, where A represents low hazard and D very high. In the seismological context, Colima is 

distinguished by its important exposure (seismic zone D), being considered as one of the Mexican 

states under most significant hazard. 

 

 

(a) Shear and bending at body 

 

(b) Detachment of walls at body 

 

(c) Diagonal shear at body 

 

(d) Bending cracks at belfry 

 

(e) Diagonal shear at belfry 

 

(f) Bending at large belfries 

Fig. 10 Damage mechanisms at body and belfries of masonry bell towers (Lagomarsino et al., 2002) 

 

Curti et al. (2008), observed in 31 Italian bell towers damaged by the 1976 Friuli EQs that the 

belfry is the most vulnerable part of the tower due to the presence of large openings, natural 

bending behavior and low tensile strength of masonry. This amplifies the seismic motion causing 

critical effects in the higher part of the tower. Based on observed damage after considerable EQs 

occurred in Italy, Lagomarsino et al. (2002) propose the damage mechanisms commonly presented 
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by AMT (see Fig. 10). The body damage of Fig. 10a corresponds to horizontal cracking out-of-

plane due to bending behavior and diagonal cracking by shear stresses in-plane by contact with the 

church façade, leading to overturning over the nave. The type of damage of Fig. 10b consists of 

vertical cracking in both planes due to horizontal tension, resulting in the detachment of walls and 

collapse by instability. On the other hand, the damage mode of Fig. 10c is represented by 

alternated diagonal cracking in-plane due to shear ,which could be repaired. The damages at 

belfries are mainly characterized by horizontal and diagonal cracking due to the presence of large 

openings, leading to the collapse by overturning (Figs. 10d-f). 

 

2.6. Dynamic actions by bells swinging 

In masonry bell towers, is quite common the presence of large and heavy bells hanging from 

their supports and anchored in different places at belfry. The swinging of these heavy bells induces 

dynamic actions that could cause damage to the tower. This motion generates at the bell´s support 

elevated vertical and horizontal inertia forces that are transmitted to the structure. In the work of 

Ivorra and Cervera (2001), the authors propose a good approximation for determining the 

magnitude of vertical and horizontal forces induced by bells swinging. Here, bell ringing action is 

considered to behave as a simple pendulum. Due to the fact that most of the historical towers were 

mainly built to withstand vertical loading, it is more critical the action of the induced horizontal 

forces, which generate cracking or detachment of structural elements (Fig. 11a). Moreover, the 

induced excitation by the swinging of bells (Figs. 11b-c) could be very close to one of the natural 

frequencies of the tower, leading to a high dynamic amplification of the structural response by 

resonance. For more detailed information about the dynamic actions by bells swinging, the reader 

is referred to the research works of Beconcini et al. (2001), Bennati et al. (2002) and Ivorra and 

Pallares (2006). 
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3.  Seismic retrofitting techniques on ancient masonry towers 

The retrofitting technique by means of prestressing has been successfully used to improve the 

seismic behavior of concrete structures since the beginning of the XX century. The adaptation of 

this technique to the seismic retrofitting of cultural heritage has gained in recent decades especial 

interest for many researchers. Post-tensioning of masonry has shown to improve ductility and 

strength successfully (Ganz, 1990 and 2002). However, very few applications of this technique can 

be found in AMT. One of the few cases reported in literature are related to the strengthening of the 

General Post Office clock-tower in Sydney, Australia (see Fig. 12). The retrofitting intervention 

was finished in 1990 with the aiming of increasing its global seismic performance by means of 

 

(a) Location of bells at belfry and crack pattern 

      
(b) Bell dimensions (in cm) 

 

(c) Bell swinging 

Fig. 11 The bell tower of Matilde in Pisa, Italy (Beconcini et al., 2001) 
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vertical and horizontal steel tendons in drilled holes with prestressing forces of 1771 kN (Ganz, 

2002).  

                

Another famous real application of prestressing of towers was applied at the bell tower of the 

church of San Giorgio in Trignano, Italy (see Fig. 13). The bell-tower was strongly damaged by 

the 1996 M4.8 EQ. A combination of devices such as steel tendons and shape memory alloys 

(SMA) were vertically installed and without drilling at the four internal corners of the tower aimed 

to increase its bending and shear resistance. The combined devices were anchored at the top and 

foundation of the tower and post-tensioned with a prestressing force of 20 kN (80 kN total force). 

The retrofitting was verified by the occurrence of a similar EQ in 2000 with no damage of any 

type as explained in the works of Indirli et al. (2001) and Castellano (2001). However, in both real 

applications the retrofitting was validated in qualitative terms with no numerical simulations. 

Moreover, the way of determining the post-tensioning force is not mentioned and the use of a 

combination of a high resistance material such as steel with an extremely poor material such as 

masonry is doubtful in terms of compatibility of deformations and stresses concentration. 

 

 

 

 

 

 

      
(a) General view 

 

(b) Details of the retrofitting measure 

Fig. 12 The General Post Office clock tower in Sydney, Australia (Ganz, 1990) 
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From an extensive parametric study on different configurations of old masonry towers, 

Preciado (2011) proposes an optimal prestressing force and post-tensioning FRP device that may 

be used in any slender or compact masonry structure ranging from light houses, medieval (no 

openings), civic and bell-towers with large openings. The post-tensioning devices are vertically 

and externally located at key locations inside the towers in order to give to the retrofitting the 

characteristic of reversibility, respecting in all senses the architectonic and historical value of the 

structure. Compatibility, durability and reversibility are fundamental aspects recommended in 

literature to be taken into account for the seismic retrofitting of cultural heritage. Reversibility is 

definitely the most important aspect, because if the applied technique shows deficiencies in terms 

of compatibility and durability that increase the seismic vulnerability of the structure or there is a 

new material/technique that allows a better seismic performance, this retrofitting could be 

substituted.  

Horizontal external prestressing (see Fig. 14) has been mainly used in the cultural heritage to 

provide stability out-of-plane at walls or to reduce the tensile stresses generated by supports 

opening of vaults, arches and domes (Preciado, 2011). By the other hand, vertical external 

prestressing has proved to be more suitable to increase the in-plane lateral strength and ductility of 

masonry walls by providing tensile strength at key locations. The level of improvement strongly 

depends on the level of the prestressing force, so, the higher the prestressing force the higher the 

      
(a) General view 

 

(b) Location of the retrofitting 

 

(c) Installation of the devices 

Fig. 13 The bell tower of the church of San Giorgio in Trignano (Indirli et al., 2001) 
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lateral strength and ductility. Especial careful may be taken into account in order to use this 

technique in AMT. Firstly, an optimal prestressing level may be designed, due to high prestressing 

levels could lead to local damage at the top anchorage zone, or a sudden collapse even in static 

conditions by an exceedance of compressive stresses at the bottom. Moreover, in seismic 

conditions, the compressed in-plane and out-of-plane toes could fail by crushing, and leading with 

this, to a brittle failure. If prestressing is used carefully and with an optimal post-tensioning force, 

this technique may be quite helpful for the EQ protection of cultural heritage, by increasing 

strength and ductility, transforming the unreinforced masonry element to an energy dissipative 

structure. 

 

       

Fig. 14 Presence of horizontal prestressing steel bars in masonry vaulted structures 

 

4.  Conclusions  

Masonry towers in all their uses (bell, clock and medieval towers) are highly vulnerable to 

suffer strong damage or collapse in seismic conditions, even when subjected to seismic events of 

low to moderate intensity. These vertical structures are slender by nature, the slenderness (H/L) of 

towers is the single most decisive factor affecting their seismic performance, characterized by a 

ductile behavior where bending and low tensile strength of masonry determinate the overall 

performance. In addition, the seismic vulnerability of towers is increased by certain important 

aspects such as soil conditions, adjacent buildings, large openings at belfries, nonlinear behavior of 

masonry, lack of good connection between structural elements, high vertical loading and 

progressive damage. These fundamental aspects determine the seismic vulnerability of towers in 

terms of behavior and failure mechanisms that differentiate them from most of compact historical 

constructions. The identification of the seismic behavior and failure mechanisms of AMT under 
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in-plane and out-of-plane loading is a complicated task. This identification strongly depends on 

many factors such as soil and boundary conditions, geometrical characteristics and mechanical 

properties of masonry, level of vertical loading and the EQ characteristics. All these factors play 

an important role in the determination of the seismic behavior and failure mechanisms of AMT. 

There is a huge variety of available materials for the development of prestressing devices for the 

seismic retrofitting of AMT. The selection of the appropriate technique and materials depend on 

every case study and the purpose of the intervention. The use of steel is not recommended as 

retrofitting of brittle old masonry structures due to the great difference regarding compatibility of 

deformations and susceptibility of corrosion. The recent tendencies on the seismic retrofitting of 

historical structures by means of prestressing are related to the use of smart materials of low 

elasticity modulus and high resistances (NiTi and FRPs). It is strongly needed a compatibility of 

deformations between the retrofitting material and masonry. The most famous cases related to the 

application of prestressing in bell and civic towers were discussed. Vertical prestressing is aimed 

at improving the seismic behavior of AMT by reducing the expected damage with the application 

of a uniform overall distribution of compressive stresses at key locations identified at the seismic 

analyses, enhancing strength and ductility. This enhancement allows to the unreinforced masonry 

element to be transformed into a high energy dissipative structure. This could be achieved by 

taking especial care when designing the prestressing device and the application of an optimal 

prestressing force that accurately improves strength and ductility without endangering the structure 

to fail under of an exceedance of its compressive strength.  

 

References 

Barbat, A. H., Pujades, L. G. and Lantada, N. (2008). “Seismic damage evaluation in urban areas using the   

capacity spectrum method: application to Barcelona”. Soil Dynamics and Earthquake Eng., 28: 851-865. 

Bazan, E. and Meli, R. (2003). “Seismic design of buildings (in Spanish).” Limusa Editorial, Mexico. 

Beconcini, M. L., Bennati, S. and Salvatore, W. (2001). “Structural characterization of a medieval bell 

tower: First historical, experimental and numerical investigations.” Proceedings of the 3rd International 

Seminar on Structural Analysis of Historical Constructions (SAHC), University of Minho, Guimaraes, 

Portugal. 

Bennati, S., Salvatore, W., Nardini, L. and Della Maggiora, M. (2002). “Bell´s dynamic action on a 

historical masonry tower.” Proceedings of the 4th International Conference on Structural Dynamics 

(EURODYN), Munich, Germany. 

Binda, L., Gatti, G., Mangano, G., Poggi, C. and Sacchi-Landriani, G.  (1992). “The collapse of the civic 

tower of Pavia: A survey of the materials and structure.” Masonry International 11-20. 

Binda, L. (2008). “Learning from failure: Long-term behavior of heavy masonry structures.” Polytechnic of 

Milano, Italy. Published by WIT press, GB. 

Carreño, M. L., Cardona, O. D. and Barbat, A. H. (2007). “Urban seismic risk evaluation: A Holistic 

Approach”. J. of Natural Hazards, 40: 137-172. 

mailto:adolfo.preciado@upzmg.edu.mx
mailto:adolfo.preciado@upzmg.edu.mx


 

*Adolfo Preciado, Professor in Structural Engineering, E-mail: adolfo.preciado@upzmg.edu.mx 
aPh.D., E-mail: adolfo.preciado@upzmg.edu.mx 
bPh.D., E-mail gianni.bartoli@unifi.it 
cPh.D., E-mail: h.budelmann@ibmb.tu-bs.de 

 

 

 

Carreño, M. L., Cardona, O. D. and Barbat, A. H. (2012). “New methodology for urban seismic risk 

assessment from a holistic perspective”. Bulletin of Earthquake Eng., 10: 547-565. 

Castellano, M. G. (2001). “Innovative technologies for earthquake protection of architectural heritage.” 

Proceedings of the International Millennium Congress: More than two thousand years in the history of 

Architecture, UNESCO-ICOMOS, Paris, France. 

Curti, E., Parodi, S. and Podesta, S. (2008). “Simplified models for seismic vulnerability analysis of bell 

towers.” Proceedings of the 6th International Conference on Structural Analysis of Historical 

Constructions (SAHC), Bath, UK. 

Ganz, H. R. (1990). “Post-tensioned masonry structures: Properties of masonry design considerations post-

tensioning system for masonry structures applications.” VSL Report Series No. 2, Berne, Switzerland. 

Ganz, H. R. (2002). “Post-tensioned masonry around the world.” Proceedings of the first annual Conference 

of the Post-tensioning Institute, San Antonio, USA. 

GES (1993). “Technical opinion about the collapse of the bell tower of St. Maria Magdalena in Goch, 

Germany.” Gantert Engineering Studio. 

Indirli, M., Castellano, M. G., Clemente, P. and Martelli, A.  (2001). “Demo-application of shape memory 

alloy devices: The rehabilitation of the S. Giorgio church bell-tower.” Proceedings of SPIE, Smart 

Structures and Materials. 

Ivorra, S. and Cervera J. R. (2001). “Analysis of the dynamic actions when bells are swinging on the bell-

tower of Bonrepos i Mirambell church (Valencia, Spain).” Historical Constructions: 413-420. 

Ivorra, S. and Pallares F. J. (2006). “Dynamic investigations on a masonry bell tower.” Eng. Structures 28: 

660-667. 

Kozak, J. and Thompson, M. C. (1991). “Historical earthquakes in Europe.” Swiss Reinsurance, Zurich. 

Lagomarsino, S., Podesta, S. and Resemini, S. (2002). “Seismic response of historical churches.” 12th 

European Conference on Earthquake Engineering, Paper Reference 123 (Genoa), September, London, 

UK. 

Lantada, N., Pujades, L. and Barbat, A. (2009). “Vulnerability index and capacity spectrum based methods 

for urban seismic risk evaluation. A comparison”. J. of Natural Hazards, 51: 501-524. 

Macchi, G. (1993). “Monitoring medieval structures in Pavia.” Structural Eng. Int., 1:93. 

Meli, R. (1998). “Structural engineering of the historical buildings (in Spanish).” Civil Engineers 

Association (ICA) Foundation, A. C., Mexico. 

NTCDF (2004).  “Complementary technical Norms of the Mexican Construction Code (in Spanish).” 

Mexico.  

Penelis, G. G. and Kappos, A. J. (1997). “Earthquake-resistant concrete structures.” Published by E and FN 

Spon, an imprint of Chapman and Hall, London, UK. 

Preciado (2011). “Seismic vulnerability reduction of historical masonry towers by external prestressing 

devices”. Ph. D. Dissertation, Technical University of Braunschweig, Germany and University of 

Florence, Italy.  

mailto:adolfo.preciado@upzmg.edu.mx
mailto:adolfo.preciado@upzmg.edu.mx


 

*Adolfo Preciado, Professor in Structural Engineering, E-mail: adolfo.preciado@upzmg.edu.mx 
aPh.D., E-mail: adolfo.preciado@upzmg.edu.mx 
bPh.D., E-mail gianni.bartoli@unifi.it 
cPh.D., E-mail: h.budelmann@ibmb.tu-bs.de 

 

 

 

Preciado, A., Lester, J., Ingham, J. M., Pender, M. and Wang. G. (2014). “Performance of the Christchurch, 

New Zealand Cathedral during the M7.1 2010 Canterbury earthquake.” Proceedings of the 9th 

International Conference on Structural Analysis of Historical Constructions (SAHC), Topic 11, Paper 02, 

Mexico City. 

Preciado, A. and Orduña, A. (2014). “A correlation between damage and intensity on old masonry churches 

in Colima, Mexico by the 2003 M7.5 earthquake”. J. of Case Studies in Structural Eng., 2: pp. 1-8. 

Preciado, A., Orduña, A., Bartoli, G. and Budelmann, H. (2015). “Façade seismic failure simulation of an 

old Cathedral in Colima, Mexico by 3D Limit Analysis and nonlinear Finite Element Method”. J. of Eng. 

Failure Analysis, 49: pp. 20-30. 

Pujades, L. G. (2012). “Seismic performance of a block of buildings representative of the typical 

construction in the Example district in Barcelona, Spain”. Bulletin of Earthquake Eng., 10(1): 331-349.  

Sepe, V., Speranza, E. and Viskovic, A.  (2008). “A method for large-scale vulnerability assessment of 

historic towers.” Structural control and health monitoring 15: 389-415. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:adolfo.preciado@upzmg.edu.mx
mailto:adolfo.preciado@upzmg.edu.mx
http://www.sciencedirect.com/science/article/pii/S1350630714003665
http://www.sciencedirect.com/science/article/pii/S1350630714003665


 

*Adolfo Preciado, Professor in Structural Engineering, E-mail: adolfo.preciado@upzmg.edu.mx 
aPh.D., E-mail: adolfo.preciado@upzmg.edu.mx 
bPh.D., E-mail gianni.bartoli@unifi.it 
cPh.D., E-mail: h.budelmann@ibmb.tu-bs.de 

 

 

 

List of figures 

Fig. 1 Historical masonry civic towers; (a) Italian bell towers and (b) The General Post Office clock tower in 

Sydney, Australia 

Fig. 2 Earthquake of Naples, Italy on July 26th, 1805 (Kozak and Thompson, 1991) 

Fig. 3 San Bernardino church in original conditions and observed damage after the 6.3 magnitude 

earthquake of L’Aquila, Italy on April 6th 2009 

Fig. 4 Failure modes of slender masonry structures; (a) Bending; (b) Shear; (c) Rocking base and (d) 

Foundation uplifting (Bazan and Meli, 2003) 

Fig. 5 Position of the tower in the urban context (Sepe et al., 2008) 

Fig. 6 Replica of the collapsed bell tower of “Piazza San Marco” in Venice, Italy 

Fig. 7 The collapse of the historical civic tower of Pavia in 1989 (Binda, 2008) 

Fig. 8 General view of the leaning tower of Pisa, Italy 

Fig. 9 Typical failure modes of bell towers; (a) Failure at belfries (Meli, 1998) and (b) Effects of the Colima 

EQ M7.5 (2003) at bell towers 

Fig. 10 Damage mechanisms at body and belfries of masonry bell towers (Lagomarsino et al., 2002). (a) 

Shear and bending at body; (b) Detachment of walls at body; (c) Diagonal shear at body; (d) Bending cracks 

at belfry; (e) Diagonal shear at belfry and (f) Bending at large belfries                               

Fig. 11 The bell tower of Matilde in Pisa, Italy; (a) Location of bells at belfry and crack pattern; (b) Bell 

dimensions (in cm); (c) bell swinging (Beconcini et al., 2001) 

Figure 12: The General Post Office clock tower in Sydney, Australia; (a) General view and (b) Details of the 

retrofitting measure (Ganz, 1990) 

Fig. 13 The bell tower of the church of San Giorgio in Trignano; (a) General view; (b) Location of the 

retrofitting and (c) Installation of the devices (Indirli et al., 2001) 

Fig. 14 Presence of horizontal prestressing steel bars in masonry vaulted structures 

 

 

 

 

 

 

 

 

 

mailto:adolfo.preciado@upzmg.edu.mx
mailto:adolfo.preciado@upzmg.edu.mx


 

*Adolfo Preciado, Professor in Structural Engineering, E-mail: adolfo.preciado@upzmg.edu.mx 
aPh.D., E-mail: adolfo.preciado@upzmg.edu.mx 
bPh.D., E-mail gianni.bartoli@unifi.it 
cPh.D., E-mail: h.budelmann@ibmb.tu-bs.de 

 

 

 

 

                   

                                                             (a)                                                                           (b) 

Fig. 1 Historical masonry civic towers; (a) Italian bell towers and (b) Clock tower 

 

 

 

 

 

 

 

 

 

mailto:adolfo.preciado@upzmg.edu.mx
mailto:adolfo.preciado@upzmg.edu.mx


 

*Adolfo Preciado, Professor in Structural Engineering, E-mail: adolfo.preciado@upzmg.edu.mx 
aPh.D., E-mail: adolfo.preciado@upzmg.edu.mx 
bPh.D., E-mail gianni.bartoli@unifi.it 
cPh.D., E-mail: h.budelmann@ibmb.tu-bs.de 

 

 

 

 

Fig. 2 Earthquake of Naples, Italy on July 26th, 1805 (Kozak and Thompson, 1991) 
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Fig. 3 San Bernardino church in original conditions and observed damage after the 6.3 magnitude 

earthquake of L’Aquila, Italy on April 6th 2009 
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                   (a)                                          (b)                                     (c)                                        (d) 

Fig. 4 Failure modes of slender masonry structures; (a) Bending; (b) Diagonal shear; (c) Rocking base and 

(d) Foundation uplifting (Bazan and Meli, 2003) 
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Fig. 5 Position of the tower in the urban context (Sepe et al., 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:adolfo.preciado@upzmg.edu.mx
mailto:adolfo.preciado@upzmg.edu.mx


 

*Adolfo Preciado, Professor in Structural Engineering, E-mail: adolfo.preciado@upzmg.edu.mx 
aPh.D., E-mail: adolfo.preciado@upzmg.edu.mx 
bPh.D., E-mail gianni.bartoli@unifi.it 
cPh.D., E-mail: h.budelmann@ibmb.tu-bs.de 

 

 

 

 

Fig. 6 Replica of the collapsed bell tower of “Piazza San Marco” in Venice, Italy 
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Fig. 7 The collapse of the historical civic tower of Pavia in 1989 (Binda, 2008) 
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Fig. 8 General view of the leaning tower of Pisa, Italy 
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              (a)                                                  (b)                                                                    (c) 

Fig. 9 Typical failure modes of bell towers; (a) Failure of belfries (Meli, 1998); (b) Effects of the Colima EQ 

M7.5 (2003) at bell towers 
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                          (a)                                                     (b)                                                    (c) 

                                        

                           (d)                                                     (e)                                                     (f) 

Fig. 10 Damage mechanisms at body and belfries of masonry bell towers (Lagomarsino et al., 2002). (a) 

Shear and bending at body; (b) Detachment of walls at body; (c) Diagonal shear at body; (d) Bending cracks 

at belfry; (e) Diagonal shear at belfry and (f) Bending at large belfries 
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                                          (b)                                                                                (c)                                                                                    

Fig. 11 The bell tower of Matilde in Pisa, Italy; (a) Location of bells at belfry and crack pattern; (b) Bell 

dimensions (in cm); (c) Bell swinging (Beconcini et al., 2001) 
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                                    (a)                                                                                          (b) 

Fig. 12 The General Post Office clock tower in Sydney, Australia; (a) General view and (b) Details of the 

retrofitting measure (Ganz, 1990) 
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                            (a)                                                      (b)                                                         (c) 

Fig. 13 The bell tower of the church of San Giorgio in Trignano; (a) General view; (b) Location of the 

retrofitting and (c) Installation of the devices (Indirli et al., 2001) 
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Fig. 14 Presence of horizontal prestressing steel bars in masonry vaulted structures 
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