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Abstract 

This thesis presents a new adaptive function segmentation methodology (AFSM), for the evaluation 

of mathematical functions through piecewise polynomial approximation (PPA) methods. This 

methodology is planned to be employed for the development of an efficient hardware-based 

channel emulator in future development steps of the current project. In contrast to state-of-art 

segmentation methodologies, which applicability is limited because these are highly dependent on 

the function shape and require significant intervention from the user to setup appropriately the 

algorithm, the proposed segmentation methodology is flexible and applicable to any continuous 

function within an evaluation interval. Through the analysis of the first and second order 

derivatives, the methodology becomes aware of the function shape and adapts the algorithm 

behavior accordingly. 

 

The proposed segmentation methodology aims towards hardware architectures of limited 

resources that resort to fixed-point numeric representation where the hardware designer should 

make a compromise between resources consumption and output accuracy. An optimization 

algorithm is implemented to assist the user in searching the best segmentation parameters that 

maximize the outcome of the design trade-offs for a given signal-to-quantization-noise ratio 

requirement. When compared to state-of-the-art segmentation methodologies, the proposed AFSM 

delivers better performance of approximation for the hardware-based evaluation of 

transcendental functions given that fewer segments and consequently fewer hardware resources 

are required.
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1 Introduction 

The development and implementation of modern wireless communication systems are 

highly complex tasks that require exhaustive simulation during the design and verification of the 

building blocks to develop a system that is cost effective and performs reliably under a broad set 

of operational conditions. Under these circumstances, software-based simulation tools are not 

adequate given the excessive amount of time required to complete numerically intensive types of 

simulations.  

 

The physical layer of a wireless communication system can be broken down into two 

blocks, the baseband section, and the Tx/Rx RF front-end section. Although both blocks present 

intrinsic undesired characteristics that limit the overall performance of the system, the greatest 

impact is imposed by the degrading propagation phenomena of the communication channel, such 

as scattering, reflections, diffraction and attenuation [1]. These propagation phenomena can be 

modeled as noise with certain statistical properties, which can be efficiently imprinted to the signal 

through hardware-based channel emulators.  

 

In this sense, the bit error rate (BER) over the desired range of signal-to-noise ratio (SNR) 

is the metric employed to evaluate the performance of the baseband wireless receiver under test. 

The BER to SNR characteristic is generated through pervasive Monte Carlo simulations that can 

take several days to weeks or even months if performed through software-based simulators [1]. 

On the other hand, the verification of the wireless communication systems’ physical layer can be 

sped up several orders of magnitude if highly flexible and efficient wireless channel emulators are 

implemented in hardware using field programmable gate arrays (FPGA) or application specific 

integrated circuits (ASIC). Consequently, a broad set of configurations and transmission 

environments such as indoor, urban, suburban, rural, and mobile, can be tested under controlled 

conditions that warrant the repeatability of subsequent measurements [2]; something that is nearly 

impossible to achieve through in-the-field testing methods. 
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If the reader is interested in obtaining the MATLAB code of the implementation presented 

in this study, please feel free to send an email request at MD687149@iteso.mx. 

1.1 Motivation 

The Nakagami, Suzuki, and Weibull channel emulators are noise generators widely used 

for generating stochastic processes with specific characteristics associated with the different 

communication channels or environments. The Weibull processes are utilized to model power 

variation of the signal multi-paths in vehicle-to-vehicle (V2V) applications [2] under urban 

environments (land-mobile channels) [3]. The Suzuki processes are suitable to simulate a mobile 

wireless channel affected by fading (small-scale process) and shadowing (large-scale process). 

Additionally, the Suzuki processes are considered to be more precise for modeling channels in 

urban environments where the specular component or line of sight (LoS) is not present [4]. Finally, 

the Nakagami processes are used to represent a channel where multiple Rayleigh processes are 

present (Channels with great temporal dispersion) such as in V2V communication channels. 

 

Wireless channel models implement mathematical expressions and transcendental 

functions that are evaluated to generate the statistical channel noise description when carrying out 

the testing and simulation of a wireless communication system. In general, one of the simplest 

methods to evaluate a transcendental function is through look-up tables (LUT); where a broad set 

of output values obtained from a fine-grained pre-evaluation of the function are stored in advanced 

in the LUT, and then retrieved back according to the input argument of the functions. However, 

the downside of this evaluation method is that the hardware resources occupied by the LUT 

increase exponentially along with increments in the accuracy requirements of the output [5].  

 

With the objective to reduce the hardware resources footprint, this work proposes the 

evaluation of the transcendental functions through piece-wise polynomial approximation methods 

(PPA) where the function subject to evaluation is segmented out, and each segment is 

approximated using a low-degree polynomial. Consequently, through this evaluation method, the 

LUT only stores the coefficients of the polynomial that best fit each of the segments that 
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encompass the evaluation domain of the functions. However, the output accuracy achieved through 

PPA methods heavily depends on the segmentation strategy employed to segment out the function 

at hand; in other words, the quality of approximation of the original function is determined by 

both, the location of the segments boundaries as well as the number of segments required.  

1.2 State of the Art 

Modern digital signal processing algorithms use high complexity building blocks, which 

are associated with the evaluation of transcendental functions. In wireless communication channel 

modeling, the channel emulation is carried out using models based on sum-of-cissoids (complex 

exponentials), where the accuracy of evaluation of the sin( )  and cos( )  functions within the 

models is a primary concern [6]. As an example, in Weibull fading channel emulators, which are 

widely used for modeling V2V channels [7], the hardware implementation is significantly complex 

due to the evaluation of ln( ) ,  , 1/ x , and exp( )  functions [7], [3]. Likewise, the efficient 

hardware implementation of algorithms based on algebraic matrix operations such as QR 

decomposition (QRD), commonly used for matrix inversion, is highly sensitive to the accuracy of 

evaluation of the function   and 1/ x  [8]. 

 

Currently, there are several methods for the evaluation of transcendental functions. 

Although some of them offer certain advantages, they are also subject to disadvantages that make 

them unsuitable for applications that require high accuracy and substantial computing throughput. 

The iterative methods such as CORDIC (COordinate Rotation DIgital Computer) allow the 

evaluation of transcendental functions [9], [10], [11] and [12] in a flexible manner. However, a 

significant drawback that limits the development of hardware architectures for real-time 

computing applications is that the output accuracy of the iterative methods is highly dependent on 

the number of iteration that the algorithm is executed. An alternative methodology for evaluating 

transcendental functions is via look-up tables, [3] and [13]; this is arguably the simplest and easiest 

way to implement function evaluation blocks; however, the amount of memory needed for 

allocating the function values increases significantly with increments on the output accuracy 

requirement. 
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On the other hand, PPA is an alternative method for evaluating transcendental functions. It 

offers flexible design trade-offs between computing speed, area, output accuracy, and hardware 

architecture reuse because the design of the polynomials evaluator does not change across 

functions. Approximating a function using PPA methods requires the input evaluation interval to 

be partitioned into multiple segments. Each of these segments is approximated using a low-degree 

polynomial, which is addressed through the hardware polynomial evaluator according to the input 

values of the function. In this sense, the accuracy achieved using the PPA approximation 

methodology significantly depends on the segmentation methodology utilized; i.e., sizable 

approximation errors might be introduced when an inadequate segmentation strategy is employed, 

resulting in reduced signal-to-quantization-noise ratio (SQNR) performance of the function 

evaluation block.  

 

Today, the most popular segmentation methodology for PPA is called hierarchical 

segmentation method (HSM), [14], which embed the more basic segmentation methodologies 

known as uniform and non-uniform-by-powers-of-two. In principle, any function could be 

segmented out through these methodologies; however, the downside is that these are not sensitive 

to the shape of the function, therefore, causing substantial accuracy loss and SQNR degradation of 

the desired architecture. 

 

Consider a continuous function f(x), with first and second order derivatives, where x X  

and  L H,X x x . The uniform segmentation methodology divides the function interval X , in 

equally sized segments; whereas, the non-uniform-by-powers-of-two segmentation methodology, 

decreases the size of subsequent segments within X according to the geometric progression with a 

common ratio of 1/2; the segmentation can be started either from Lx  to Hx  or vice-versa.  

 

Fig. 1-1 and Fig. 1-2 show that the basic segmentation methodologies do not perform quite 

well when dealing with functions that present non-monotonic curvature features. For example, the 

uniform segmentation methodology is only suitable for functions that present a mostly constant or 

slightly changing curvature within the evaluation interval. Otherwise, if the function exhibits both 

fast-changing and slow-changing curvature features, an excessive amount of small segments are 



1.  INTRODUCTION 

 5

also created around the regions with slow-changing curvature. The reason of this is that the high 

density of segments that is needed to approximate the fast-changing curvature features 

appropriately is kept uniform along the whole evaluation interval. On the other hand, the non-

uniform-by-powers-of-two segmentation methodology is only adequate for functions that present 

a curvature that either increases or decreases in the same direction. As a result, the direction in 

which the segments decrease in size is of utmost importance to appropriately approximate the 

function; in this sense, the density of segments should increase as the curvature of the function 

increases. 

 

 

Fig. 1-1: Uniform segmentation, poor approximation accuracy to  ( ) ln xf x    
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Fig. 1-2: Non-uniform segmentation, insufficient approximation accuracy to 

 ( ) ln xf x    

 

The HSM is a hybrid segmentation methodology that employs both uniform and non-

uniform-by-powers-of-two segmentation methodologies to improve the approximation accuracy 

to functions with non-monotonic curvature behaviors; however, since the segmentation 

methodologies are employed in hierarchical levels, the control logic required for addressing the 

hierarchy of segments is it too complex and requires a significant amount of hardware resources 

in comparison to the proposed single level AFSM. 
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To employ the previously discussed state-of-art segmentation methodologies, the user 

should properly select the segmentation strategy (or a combination of them), and the minimum 

numbers of segments based on the shape of the function at hand. In many cases, this is an iterative 

trial and error process carried out by the user until the SQNR requirement (accuracy) is satisfied. 

Employing the inappropriate segmentation strategy results in a suboptimal trade-off between 

hardware resource consumption and SQNR degradation. In contrast, the proposed AFSM, through 

the analysis of the functions’ first and second order derivatives, tackles these issues given that the 

algorithm automatically adapts the segmentation strategy and the density of segments to the shape 

of the function at hand. 

1.3 Problem Statement 

Several segmentation methodologies have been proposed for the evaluation of 

mathematical functions through PPA methods [14]; however, these segmentation methodologies 

are unsuitable for the segmentation of arbitrary functions because the segmentation strategy 

employed only delivers good approximation results if the function at hand presents specific 

curvature characteristics. Consequently, the employment of the inappropriate segmentation 

methodology causes the degradation of the SQNR, as well as, the usage of an excessive number 

of segments in an attempt to satisfy the output accuracy requirements.  

On the other hand, the state-of-art hierarchical segmentation methodologies that define a 

segmentation hierarchy employing the more basic uniform and non-uniform methodologies, 

require a complex segment addressing which consumes a considerable amount of logic resources; 

furthermore, the segmentation solution, as well as the segment addressing logic is function-

specific, and it cannot be reused. 

This work proposes a segmentation methodology that allows segmenting out an arbitrary 

function based on the first order and second order derivatives of the function to be approximated 

within a continuous interval X. The introduced segmentation methodology allows optimizing the 
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number of segments needed to satisfy the requirements of an objective function that best balances 

the maximum approximation error, memory, and logic hardware resources. 

1.4 Research Contribution 

This thesis presents a new segmentation methodology for the approximation through PPA 

methods of arbitrary transcendental functions through an automated function shape analysis based 

on the functions’ first and second order derivatives. The proposed segmentation methodology 

addresses the segmentation process as a constrained optimization problem to minimize the number 

of segments according to design objectives such as SQNR and hardware area.  

 

The simulation results show that the adaptive function segmentation methodology (AFSM) 

provides better segmentation performance and higher SQNR with lower hardware resources 

consumption in comparison to state of the art segmentation methodologies; therefore, the AFSM 

represents an excellent alternative for implementing high accuracy PPA based transcendental 

function evaluators embedded in sophisticated digital signal processing algorithms.  

1.5 Thesis Objectives 

 

The objectives of this thesis are the following: 

  

 To develop an adaptive function segmentation methodology, for the evaluation of arbitrary 

mathematical functions via PPA. 

 To develop a shape analysis methodology for the efficient segmentation of arbitrary 

functions based on the functions’ chordal length and the functions’ first order and second 

order derivatives. 

 The implementation of an optimization algorithm and the introduction of a cost function 

for the optimization of hardware resources through the minimization of the number of 

segments according to SQNR requirements of the application. 



1.  INTRODUCTION 

 9

1.6 Derived Publications 

As part of this thesis work, two papers were developed:  

 

1) A conference paper for the IEEE Latin America Microwave Conference 2016 titled: 

“A novel function segmentation methodology for implementing affordable channel 

emulators”. The published paper can be found in Appendix A. 

 

2) A journal paper for the IEEE LAMC-2016 Mini-Special Issue in IEEE Transactions 

on Microwave Theory and Techniques titled: “An adaptive function segmentation 

methodology based on first and second order derivatives for hardware optimization of 

function evaluators”. The submitted paper can be found in Appendix B. 
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2 Adaptive Function Segmentation for Hardware 
Resources Optimization 

The development of an algorithm that automatically adapts the segmentation strategy 

requires precise knowledge about the shape of the function under analysis and its curvature speed 

of change within the evaluation interval. A convenient way to get such an insight is through the 

implementation of an exploratory algorithm that analyzes the first and second order derivatives of 

the function and identifies the points within the evaluation interval X  where to split the function 

into segments to maximize the accuracy of approximation through low-degree piecewise 

polynomials. In this sense, the density of segments along X  is automatically balanced according 

to the progression of the functions’ curvature; consequently, the algorithm automatically allocates 

a greater amount of segments around the regions that present a more pronounced curvature.  

 

The calculations carried out by the algorithm are solved numerically; therefore, the 

following sections utilize a discrete nomenclature for referring to the equations, functions, and 

procedures used to describe the proposed segmentation algorithm. 

 

2.1 Function Shape Analysis Through First and Second Order 
Derivatives 

The shape of the function f(x) and its curvature speed of change are analyzed through the 

first and second order derivatives in a simple but yet powerful manner. To simplify the 

segmentation process and to achieve improved approximation accuracy, the first step is to perform 

a coarse segmentation by splitting the evaluation interval X at the critical points where the function 

presents a local minimum, a local maximum or an inflection point. In this work, the segments 

defined by this coarse segmentation stage are called main segments. The objective of the coarse 

segmentation process is to define segments with a curvature that evolves monotonically (in the 
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same direction), either growing or decreasing, in order better approximate it through a 2-degree 

polynomial. 

The computation of the first and second order derivative is performed numerically through 

(2-1) and (2-2). For the numerical computation of the functions’ derivatives, the interval X is 

quantized into N points addressed as xi, where 1 ≤ i ≤ N. 

 

1 1( ) ( )( )
( )

2
i

i i
i

x x

f x f xdf x
g x

dx x
 




 


 (2-1)

 

2
1 1

2 2

( ) 2 ( ) ( )( )
( )

i

i i i
i

x x

f x f x f xd f x
h x

dx x
 



 
 


 (2-2)

where, 1    i ix x x i    . 

 

The local minimum, maximum or inflection points of ( )f x  within the evaluation interval 

X  are found at a given point ix  where there is a change of sign in ( )g x  or ( )h x  relative to the 

next point 1ix  , i.e.,            1 1sign sign   OR sign sign  i i i ig x g x h x h x   . Therefore, the 

set of main segments endpoints S  encompasses the boundary points of the evaluation interval 

 ,L Hx x  and any other intermediate critical points ix , identified through the coarse segmentation 

process. However, if no critical points are identified, then the entire evaluation interval delimited 

by the segment endpoints at Lx  and Hx  is passed to the second segmentation step for further 

segmentation tuning to achieve the SQNR requirement. 
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Fig. 2-1: Coarse segmentation (square marks) of ( ) sin( )f x x  at the critical points 

(0) (1) (2) ( )
, , ,...,

Js s s sx x x x . 

 

To exemplify the previous point, let us think on ( ) sin( )f x x  in Fig. 2-1, which is to be 

segmented out within an interval that stretches along a full cycle,   0,  2X  . The limiting points 

Lx  and Hx  of the evaluation interval are called the evaluation interval endpoints (circle marks), 

which are automatically created by the segmentation algorithm and identified as
0

 sLx x , and

 
 

JsHx x where 
0sx represents the initial endpoint of the first main segment and 

 
 

Jsx  represents 

the last endpoint of the Jth main segment identified. The square marks in Fig. 2-1, at
(1)

 / 2sx  , 

( 2)
 sx   and 

(3)
 3 / 2sx   correspond to a local maximum, an inflection point, and a local 

minimum of the function f(x) within the interval X. These locations are identified during the coarse 

segmentation stage by the sign changes in either g(x) or h(x) and represent endpoints of the main 
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segments in f(x) where its curvature changes direction (marked by the vertical purple arrows). 

After the coarse segmentation processes, the set of segments is defined as
     0 1

[ , ,..., ]
Js s sS x x x . 

  

Fig. 2-2: Fine segmentation (asterisk marks) within the main segments. 

 

The second step, as depicted in Fig. 2-2, has the purpose of further splitting the previously 

defined main segments to achieve the SQNR requirement. This fine-tuning segmentation process 

defines internal segments endpoints inside the main segments, which are bounded by the 

consecutive main segment endpoints 
   1

,  
j js sx x



 
 

 identified through the previous coarse 

segmentation step. A new internal endpoint is defined at any xi where the relative change of value 

on the first order derivative between the previously defined endpoint at 
 jsx  and the nearest 

subsequent point 
   1

    
j ji s i sx x x x


    exceeds a given γ threshold. The next mathematical 

expression synthesizes the previous description. 
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 

 

( )
( ) ( )

( )
j

j

jss i

s

g x g x

g x


 
  (2-3) 

  

If the condition expressed in (2-3) is satisfied, then the current xi is defined as a new 

segment endpoint in the set S; therefore, the newly defined segment endpoint is now identified as 

 jsx  where
 

 
jsx  xi. From this stage, the search for the next internal endpoint continues repeating 

the previously mentioned steps until reaching the end of the current main segment that is identified 

as
 1

 
jsx


. 

2.1.1 Bidirectional Function Shape Analysis 

As depicted in Fig. 2-3, to improve the accuracy of approximation to f(x), the bidirectional 

fine tuning segmentation of each main segment according to the γ threshold is performed, from 

 jsx  to 
 1jsx


(forward segmentation), and from 
 1jsx


 to 
 jsx (backward segmentation). The 

bidirectional exploration of the fine-tuning segmentation is carried out given that the location of 

the segments endpoints, xi, where the γ threshold is met differs depending on the starting point of 

the segmentation process; therefore, the approximating polynomials and consequently the 

accuracy of approximation obtained from each direction of segmentation are different. After 

performing both forward and backward fine-tuning segmentation exploration processes for each 

segment, the polynomials that deliver the best approximation accuracy are selected. The 

implementation of the bidirectional fine-tuning segmentation allows independently maximizing 

the approximation accuracy for each main segment given that the direction of segmentation that 

delivers the best approximation results is independent between main segments.  
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Fig. 2-3: Independent bi-directional fine-tuning segmentation. 

2.2 Chordal Segment Length Tuning 

In addition to the shape analysis based on the γ threshold, the proposed algorithm also 

implements a minimum chordal length control that serves as a design knob for the optimization 

process through the minimum chordal length threshold κ. The κ threshold is expressed as a 

percentage of the functions’ total chordal length within the evaluation interval; therefore, 0% ˂ κ 

≤ 100%.  

 

The κ threshold serves two purposes; the first one is to achieve a better balance in the 

density of segments allocated when dealing with functions that present both regions of pronounced 

curvature as well as regions of subtle curvature. In this sense, the κ threshold makes it possible to 

avoid having an excessive amount of tightly spaced segments around areas with pronounced 

curvature when the value of the γ threshold is too small. Inconveniently small values for the γ 
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threshold can result due to a poor selection from the user of the initial γ value or because the 

optimization process itself has taken γ towards the design space of small values.  

 

The second purpose of the κ threshold is to prevent having too small segments that would 

cause the PPA algorithm to become unstable and fail in finding a suitable set of coefficients. This 

failure manifests itself when the integer part of the generated coefficients is too big that its fixed-

point representation requires most available bits from the word length. A consequence of this is a 

severe loss of accuracy given that only a few bits remain for the fractional part of the coefficients. 

Consequently, the definition of a new segment endpoint at a given xi requires that both γ and κ 

thresholds be satisfied.  

 

Fig. 2-4 exemplifies how the chordal length of a function within the interval limited by xa and xb 

is approximated by summing up the length of the hypotenuse of the many small triangles that fit 

within such interval.  

 

 

Fig. 2-4: Chordal segment length approximation. 
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The length of the triangles’ hypotenuse is computed through the Pythagoras theorem expressed in 

(2-4), where the length of the triangles opposite and adjacent sides is defined as 1i ix x x    and 

1( ) ( )i if x f x   respectively. 

 

    2 2
1length , ( ) ( )( )

b

a b i i
i a

x x x f x f x


     (2-4) 

2.3 Polynomials Coefficient Generation 

 
After each iteration of the AFSM splitting the function interval X into the set with J 

segments (such that
  ( 1)0

 [ , ]
jj

J

s sj
X x x


 , where

    ( )1 Jj js s sx x x


  , are the endpoints 

computed according to the γ and κ thresholds), the thm  order polynomials coefficients that best fit 

each segment are computed. The polynomials employed to approximate the function segments can 

be of any order, m ≥ 1 for  m . However, the usage of low-even-order polynomials is advised 

for the proposed segmentation methodology given that the coarse segmentation step already 

ensures that the curvature of the function evolves monotonically within each segment. Therefore, 

low-even-order polynomials fit well the curvature of the segments and require less memory than 

odd-order polynomials to store the coefficients as well as fewer logic resources to carry on the 

coefficients multiplications. 

 

For the proposed AFSM, two PPA methods were tested for the computation of the best fit 

polynomials coefficients. The polynomial least square approximation method (LSPA) [15, p. 28] 

and the miniMax polynomial approximation method (mMPA) [15, p. 32], which is based on the 

Remez algorithm [16]. Each of the employed PPA methods treats the approximation error 

differently and consequently provide different levels of SQNR and accuracy between the original 

function f(xi) and the polynomial-based approximation function ˆ ( ) |
jj i pf x  in (2-5). 
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(0) (1) ( )
..ˆ ( ) | .

j m

m
j jj i p i j if p p x px x     (2-5)

 

where, 

 j represents the segment index for the set of segments S . 

 
(0 ) (1) ( )

, , ...,
mj j j jp p p p   


 are the polynomial coefficients of the mth order polynomial 

used to approximate to the jth segment of the function f(x).  

2.3.1 Least Square Polynomial Approximation and Error Treatment 

From the set of data points  ,  ( )i ix f x  within the segment delimited by 
   1

,   
j js sx x



 
  , the 

objective of the LSPA is to determine the 1m   coefficients of an m-degree polynomial, as 

expressed in (2-5), that minimize the error of approximation in the least square sense between the 

original function f(x) and the approximating polynomial. Therefore, the sum of squared residuals 

of the jth segment is minimum when the condition expressed in (2-6) is satisfied [5] for all the 

polynomial coefficients. 

  

( )
0,   0,...,j

j

R
for j J

p


 


  (2-6)

 

 

where, 

 1
2

ˆ( ) ( ) |
j

j

j

s

j i j i p
i s

R f x f x




      (2-7) 

 

The polynomial coefficients values are obtained by solving the partial derivatives in (2-6) for all

 jp . This procedure yields the following set of normal equations. 
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       

       

       

1 1 1 1

1 1 1 1

1 1 1 1

0 1

2 1
0 1

1 2
0 1

1 ... ( )

... ( )

... ( )

j j j j

j j j j

j

j j j j

j j j j

j

j j

j j j

j

m
i m i i

i s i s i s i s

m
i i m i i i

i s i s i s i s

m m m m
i i m i i

s s s s

s s s s

s s

i
i s i s i s i s

s s

p p x p x f x

p x p x p x x f x

p x p x p x x f x

   

   

   

   



   



   

   

   

   

   

   

   



 (2-8) 

 

For (2-8) the right-hand side of the set of normal equations can be represented as 
     1 1 1

( ) ( ) ... ( )
j

j

j

j

j

j

m
i i

s

i i i
i s i s i s

s s

b f x x f x x f x
  

  

 
  
  
  


. Therefore, by defining a matrix A as follows, 

 

     

     

   ( 1) 1 1

2

2
1 1 1

2
2 2 2

2

1

1

1

1

j j j

j j j

j j j

j j j

m
s s s

m
s s s

m
s s s

m
s s s

x x x

x x x

A x x x

x x x
  

  

  

 
 
 
 
 
 
 
 












   


 (2-9) 

 

the set of normal equations in (2-8) can be condensed as the following linear system (the A matrix 

is known as the Vendermonde matrix), which can be solved using the well-known Gauss-Jordan 

method [17] to obtain the values of the polynomial’s coefficients that minimize the error of 

approximation. 

 TA A p b


 (2-10)

 

An important remark is that from (2-6) and (2-7) one can observe that the error treatment 

strategy of the LSPA algorithm provides direct benefit to the improvement of the SQNR because 

it explicitly minimizes the sum of squared residuals expression in (2-11). Such error expression, 

in fact, represents the quantization noise energy; a factor that lies as the denominator of the SQNR 

expression that is presented in Section 2.4.  
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0

[ ]
J

j
j

E R R


  (2-11)

2.3.2 miniMax Polynomial Approximation and Error Treatment 

The objective of the miniMax polynomial approximation algorithm (mMPA) is to 

minimize the maximum absolute error or discrepancy between the approximation polynomial 

ˆ ( ) |
jj i pf x    and the original function ( )if x  in the uniform norm sense L . The mMPA algorithm 

employs Chebyshev polynomials [18] of order m  within the interval 
1

, 
j js sx x


    that delimits the 

thj  segment. 

 

The computation of the polynomials coefficient that minimizes the maximum error of 

approximation is performed by solving the following optimization problem. 

  

  arg min ( ) ,  for 0,...,
p j

j jjp e p j J


 


  
 (2-12)

 

where,  

1
( ) [ ,..., ,..., ]

j jj j s i se p e e e



 

 (2-13)

 

1
ˆ( ) ( ) | ,  for 

ji i j i p j je f x f x s i s      (2-14)

  

In this sense, ˆ ( ) |
jj i pf x  is a miniMax polynomial with coefficients jp


 if it satisfies the 

condition that there are at least ݉ ൅ 2 points within the segment evaluation interval 
1

, 
j js sx x


 
   

where: 
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0 0
ˆ ˆ ˆ( ) | ( ) |  ( )    ( 1) ( )     ( ) |) (

j j j

i
j i p j j pi pf x ff x f x x x f xf


             (2-15)

 

The expression in (2-15) means that for ˆ ( ) |
jj i pf x  to be a miniMax polynomial, it should 

satisfy the condition that the maximum error is reached 2m  times (the total number of minimum 

and maximum extrema points) and that the sign of such error alternates at each error extrema. 

Henceforth, the Remez exchange algorithm, which is summarized in the flow diagram of Fig. 2-5, 

determines the coefficients of miniMax polynomials by exploiting this important property; for 

more detail on the implementation of the Remez´s algorithm refer to [15]. 
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Fig. 2-5: Flow diagram of the Remez´s exchange algorithm. 
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In comparison to the least square method, for regular functions, the miniMax method yields 

a smaller error of approximation [15]; however, the miniMax method does not guarantee a lower 

SQNR than that achieved through least square. 

2.4 Fixed-Point and SQNR Analysis 

For this work, the SQNR is the metric employed for measuring the accuracy of the 

approximation to the reference function f(x) through a set of fixed-point low-degree polynomials. 

The SQNR, defined in (2-16), is an intuitive and widely used metric of accuracy, which is based 

on the ratio between the power of the signal of interest and the power of the quantization noise, as 

it was mentioned in Section 2.3.1. In other words, the SQNR expresses how well an analog signal 

is approximated through a digital fixed-point representation given the finite number of bits of the 

system’s word length.  

 

1

2

1
10

2

1

( )
10log

ˆ[ ( )  ( ( ) | )]
j

j

j

N

i
i

dB sJ

i j i p
j i s

f x
SQNR

f x Q f x




 

 
 
   
  
 



 

 (2-16)

 

The term ( )Q   in the denominator of (2-16) is the operator that quantizes the argument 

using a word length of WL  bits, from which, QI  bits are assigned to the integer part and QF  bits 

are assigned to the fractional part [19]; the previous is expressed as follows: 

 

WL QI QF   (2-17)

 

The first step to determine the most appropriated fixed-point representation as to avoid 

overflow or truncation is to compute the minimum number of bits assigned to QI. In this sense, 

the expression in (2-18) provides the minimum QI bits required to represent signed values in two’s 

complement with a range that is symmetric around zero. The expression in (2-18) takes into 

account the magnitude of the entire set of polynomials coefficients for all segments, the magnitude 
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of the values in the evaluation interval X, and the magnitude of the range of the function being 

approximated. 

 

  2log max 1 1QI       (2-18)

where, 

  , ,  ,   ,  j i ip x f x i j  


 

 

  A fixed-point variable   for which the minimum number of QI and QF bits are determined 

through (2-17) and (2-18), can take values in the range    1 12 2 1QI QI      , [19].  

 

The proposed segmentation methodology relies on an iterative optimization algorithm to 

determine the best segmentation approach. Therefore, once the fixed-point analysis has been 

carried out for each segmentation iteration, the achieved SQNR is computed and fed back to the 

optimization algorithms’ objective function to determine whether the SQNR requirement has been 

satisfied or further segmentation refinement is required. 

 

2.5 Segmentation Optimization 

The proposed AFSM implements an optimization algorithm that searches in the design 

space ℝ2 of the γ and κ threshold parameters, looking for a suitable set of values that satisfy the 

SQNR requirement while minimizing the required number of segments. The implemented search 

algorithm solves the constrained non-linear optimization problem defined in (2-19), for a target 

SQNR requirement, which is provided by the user as a range with an upper ubd  and a lower limit

 lbd  according to application-specific needs.  
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  2

*

  
arg  

 
d

lb ub

d min U S d

subject to

d d d




 




 

  
 (2-19)

where, 

 2 , [ , ]d d   
 
 ; is the vector of design variables subject to optimization. 

 * 2 * * *,  [ , ]d d   
 

 ; is the vector of design variables after the optimization process has 

been completed. 

 2,lb ubd d 
 

 ; are the upper and lower design-feasibility restrictions for the design 

variables. 

 2( )S d  


  ; is the function that performs the segmentation process according to the 

input design variables in  d


. The function returns the SQNR scalar value. 

 :U   ; is the cost function that computes the error between the current design SQNR 

and the target SQNR requirement.  

 

The solution of the constrained non-linear optimization problem is simplified if the boxed 

constraints ( lb ubd d d 
  

) are incorporated into an unconstrained optimization problem; refer to 

(2-20). For this, the design variables in d


 are transformed into z


 through (2-21). After applying 

the suggested transformation, the restrictions of the optimization problem are now embedded in 

the design variables because their range, due to the  arcsin   function (See Fig. 2-6 ), is now 

bounded within the interval  [0,  1.5708]; for further reference, see [20]. 

  

 * arg  ( )
z

z min U S z 
 

 (2-20)

 

lb

i i
i ub lb

i i

d d
z arcsin

d d

  
  

 


   
(2-21)
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Fig. 2-6: Graphical representation of the boxed constraints transformation. 

 

For this particular work, the solution to the unconstrained non-linear optimization problem 

for z


 is done through the Nelder-Mead algorithm [21]; however, many other local or global search 

methods can be employed as well. 
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3 Segmentation Methodology Implementation 

The Algorithm 1 condenses the verbal methodology description provided in previous 

sections to facilitate the reproducibility of the proposed segmentation methodology. Given that the 

AFSM was implemented in MATLAB, the pseudocode employs sub-index notation to address the 

discrete elements of vectors and collections of objects. Further detail of the pseudocode variables 

and their usage is summarized in TABLE 1. 

 

TABLE 1: DESCRIPTION OF VARIABLES EMPLOYED IN THE PSEUDO-CODE OF THE 
ADAPTIVE FUNCTION SEGMENTATION METHODOLOGY. 

Variable name Description 

x  The vector of the evaluation interval X  that is quantized from Lx  to Hx . 

y  The vector with the evaluation results of ( )f x  within the interval X . 

FxdPtx  The x vector in fixed-point representation. 

FxdPty  The y vector in fixed-point representation. 

h , g  The vectors that store the first and second derivatives. 

Dx  The discretization resolution for x , the default is 10
 

2
H Lx x

x


  .  

Dg  
A temporary variable used to store the first derivative delta between the 

previous segment and a subsequent point ix . 

Lx  The lower limit of the evaluation interval X . 

Hx  The upper limit of the evaluation interval X . 

quantElmts  The number of quantization elements within the evaluation interval X . 

mainSegmts   
The collection to store the segment objects from the coarse segmentation 

process.  

LSPAallSegmts   
The collection to store all the segments objects that delivered the largest 

SQNR through the LSPA. 
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MMPAallSegmts  
The collection to store all the segments objects that delivered the largest 

SQNR through the mMPA. 

fwdSegmts  
A temporary collection that stores the segments from the forward 

segmentation exploration. 

bwdSegmts  
A temporary collection that stores the segments from the backward 

segmentation exploration. 

LSPAfwdCoeffs  
A collection of LSPA coefficients for the segments from the forward 

segmentation exploration. 

LSPAbwdCoeffs  
A collection of LSPA coefficients for the segments from the backward 

segmentation exploration. 

MMPAfwdCoeffs  
A collection of mMPA coefficients for the segments from the forward 

segmentation exploration. 

MMPAbwdCoeffs  
A collection of mMPA coefficients for the segments from the backward 

segmentation exploration. 

_LSPA FxdPtfwdCoeffs  
A collection of LSPA coefficients in fixed-point representation for the 

segments from the forward segmentation exploration. 

_LSPA FxdPtbwdCoeffs  
A collection of LSPA coefficients for the segments from the backward 

segmentation exploration. 

_MMPA FxdPtfwdCoeffs  
A collection of mMPA coefficients in fixed-point representation for the 

segments from the forward segmentation exploration. 

_MMPA FxdPtbwdCoeffs  
A collection of mMPA coefficients in fixed-point representation for the 

segments from the backward segmentation exploration. 

LSPAallCoeffs  
 The collection of polynomial coefficients for the current segmentation 

realization through Least Square PPA method. 

LSPA_FxdPtallCoeffs  
 A collection of polynomial coefficients in fixed-point representation for 

the current segmentation realization through Least Square PPA method. 

MMPAallCoeffs  
 The collection of polynomial coefficients for the current segmentation 

realization through miniMax PPA method. 
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MMPA_FxdPtallCoeffs  

 The collection of polynomial coefficients in fixed-point representation 

for the current segmentation realization through the miniMax PPA 

method. 

LSPAcoeffsLUT  
 Stores the set of LSPA coefficients for the segmentation that satisfies the 

SQNR requirement. 

MMPAcoeffsLUT  
Stores the set of MMAP coefficients for the segmentation that satisfies 

the SQNR requirement. 

LSPAfwdSQNR  
SQNR result from the forward segmentation exploration of the jth main 

segment through the LSPA method. 

LSPAbwdSQNR  
SQNR result from the backward segmentation exploration of the jth main 

segment through the LSPA method. 

MMPAfwdSQNR  
SQNR result from the forward segmentation exploration of the jth main 

segment through the mMPA method. 

MMPAbwdSQNR  
SQNR result from the backward segmentation exploration of the jth main 

segment through the mMPA method. 

LSPASQNR  
The resulting SQNR responses from the last segmentation over the whole 

interval X with coefficients obtained through the LSPA method.  

MMPASQNR  
The resulting SQNR responses from the last segmentation over the whole 

interval X with coefficients obtained through the mMPA method. 

Th   The design parameter for optimization, first derivative threshold.   

Th  
 The design parameter for optimization, minimum chordal segment 

length threshold.  

lbSQNR   Lower bound of the target SQNR requirement. 

ubSQNR   Upper bound of the target SQNR requirement. 

LenW   The system word length.  

m   The polynomial degree, the default is 2. 

accumLen   A temporary variable that holds the accumulated chordal length. 

i , j , k   The for-loop iteration count variables. 

contSearch   The control flag for the optimization process stop condition. 
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Parameter Definitions and Parameters Initialization sections of the pseudocode, 

introduce and initialize the variables and constants that are used across the code to set up the 

algorithm functionality and to store the computation results. The main body of the segmentation 

algorithm is showed within the do while  loop (lines 17 through 63) that resembles the 

optimization process, which iterates until the SQNR design requirement is met or the stop 

conditions of the optimization algorithm are reached. 

  

Within the first for loop  construct in the pseudo-code (lines 21 through 29), the coarse 

segmentation is performed based on the sign changes of the first and second order derivatives; the 

segments therein created are stored in the mainSegmts  collection. After this step, within the 

second for loop  construct (lines 32 through 45), the segmentation tuning stage is performed 

according to the design parameters Th  and Th . The following steps (lines 47 through 49) in the 

pseudocode are to compute the polynomial approximation coefficients through both, LSPA and 

mMPA methods, the fixed-point analysis, and the respective LSPASQNR  and MMPASQNR  

responses. The ternary conditional construct on line 50 selects the higher SQNR response out of 

those obtained through the LSPA and the mMPA methods. The selected SQNR value is then 

provided to the cost function (line 51) to determine whether the target SQNR has been satisfied or 

further search should be carried out. The conditional constructs on lines 52 through 61 assess 

whether the SQNR requirement has been satisfied or the stop conditions have been reached; based 

on the result of these conditional evaluations, the optimization loop control flag is set or cleared 

for the search process to continue or stop, accordingly. Finally, the optimal set of polynomial 

coefficients from the optimized segmentation process is stored in the hardware LUT.  

 

01: 

Parameters definition: x , y , FxdPtx , FxdPty , h , g , Dx , D g , Lx , Hx , quantElmts , 

mainSegmts , LSPAallSegmts , MMPAallSegmts , fwdSegmts , bwdSegmts , LSPAfwdCoeffs ,

LSPAbwdCoeffs , MMPAfwdCoeffs , MMPAbwdCoeffs , _LSPA FxdPtfwdCoeffs , _LSPA FxdPtbwdCoeffs

, _MMPA FxdPtfwdCoeffs , _MMPA FxdPtbwdCoeffs , LSPAallCoeffs , LSPA_FxdPtallCoeffs , 
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MMPAallCoeffs , _MMPA FxdPtallCoeffs , LSPAfwdSQNR , LSPAbwdSQNR , MMPAfwdSQNR ,

MMPAbwdSQNR , LSPASQNR , MMPASQNR , Th , Th , 
lbSQNR , 

ubSQNR , LenW , m ,  

accumLen , contSearch , i , j , k  

02: Parameters initialization: 

03: Set _ ,default is 0Lx User Input  

04: Set _ ,default is 1Hx User Input  

05: 
10_ ,default is 2User InpquantElm tts u  

06: Set H Lx x
Dx

quantElmts


  

07: Set L Hvector(x : : x )x Dx  

08: Set Th _ ,default is 50%User Input   

09: Set Th _ ,default is 5%User Input   

10: Set  _ ,default is 60dB, 70dBlb ubSQNR ,SQNR User Input    

11: Set _ , default is 32bitsLenW User Input  

12: Set _ , default is 2degreep User Input  

13: Set 1i  , 1j  , 1k   

14: Set   funcEvaly f x  

15: To load the initial Th  and Th design parameters into optimization algorithm 

16: Do 

17: To clear required variables (Segments and Coefficients collections) 

18:  

19: .createNewSegment()mainSegmts  

20: ( .count).startIndex 1mainSegmts mainSegmts   

21: for loop 1: length( )i x  

22:   To compute 
( )

i
idf x

g
dx

  and 
2

2

( )i
i

d f x
h

dx
  
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23:    Do coarse segmentation by finding sign changes in g  and h : 

24:   if          1 1sign sign sign signi i i ig g h h    then 

25:    Set ( .count).endIndex ( 1)mainSegmts mainSegmts i   

26:    .createNewSegment()mainSegmts  

27:    Set ( count).startIndexmainSegmts mainSegmts. i  

28:   end if 

29:  end for 

30:   Set  .count .endIndexmainSegmts mainSegmts   MaxIndexOf( )x  

31:   Set 1j    

32:   for loop c t1: . ounmainSegmtsj   

33:   Set ( )fwdSegmts mainSegmts j  

34:   Set ( )bwdSegmts mainSegmts j  

35:   Perform forward segmentation exploration: 

36:   parfor loop (1).startIndex : (1).endIndexi fwdSegmts fwdSegmts  

37:    Set lastSegmt.lengthFromStartUpTo( )ifwdSegaccumL mten s. x  

38:    To compute first derivative delta, 
.startIndex

.startIndex

| g g |
g 100

| g |
fwdSegmts i

fwdSegmts

D


   

39:    if  ThDg  and  ThaccumLen   then   

40:     To split current temporary main segment at ix : 

41:      .lastSegmt.splitSegmtAt( )fwdSegmts i  

42:    end if     

43:   end parfor 

44:   Perform backward segmentation exploration: 

45:   parfor loop (1).endIndex : (1).startIndexi bwdSegmts bwdSegmts  

46:    Set .firstSegmt.lengthFromEndUpTo( )ibwdSegmaccum tsLe xn   

47:    To compute first derivative delta, 
.endIndex

.endIndex

| g g |
g 100

| g |
bwdSegmts i

bwdSegmts

D


   
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48:    if  ThDg  and  accumLen Th  then   

49:     To split first temporary main segment at ix : 

50:      .firstSegmt.splitSegmtAt( )bwdSegmts i  

51:    end if     

52:   end parfor 

53:   To compute the forward and backward segments coefficients: 

54:   Set .computeLSPA( )LSPAfwdCoeffs fwdSegmts m  

55:   Set .computeMMPA( )MMPAfwdCoeffs wdSegmtsf m  

56:   Set .computeLSPA( )LSPAbwdCoeffs wdSegmtsb m  

57:   Set .computeMMPA( )MMPAbwdCoeffs wdSegmtsb m  

58: 

  To compute fixed-point analysis for the given  LenW : … 

                              ( LS _FxdP PtAfwdCoeffs , MMPA_FxdPtfwdCoeffs , LSPA_FxdPtbwdCoeffs , 

                              MMPA_FxdPtbwdCoeffs , FxdPtx , FxdPty  ) 

59: 
              To compute thj  main segment SQNR for forward and  

                          backward segmentation… 

60:         ( LSPAfwdSQNR , MMPAfwdSQNR , LSPAbwdSQNR , MMPAbwdSQNR ) 

61:   To select the segmentation direction of higher SQNR: 

62:   if  >LSPA LSPAfwdSQNR bwdSQNR  

63:    .addSegments( )LSPAallSegmts fwdSegmts  

64:    Set  LSPA LSPAallCoeffs fwdCoeffs  

65:    Set LSPA_FxdPt LSPA_FxdPtallCoeffs fwdCoeffs  

66:   else 

67:    .addSegments( )LSPAallSegmts bwdSegmts  

68:    Set  LSPA LSPAallCoeffs bwdCoeffs  

69:    Set  LSPA_FxdPt LSPA_FxdPtallCoeffs bwdCoeffs  
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70:   end if 

71:   if  >MMPA MMPAfwdSQNR bwdSQNR  

72:    .addSegments( )MMPAallSegmts fwdSegmts  

73:    Set  MMPA MMPAallCoeffs fwdCoeffs  

74:    Set  MMPA_FxdPt MMPA_FxdPtallCoeffs fwdCoeffs  

75:   else 

76:    .addSegments( )MMPAallSegmts bwdSegmts  

77:    Set  MMPA MMPAallCoeffs bwdCoeffs  

78:    Set  MMPA_FxdPt MMPA_FxdPtallCoeffs bwdCoeffs  

79:   end if 

80:  end for 

81: 
 To compute overall SQNR for the thk  optimization iteration: … 

  ( LSPASQNR , MMPASQNR ) 

82:  if stop conditions have been met? then   

83:   Searcconti h Fnu Ee ALS  

84:  Else 

85:   if     and lb ub lb ub

LSPA MMPA
SQNR SQNR SQNR SQNR SQNR SQNR    then 

86:    To search for alternative design parameters: ( Th , Th ) 

87:    Searcont chinue TRUE  

88:   else 

89:    Searcconti h Fnu Ee ALS  

90:   end if 

91:  end if 

92:  To increment optimization iterations counter:  

93:  Set 1j j   

94: while ( continueSearch ) 

95: To store the coefficients that deliver best overall SQNR: 
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96:     _LSPA LSPA FxdPtcoeffsLUT allCoeffs  

97:     _MMPA MMPA FxdPtcoeffsLUT allCoeffs  

98:      _ _LSPA FxdPt LSPA FxdPtLUTSegmts allSegmts  

99:      _ _MMPA FxdPt MMPA FxdPtLUTSegmts allSegmts  

Algorithm 1: Algorithmic description of the adaptive function segmentation methodology. 
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3.1 Segmentation Algorithm Software Architecture 

The following diagram depicts the overall functional architecture of the implemented 

MATLAB code for the adaptive function segmentation methodology. Each square box represents 

a MATLAB function, and the hierarchical enclosing of boxes convey the actual dependencies 

across functions. 

 

Fig. 3-1: Software architecture of the adaptive function segmentation methodology. 
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3.2 Functional Description of the Software Architecture Modules 

3.2.1 Adaptive Directional Exploration 

This function is the driver of the optimization algorithm implemented for the bidirectional 

adaptive segmentation methodology. It takes the values of the design parameters subject to 

optimization d0 = [γTH, κTH], and a set of predefined design parameters through the vector dP. Also, 

this function requires some global variables to be defined in the top file and set with the appropriate 

values for the correct functionality of the algorithm. The input parameters, the global variables, as 

well as the output parameters of the function are described in further detail in TABLE 2.  

 

TABLE 2: LIST OF THE INPUT PARAMETERS, GLOBAL VARIABLES AND OUTPUT 
PARAMETERS OF THE ADAPTIVE DIRECTIONAL EXPLORATION FUNCTION. 

Parameter definition Description 

d0 = […] 

Vector with the initial design parameters for the adaptive segmentation 

algorithm. 

deriv_delta: First derivative threshold γTH expressed as a percentage; 

it takes values greater than 0% up to values that make sense for the 

function at hand, let say X0 = 500% for a 5-times derivative change 

from the previous segment endpoint. 

min_seg_length: The minimum chordal segment length threshold. 

This value is expressed as a percentage; valid values are those greater 

than 0% and smaller than 100%. 

dP = […] 

Vector for the predefined design parameters, which are listed as 

follows: 

word_length: The system word length, the default value is 32 bits. 

step_size: Number of subsequent samples on the x vector to skip for 

the calculation of the chordal segment length. 

samples_power: Amount of samples in which the evaluation interval 

X is to be quantized. 
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min_x: The lower value of the evaluation interval X, which was 

previously introduced as xL. 

max_x: The upper value of the evaluation interval X, which was 

previously introduced as xH. 

poly_degree: Polynomial degree to be employed for the polynomial 

approximation, which was previously introduced as m.  

step_factor: Amount of subsequent quantization samples of the x 

vector to skip throughout the sweep of the fine-tuning derivative 

exploration, the default is 1 (No samples are skipped, sample_index = 

sample_index + step_factor). 

  

Global variables Description 

global funct A global variable that stores the function handler to be segmented out. 

The signature of the function is as follows: 

 

funct = @(x)function_name(parameters in terms of x) 

 

global exec_count Global counter variable utilized to achieve the execution of certain 

initialization code within optimization procedure only for the first 

iteration of the segmentation algorithm. The user does not need to set 

this parameter. 

global approx_method The global variable used by the algorithm to select which 

approximation method should be utilized for the computation of the 

polynomials. 

 

0: Least Square Polynomial Approximation (LSPA). 

1: miniMax Polynomial Approximation (mMPA). 

  

Output parameters Description 
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seg_bounds A vector containing the collection of segments endpoints/boundaries, 

(the values in the evaluation interval X where a segment ends and the 

following begins). 

SQNR The SQNR result from current segmentation realization. 

Data A vector that contains the following information about the current 

segmentation realization. 

 

seg_bounds: Vector that holds the collection of indexes of the vector 

x for the defined segments endpoints/boundaries. 

boundaries: Vector that holds the collection of values within the 

vector x for the defined segments endpoints/boundaries. 

boundaries_fxp: Collection that contains the values of the vector x in 

fixed-point representation for the endpoints of the defined segment. 

vect_x: Vector of the quantized evaluation interval X. 

vect_eval_y: Vector that contains the results of the evaluation of the 

function for each element in vect_x. 

fltPnt_poly_vect_eval_y: Vector that contains the results of the 

evaluation of the functions’ polynomial approximation in floating-

point representation for each element in vect_x. 

fxdPnt_poly_vect_eval_y: Vector that contains the results of the 

evaluation of the function approximated through the segments 

polynomials in fixed-point representation for each element in vect_x. 

fixedPoint_vect_x_obj.data: The vector of the quantized interval X 

in fixed-point representation.  

Error_FltPntGolden_to_FltPntPoly: Vector that contains the 

absolute errors of approximation between the original function and the 

polynomial approximation in floating-point representation. 

Error_FltPntGolden_to_FxdPntPoly: Vector that contains the 

absolute errors of approximation between the original function and the 

polynomial approximation in fixed-point representation. 
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samples_power: The number of samples in which the evaluation 

interval X was quantized, (2samples_power). 

QI_MaxCoeff: Number of bits required to represent the integer part 

of the maximum number required. 

QF_Xargument: Number of bits remaining, from the predefined word 

length and the required QI bits for the representation of the floating 

portion of the numbers. 

D1_collection: Vector with the values of the functions’ first order 

derivative at every point in vect_x. 

D2_collection: Vector with the values of the functions’ second-order 

derivative at every point in vect_x. 

. 

3.2.2 First Derivative 

This function computes the first order derivative of the function at the specified point in x. 

This function implements the centered differencing formula [22] to get a more accurate 

approximation of the first order derivative of f(x). The details of the input and output parameters 

are given in TABLE 3. 

 

TABLE 3: INPUT AND OUTPUT PARAMETERS OF THE FIRST DERIVATIVE 
FUNCTION. 

Parameter definition Description 

Fun 

Function handler with the signature: 

 

funct = @(x)function_name(parameters in terms of x) 

 

x0 Point in x where to evaluate the first order derivative of the function. 

vect_x 

The vector of the quantized evaluation interval X. In this case, this 

vector is employed to handle the computation of the derivative for 

those functions that are undefined outside of the evaluation interval. 
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Output parameters Description 

D The value of the first order derivative at the x0. 

3.2.3 Second Derivative 

This function computes the second order derivative of the function to be approximated, at the 

specified point within the evaluation interval X. This function implements the fifth stencil of the 

centered differencing formula [23] to get a more accurate and stable approximation of the second 

order derivative of f(x). The details of the input and output parameters are given in TABLE 4. 

 

TABLE 4: INPUT AND OUTPUT PARAMETERS OF THE SECOND DERIVATIVE 
FUNCTION. 

Parameter definition Description 

Fun 

Function handler with the following function signature: 

 

funct = @(x)function_name(parameters_in_terms_of_x) 

 

x0 
The point within X where to evaluate the second order derivative of the 

function. 

vect_x 

The vector of the quantized evaluation interval X. In this case, this 

vector is employed to handle the computation of the derivative at the 

boundaries of the evaluation interval. 

  

Output parameters Description 

D The value of the second order derivative of the function at x0. 
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3.2.4 Segment Length Computation 

This function computes the chordal length of the function within a given interval. The details of 

the input and output parameters are given in TABLE 5. 

 

TABLE 5: INPUT AND OUTPUT PARAMETERS OF THE SEGMENT LENGHT 
COMPUTATION FUNCTION. 

Parameter definition Description 

vect_x The vector of the quantized evaluation interval X. 

vect_eval_y 

 

The vector that contains the results of the function evaluation for every 

element in vect_x. 

step_size 

 

Number of samples to skip between subsequent iterations along the 

sweep of the interval of evaluation X. This parameter allows speeding 

up the computation of the chordal length at the expense of lost in 

accuracy. 

  

Output parameters Description 

segment_length 

 

The value of the chordal segment length for the interval of evaluation 

in vect_x. 

3.2.5 Main Segmentation Algorithm 

This function implements the actual fine-tuning bidirectional segmentation algorithm 

according to the parameters provided by the optimization process. The details of the input and 

output parameters are given in TABLE 6. 
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TABLE 6: INPUT AND OUTPUT PARAMETERS OF THE MAIN SEGMENTATION 
ALGORITHM FUNCTION. 

Parameter definition Description 

startPoint 

 

Index inside the vector vect_x where to start the fine-tuning 

bidirectional segmentation exploration. 

approx_method 

 

Polynomial approximation method that should be used to compute the 

segments polynomials. 

derivative_criteria An input parameter that is used to alter the behavior of derivative 

threshold design parameter. 

 

0: The absolute derivative change between the current xi point and the 

previous segment endpoint should be compared against the derivative 

threshold expressed as a percentage. 

 

1: The absolute derivative change between the current xi point and the 

previous segment endpoint should be compared against the derivative 

threshold expressed as a percentage of the absolute range of derivative 

values within the whole evaluation interval X. 

 

2: The absolute derivative change between the current xi point and the 

previous segment endpoint should be compared against the derivative 

threshold expressed as a percentage of the absolute range of derivative 

values within the interval of evaluation that has not yet been segmented 

out. 

 

3: The absolute derivative change between the current xi point and the 

previous segment endpoint should be compared against the derivative 

threshold expressed as a percentage of the average of the range of 

derivative values within the specified evaluation interval. 
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4: The absolute derivative change between the current xi point and the 

previous segment endpoint should be compared against the derivative 

threshold expressed as a percentage of the average of the range of 

derivative values within the interval of evaluation that has not yet been 

segmented out. 

deriv_delta The first order derivative threshold γTH. 

vect_x The vector of the quantized evaluation interval X. 

vect_eval_y The vector that contains the results from the evaluation of the function 

for every element in vect_x. 

D1_collection Vector with the first order derivative values of the function at every 

point in vect_x. 

step_factor 

 

Number of samples in vect_x to skip for each iteration of the 

segmentation exploration. 

poly_degree The polynomial degree to be employed for the polynomial 

approximation, which was previously introduced as m. 

WordLength The predefined word length of the system. 

chunk_length The input parameter for the minimum length allowed for the trailing 

segment. It controls whether the remaining of the evaluation interval 

which does not meet the design thresholds (γTH and κTH) is defined as 

a new segment or merged with the previous one. 

step_size Number of samples in vect_x to skip for each iteration of the chordal 

length calculation loop. 

min_seg_length The minimum segment chordal length threshold κTH. 

  

Output parameters Description 

seg_bounds  A collection that contains the indexes of vect_x for the defined 

segments endpoints/boundaries. 

SQNR The SQNR result from current segmentation realization. 

Data A vector that contains information about the current segmentation 

realization as described in TABLE 2. 
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3.2.6 Coefficients Generation 

This function computes the coefficients of the polynomial to approximate all the defined 

segments within a given evaluation interval. The details of the input and output parameters are 

given in TABLE 7. 

 

TABLE 7: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS GENERATION 
FUNCTION. 

Parameter definition Description 

segment_bounds  
Collection that contains the indexes of vect_x for the defined 

segments endpoints/boundaries. 

poly_degree  
The polynomial degree to be employed for the polynomial 

approximation, which was previously introduced as m. 

vect_x The vector of the quantized evaluation interval X. 

vect_eval_y 
The vector that contains the results from the evaluation of the function 

for every element in vect_x. 

approx_method 
Polynomial approximation method that should be used to compute the 

segments polynomials. 

  

Output parameters Description 

polynomial_coefficients The vector that contains the collection of coefficients for all the 

defined segments in the evaluation interval. 
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3.2.7 LSPA Coefficients 

This function computes the LSPA polynomials to approximate all the defined segments 

within the evaluation interval. The details of the input and output parameters are given in TABLE 

8. 

 

TABLE 8: INPUT AND OUTPUT PARAMETERS OF THE LSPA COEFFICIENTS 
FUNCTION. 

Parameter definition Description 

segment_bounds  
Collection that contains the indexes of vect_x for the defined 

segments endpoints/boundaries. 

poly_degree  
The polynomial degree to be employed for the polynomial 

approximation, which was previously introduced as m. 

vect_x The vector of the quantized evaluation interval X. 

vect_eval_y 
The vector that contains the results from the evaluation of the function 

for every element in vect_x. 

  

Output parameters Description 

polynomial_coefficients The vector that contains the collection of LSPA coefficients for all 

the defined segments in the evaluation interval. 
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3.2.8 MMPA Coefficients 

This function computes the mMPA polynomials to approximate all the defined segments 

within the evaluation interval. The details of the input and output parameters are given in TABLE 

9. 

 

TABLE 9: INPUT AND OUTPUT PARAMETERS OF THE MMPA COEFFICIENTS 
FUNCTION. 

Parameter definition Description 

segment_bounds  
Collection that contains the indexes of vect_x for the defined 

segments endpoints/boundaries. 

poly_degree  
The polynomial degree to be employed for the polynomial 

approximation, which was previously introduced as m. 

vect_x The vector of the quantized evaluation interval X. 

vect_eval_y 
The vector that contains the results from the evaluation of the function 

for every element in vect_x. 

  

Output parameters Description 

polynomial_coefficients The vector that contains the collection of mMPA coefficients for all 

the defined segments in the evaluation interval. 
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3.2.9 Segments Polynomials Evaluation 

This function performs the floating point evaluation of the function through approximated 

polynomials. The details of the input and output parameters are given in TABLE 10.  

 

TABLE 10: INPUT AND OUTPUT PARAMETERS OF THE SEGMENTS POLYNOMIALS 
EVALUATION FUNCTION. 

Parameter definition Description 

posx_values  
Collection that contains the values of x for the defined segments 

endpoints/boundaries. 

coef_ram 
A vector that contains the collection of coefficients for all the defined 

segments in the evaluation interval. 

vect_x The vector of the quantized evaluation interval X. 

  

Output parameters Description 

fltPnt_poly_vect_eval_y A vector that contains the results of the evaluation of the function 

through the polynomial approximation in floating-point 

approximation. 

3.2.10 Coefficients Assignment 

This function assigns the polynomial coefficients to the corresponding segment. The details 

of the input and output parameters are given in TABLE 11. 

 

TABLE 11: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS 
ASSIGNMENT FUNCTION. 

Parameter definition Description 

posx_values  
Collection that contains the values of x for the defined segments 

endpoints/boundaries. 



3.  SEGMENTATION METHODOLOGY IMPLEMENTATION 

 51

coef_ram 
A vector that contains the collection of coefficients for all the defined 

segments in the evaluation interval. 

Xdata The vector of the quantized evaluation interval X. 

  

Output parameters Description 

Assigned The matrix that contains the coefficients arranged correspondingly to 

each defined segment. 

3.2.11 Fixed Point Analysis 

This function performs the fixed-point analysis to determine the correct configuration to 

appropriately represent all the numbers within the evaluation interval, as well as the values of the 

domain of the function and the polynomial’s coefficients. The details of the input and output 

parameters are given in TABLE 12. 

 

TABLE 12: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT ANALYSIS 
FUNCTION. 

Parameter definition Description 

coef_ram  The matrix that contains the coefficients of the defined segments. 

vect_x The vector of the quantized evaluation interval X. 

vect_eval_y 
A vector that contains the results of the evaluation of the function 

for each point in vect_x. 

word_length Predefined system word length. 

  

Output parameters Description 

QI_MaxCoeff The number of bits required to represent the integer part of the 

maximum number required. 

QF_Xargument The number of bits remaining, from the predefined word length 

and the required QI bits, for the representation of the fractional 

portion of the numbers. 
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range_min_limit  Minimum number that can be represented by the fixed-point 

configuration Q[QI_MaxCoeff, QF_Xagument]. 

range_max_limit  The maximum number that can be represented with the fixed-point 

configuration Q[QI_MaxCoeff, QF_Xagument]. 

fixed_point_resolution Resolution provided by the fixed-point configuration 

Q[QI_MaxCoeff, QF_Xagument]. 

coef_ramA_fxp_obj MATLAB fixed-point object that holds the fixed-point values of 

the p0 coefficients for all the defined segments. 

coef_ramB_fxp_obj MATLAB fixed-point object that holds the fixed-point values of 

the p1 coefficients for all the defined segments. 

coef_ramC_fxp_obj MATLAB fixed-point object that holds the fixed-point values of 

the p2 coefficients for all the defined segments. 

fixedPoint_vect_x_obj  MATLAB fixed-point object that holds the fixed-point values of 

the evaluation interval x. 

3.2.12 Floating Point Function Evaluation 

This function performs the evaluation of the function through the polynomials 

approximation using floating-point representation. The details of the input and output parameters 

are given in TABLE 13. 

 

TABLE 13: INPUT AND OUTPUT PARAMETERS OF THE FLOATING POINT 
EVALUATION FUNCTION. 

Parameter definition Description 

fltPnt_posx_values 
Collection that contains the values within x for the defined 

segments endpoints/boundaries in floating-point representation. 

coef_ram The matrix that contains the coefficients of the defined segments. 

fxdPnt_vect_x 
A vector that contains the values of x that conform the evaluation 

interval in fixed-point representation. 
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vect_x 

 

A vector that contains the values of x that conform the evaluation 

interval. 

Output parameters Description 

fltPnt_poly_vect_eval_y 

 

A vector that contains the results of the evaluation of the function 

through the polynomial approximation in floating-point 

approximation. 

3.2.13 Fixed Point Function Evaluation 

This function performs the evaluation of the function through the polynomials 

approximation using fixed-point representation. The details of the input and output parameters are 

given in TABLE 14. 

 

TABLE 14: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT FUNCTION 
EVALUATION FUNCTION. 

Parameter definition Description 

fxdPnt_posx_values Collection that contains the values within x for the defined 

segments endpoints/boundaries in fixed-point representation. 

coef_ramA_fxp A vector that contains the values of the polynomial coefficient p0 

in fixed-point representation. 

coef_ramB_fxp A vector that contains the values of the polynomial coefficient p1 

in fixed-point representation. 

coef_ramC_fxp A vector that contains the values of the polynomial coefficient p2 

in fixed-point representation. 

fxdPnt_vect_x A vector that contains the values of x that conform the evaluation 

interval in fixed-point representation. 

WordLength Predefined system word length, the default is 32 bits. 

QF_Xargument The number of bits remaining from the predefined word length and 

the required QI bits, for the representation of the floating portion 

of the numbers. 
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Output parameters Description 

fxdPnt_poly_vect_eval_y 

 

A vector that contains the results of the evaluation of the function 

through the polynomial approximation in fixed-point 

representation. 

3.2.14 Error and SQNR Computation 

This function computes the vector of absolute approximation error and the SQNR response 

from the performed segmentation realization. The details of the input and output parameters are 

given in TABLE 15. 

 

TABLE 15: INPUT AND OUTPUT PARAMETERS OF THE ERROR AND SQNR 
COMPUTATION FUNCTION. 

Parameter definition Description 

vect_eval_y 
A vector that contains the results of the evaluation of the 

function for each element in vect_x. 

fltPnt_poly_vect_eval_y 

A vector that contains the results of the evaluation of the 

function for each element in vect_x using floating-point 

representation. 

fxdPnt_poly_vect_eval_y 

A vector that contains the results of the evaluation of the 

function for each element in vec_x using fixed-point 

representation. 

Output parameters Description 

Error_FltPntGolden_to_FltPntPoly  

A vector that contains the absolute errors of 

approximation between the original function and the 

polynomial approximation in floating-point 

representation. 

Error_FltPntGolden_to_FxdPntPoly

A vector that contains the absolute errors of 

approximation between the original function and the 

polynomial approximation in fixed-point representation. 
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SQNR 
The value of the SQNR response of the performed 

segmentation realization. 

3.2.15 Coefficients Storage 

This function creates the Verilog code for the ROM blocks that store the segments 

endpoints and the corresponding polynomial coefficients. The details of the input and output 

parameters are given in TABLE 16. 

 

TABLE 16: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS STORAGE 
FUNCTION. 

Parameter definition Description 

fixedPoint_vect_x_obj 
Vector that contains the values of x that conform the 

evaluation interval in fixed-point representation. 

fxdPnt_posx_values 

Collection that contains the values of x for the defined 

segments endpoints/boundaries in fixed-point 

representation. 

coef_ramA_fxp_ob 
A vector that contains the values of the polynomial 

coefficient p0 in fixed-point representation. 

coef_ramB_fxp_obj 
A vector that contains the values of the polynomial 

coefficient p1 in fixed-point representation. 

coef_ramC_fxp_obj 
A vector that contains the values of the polynomial 

coefficient p2 in fixed-point representation. 
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4 Function Segmentation Tests and Results 

The segmentation performance and approximation accuracy of the proposed AFSM were 

evaluated for the set of test bench functions listed in TABLE 17. These functions are widely 

employed to construct hardware blocks with application in the fields of numerical analysis, digital 

signal processing, wireless channel emulation, artificial neural networks [24], amongst others. 

  

For all the test bench functions, the optimization process of the segmentation algorithm 

was set up to maintain the output SQNR within the specified range, 60dB to 70dB. TABLE 17 

summarizes the approximation results from the proposed AFSM employing both Least Squares 

and miniMax PPA methods. The columns “  * %Th ” and “  * %Th ” present the optimal design 

parameters (first order derivative and minimum chordal length thresholds) of the segmentation 

algorithm that satisfy the SQRN requirement. The column “ *( )SQNR dB ” presents the achieved 

SQNR through the optimized design parameters in columns “  * % ” and “  * %Th ”. The column 

“Required Segments” shows the minimum number of segments needed to meet the SQNR 

requirement.  

 

The columns “QI (bits)” and “QF (bits)” present the number of bits assigned to the integer 

and fractional parts of the fixed-point representation of the polynomial coefficients, the range, and 

the domain of the approximated function. The maximum absolute error of approximation between 

each function and its piecewise polynomial approximation is presented in the “Max |Error|” 

column. Finally, the column “ROM (Bytes)” shows the bytes of memory required by the LUT for 

the storage of the polynomial’s coefficients of all the segments needed to achieve the SQNR 

requirement for each PPA method tested; the memory requirements are calculated as 

Required_Segments ( 1)
8
Len

Bytes

W
ROM m    . 
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 Although the proposed AFSM can be employed to approximate transcendental functions 

using polynomials of any degree, to reduce the number of coefficients required for each segment, 

second-degree polynomials were used for both Least Square and miniMax methods. In this sense, 

the polynomial approximation tests were carried out with a uniform word length of Len 32W   bits. 

This decision is supported by the fact that most modern field programmable gate arrays (FPGA) 

or systems on a chip (SoC) have these or even greater bus width capabilities; therefore, no 

additional resources expenditure is required.  

 

TABLE 17: SEGMENTATION AND APPROXIMATION ACCURACY RESULTS FROM 
THE PROPOSED AFSM FOR BOTH LS AND MINIMAX PPA METHODS. THESE 
RESULTS WHERE OBTAINED USING Len 32W   BITS AND POLYNOMIALS OF 

DEGREE 2m  . 

 PPA 

Method 

*
Th  

(%) 

*
Th

(%) 

*SQNR  

dB 

Required 

Segments 

QI 

(bits) 

QF 

(bits) 

Max 

|Error| 

ROM 

(Bytes) 

1( ) ( )f x x  
LSPA 28.5 10 65.25 7 13 19 0.0099 84 

mMPA 41 10 62.48 6 12 20 0.0055 72 

2

1
( )f x

x


 

LSPA 30 30 66.85 14 16 16 0.0075 168 

mMPA 93.4 10 63.12 10 16 16 0.0096 120 

3( ) sin( )f x x
 

LSPA 60 25 66.78 12 5 27 0.0013 144 

mMPA 91.8 25 64.61 12 5 27 0.0007 144 

24 ( ) log ( )
2

x
f x x  

LSPA 72 20 64.71 9 6 26 0.0019 108 

mMPA 95.7 20 64.36 8 7 25 0.0005 96 

1
5 ( ) cos ( )f x x

 
LSPA 4 10 64.52 9 11 21 0.0338 108 

mMPA 10 10 64.66 8 14 28 0.0078 96 

6( ) ln( )f x x 
 

LSPA 37 15 62.28 12 15 17 0.0146 108 

mMPA 20 15 60.24 12 15 17 0.007 96 

7 ( ) ln(1 )f x x 
 

LSPA 90 40 64.49 2 2 30 0.0008 144 

mMPA 40 40 63.22 2 2 30 0.0005 144 

8

1
( )

1
f x

x


  

LSPA 100 30 62.16 2 2 30 0.0019 24 

mMPA 100 30 60.68 2 2 30 0.0011 24 
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39 4 2

0.0004 0.0002
( )

1.96 1.348 0.378 0.0373

x x
f x

x x x x




     
 

 
LSPA 143 8 60.52 30 11 21 0.0031 360 

mMPA 143 8 60.32 30 11 21 0.0020 360 

10( ) tansig( )f x x  LSPA 50 25 62.02 8 33 29 0.0025 96 

mMPA 50 25 60.08 8 33 29 0.0014 96 

 

One can observe in TABLE 17 that for the functions f1(x), f4(x), and f5(x) one less segment 

is needed to reach the target SQNR when the polynomial approximation is carried out through the 

mMPA method than when it is performed through the LSPA method. Furthermore, given that the 

mMPA finds the polynomial coefficients that minimize the maximum error of approximation, for 

most of the test bench functions, the maximum absolute error achieved through the mMPA method 

was smaller in comparison to that obtained through the LSPA method. However, one can observe 

that for the functions f3(x), f6(x), f7(x), f8(x), and f9(x) the achieved SQNR though the mMPA 

method was slightly lower in comparison to that obtained through LSPA method. The reason of 

this is that the objective of the LSPA method is to find a set of polynomial coefficients for each 

segment that minimize the sum of the squared residual between the original function and the 

approximating polynomial. Consequently, the denominator of the SQNR expression in (2-16) that 

accounts for the quantization noise is minimized explicitly.    

 

TABLE 18: SEGMENTATION PERFORMANCE COMPARISON BETWEEN THE 
PROPOSED AFSM VERSUS THE UNIFORM AND THE NON-UNIFORM-BY-POWERS-

OF-TWO SEGMENTATION METHODOLOGIES. 

Function Segmentation

Methodology

Required 

Segments

QI 

(bits) 

QF 

(bits) 

SQNR 

(dB) 

1
5 ( ) cos ( )f x x  

AFTM 8 14 18 64.66 

Uniform 128 13 19 58.64 

Non-Uniform 8 13 19 66.53 

6 ( ) ln( )f x x   
AFSM 12 15 17 62.28 

Uniform 128 18 14 60.95 

Non-Uniform 16 15 17 65.74 
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39 4 2

0.0004 0.0002
( )

1.96 1.348 0.378 0.0373

x x
f x

x x x x




   
 

AFSM 30 11 21 60.52 

Uniform 64 11 21 61.96 

Non-Uniform 32 11 21 46.80 

10( ) tansig( )f x x  AFSM 8 3 28 62.02 

Uniform 8 3 29 59.62 

Non-Uniform 16 3 29 61.19 

 

For the functions f5(x), f6(x), f9(x), and f10(x), TABLE 18 shows a comparison of the 

approximation performance obtained through the proposed AFSM, the uniform, and non-uniform-

by-powers-of-two segmentation methodologies for an SQNR requirement between 60 dB and 70 

dB. These functions were selected for comparison because these present curvature features that 

are challenging to approximate through a basic segmentation methodology alone; prove of this is 

that for functions such as f9(x) and f10(x) the SQNR requirements was not satisfied employing the 

non-uniform and the uniform segmentation methodologies, respectively.  

 

For example, given the specified SQNR, f5(x) can be approximated using only eight 

segments through both the proposed AFSM (plotted in Fig. 4-1) and the non-uniform-by-powers-

of-two methodology (plotted in Fig. 4-2). On the other hand, the uniform segmentation 

methodology, plotted in Fig. 4-3, does not perform satisfactorily because an excessive number of 

128 segments are required in an attempt to reduce the absolute approximation error shown in Fig. 

4-4, which increases as the curvature of f5(x) increases. Similarly, the uniform segmentation 

methodology for the functions f6(x) and f9(x) (plotted in Fig. 4-7 and Fig. 4-11 respectively) 

requires a significantly greater amount of segments compared to the proposed AFSM. In this sense, 

for the functions f6(x) and f9(x), the uniform segmentation methodology requires 128 and 64 

segments respectively, while the proposed AFSM requires only 12 and 30 segments, respectively. 

 

The advantages of the proposed AFSM, over the previously discussed basic segmentation 

methodologies, are demonstrated through the more elaborated curvature shapes of the functions 

f6(x), f9(x), and f10(x), which are plotted in Fig. 4-5, Fig. 4-9, and Fig. 4-13, accordingly. For these 

test functions, the proposed AFSM meets the SQNR requirement with the minimum number of 



4.  FUNCTION SEGMENTATION TESTS AND RESULTS 

 61

segments amongst the comparing segmentation methodologies. Also, and most importantly, 

through the proposed AFSM, the segmentation and approximation procedure was automatically 

performed and optimized according to the evolution of the curvature shape without intervention 

from the user. 

 

In contrast, in order to apply the non-uniform-by-powers-of-two segmentation 

methodology on these functions, the user should intervene in the definition of a segmentation 

hierarchy within the sub-intervals in X. This segmentation hierarchy is needed to change the 

direction of segmentation to match the evolution of the function’s shape and allocate more 

segments to the regions with increasing curvature [14]. An example of this is shown in Fig. 4-6, 

where the evaluation interval of f6(x) was first divided in half at x=0.5 using uniform segmentation. 

Then starting at x=0.5, the sub-interval (0, 0.5] was hierarchically segmented from right to left 

using the non-uniform-by-powers-of-two segmentation. Finally, the sub-interval (0.5, 1] was 

segmented out using the non-uniform-by-powers-of-two segmentation from left to right. Likewise, 

for f9(x) in Fig. 4-10, and for f10(x) in Fig. 4-14, the first level of the segmentation hierarchy divides 

the evaluation interval into four uniform sub-intervals. Then, for the second segmentation level of 

both f9(x) and f10(x), each of the uniformly divided sub-intervals is hierarchically segmented using 

the non-uniform-by-powers-of-two segmentation in the direction (left to right or vice versa) that 

allocates the maximum number of segments to the regions of higher curvature.  

 

As it was already mentioned, an important drawback of the hierarchical segmentation 

methodology is that the user should determine the most appropriate direction of segmentation 

through visual inspection of the functions’ shape. In this sense, one can observe on TABLE 18 that 

for f9(x), plotted in Fig. 4-10, the hierarchical segmentation does not meet the SQNR requirements 

because the endpoints of the uniformly spaced segments do not quite match with the regions where 

the function presents the higher curvature. As a consequence, the tightly spaced segments from the 

second level non-uniform segmentation are defined at inappropriate locations, causing the error of 

approximation to increase at the regions of the function that present the maximum curvature.  

 

The uniform segmentation of f5(x), f6(x), and f9(x) is shown in Fig. 4-3, Fig. 4-7, and Fig. 

4-11, respectively. One can observe that the uniform segmentation of these functions requires an 
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excessive number of segments because this technique is not appropriate for functions with highly 

varying curvature shapes. On the contrary, since the evolution of the curvature of f10(x) in Fig. 

4-15 is fairly smooth, the uniform segmentation delivers similar results to the proposed AFSM.  

 

The plots of the absolute error of approximation for f5(x), f6(x), f9(x) and f10(x) are shown 

in Fig. 4-4, Fig. 4-8, Fig. 4-12, and Fig. 4-16 respectively. In these plots, one can clearly observe 

that the proposed AFSM does not deliver the minimum absolute approximation error at every point 

within the evaluation interval; instead of that, the approximation error is controlled and balanced 

according to the evolution of the curvature of an arbitrary function. The previous is an important 

effect that allows the proposed segmentation algorithm to adapt to functions of arbitrary shape and 

achieve a good balance between the number of segments and the accuracy requirements. 

 

The advantages of the AFSM over the compared segmentation methodologies in term of 

the required number of segments is directly translated into a significant reduction memory 

resources required to store the LUT of polynomial coefficients. As an example, to achieve similar 

accuracy results for f5(x) and f6(x), the uniform segmentation requires a total of 128 segments, 

which translates to 1536 bytes of ROM. On the other hand, through the AFSM, for f5(x) only eight 

segments (96 bytes) are required, and for f6(x) only 12 segments (144 bytes) are required 

respectively. The previous calculations account for a 1600% and a 1066.66% reduction of the 

corresponding memory resources. 
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Fig. 4-1. Segmentation and approximation result for f5(x) through the proposed AFSM. 

 
 

 
Fig. 4-2: Segmentation and approximation result for f5(x) through the non-uniform methodology.  
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Fig. 4-3. Segmentation and approximation result for f5(x) through the uniform segmentation 
methodology. 

 
 

 

Fig. 4-4. Absolute error of approximation for f5(x) from the proposed AFSM, non-uniform-by-
powers-of-two, and uniform segmentation methodologies. 
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Fig. 4-5. Segmentation and approximation result for f6(x) through the proposed AFSM. 

 
 

 

Fig. 4-6. Segmentation and approximation result for f6(x) through the non-uniform segmentation 
methodology. 
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Fig. 4-7. Segmentation and approximation result for f6(x) through the uniform segmentation 
methodology. 

 

 

Fig. 4-8. Absolute error of approximation for f6(x) from the proposed AFSM, non-uniform, and 
uniform segmentation methodologies. 
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Fig. 4-9. Segmentation and approximation result for f9(x) through the proposed AFSM. 

 
 

 

Fig. 4-10. Segmentation and approximation result for f9(x) through the non-uniform 
segmentation methodology. 
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Fig. 4-11. Segmentation and approximation result for f9(x) through the uniform segmentation 
methodology. 

 
 

 

Fig. 4-12. Absolute error of approximation for f9(x) from the proposed AFSM, non-uniform, and 
uniform segmentation methodologies. 
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Fig. 4-13. Segmentation and approximation result for f10(x) through the proposed AFSM. 

 
 

 

Fig. 4-14. Segmentation and approximation result for f10(x) through the non-uniform 
segmentation methodology.  
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Fig. 4-15. Segmentation and approximation result for f10(x) through the uniform segmentation 
methodology. 

 

 

Fig. 4-16. Absolute error of approximation for f10(x) from the proposed AFSM, non-uniform, and 
uniform segmentation methodologies. 
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Conclusions 

This thesis presented a novel adaptive function segmentation methodology for the accurate 

approximation of transcendental functions through piecewise-polynomials for the efficient 

implementation of hardware-based functions evaluators. The proposed adaptive segmentation 

methodology is based on the analysis of the first and second order derivatives to perform the shape-

aware segmentation of any continuous function and determine the size and location of the 

segments in such a way that the accuracy of the polynomial approximation is maximized. In this 

sense, the segmentation algorithm employs an automatic optimization algorithm that searches for 

the proper values of the segmentation design parameters to obtain the best balance between the 

number of segments and the accuracy requirements. Henceforth, the introduced algorithm can be 

used for implementing low area and efficient channel emulators for testing wireless 

communication systems. 

 

The introduced segmentation method offers significant advantages over state-of-art 

segmentation methodologies such as the uniform and the non-uniform-by-powers-of-two because 

it can be flexibly employed for any arbitrarily-shaped continuous function, and the amount of 

memory required to store the coefficients of the polynomials is optimized in accord with the 

applications’ SQNR requirements. Furthermore, the segment addressing and evaluation logic of 

the proposed segmentation methodology is simpler to implement than that required by the 

hierarchical segmentation method because it does not require the definition of addressing and 

evaluation hierarchies. 

 

The presented approximation results emphasize the flexibility and accuracy offered by the 

proposed methodology for performing the approximation and evaluation of transcendental 

functions of diverse shapes. Additionally, the small hardware resourced required to make the 

proposed segmentation methodology an efficient and cost-effective option for implementing low 

area computing arithmetic blocks using PPA methodologies. 
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Future Work 

The following are the activities planned for future work: 

 

 The implementation of range reduction techniques to improve the approximation accuracy. 

However, range reduction techniques are applicable on a per function basis; therefore, the 

flexibility of applying the technique to any arbitrary continuous function without much 

intervention from the user is sacrificed. 

 

 The implementation of a global search method such as particle swarm optimization or 

simulated annealing to find the global minimum amount of segments of the design space. 

 

 The application of the polynomial coefficients into a hardware-based evaluator to obtain 

results of the accuracy from real hardware. 

 

 The implementation of a case study where the proposed adaptive segmentation 

methodology is employed to develop a hardware channel emulator and tested to reproduce 

the characteristics of a real wireless transmission scenarios.





 

 75

Appendix 

  



 

 76

A. PUBLISHED PAPER FOR THE IEEE MTT-S LATIN 
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B. SUBMITTED PAPER FOR THE IEEE TRANSACTIONS ON 
MICROWAVE THEORY AND TECHNIQUES 
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