

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS
SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

MAESTRÍA EN DISEÑO ELECTRÓNICO

ADAPTIVE FUNCTION SEGMENTATION METHODOLOGY FOR

RESOURCES OPTIMIZATION OF HARDWARE-BASED

FUNCTION EVALUATORS

Tesis que para obtener el grado de

MAESTRO EN DISEÑO ELECTRÓNICO

Presenta: Juan Martín Trejo Arellano

Director: Dr. Omar Humberto Longoria Gándara
Co-Director: Dr. Javier Vázquez Castillo

San Pedro Tlaquepaque, Jalisco. Febrero del 2017.

iii

Agradecimientos

Agradezco a dios por la vida, el gran amor y fortaleza que me da día a día para afrontar los retos que me llenan de
satisfacción y jubilo. Agradezco infinitamente a todas las personas con quienes me he encontrado a lo largo de mi

vida, quienes han sido un aliciente y me han impulsado crecer como persona y como profesionista.

Agradezco a mi amada esposa María Isabel Baena Amador, por ser mi fiel compañera, amiga y colega quien me ha
apoyado de forma incondicional en los que alguna vez fueron momentos muy difíciles; los cuales ahora,

recapitulando, gracias a su amor, cuidado y comprensión, se han convertido en momentos memorables llenos de
aprendizaje y satisfacción.

Agradezco a mi padre, Jesús Trejo Ortiz, quien con su ejemplo me ha enseñado que las cosas que realmente
importan en esta vida se logran por medio de la tenacidad y trabajo arduo. Agradezco a mi madre, Yolanda

Arellano Almeida, por los sacrificios que ha realizado para traerme a éste mundo y criarme en un hogar lleno de
buenos valores y quien siempre se ha dado un momento para brindarme un abrazo, un beso y las palabras de
aliento que en más de una ocasión he necesitado para afrontar los retos de la vida bajo una perspectiva más

positiva y enriquecedora. A mis hermanas Minerva Susana, Aurora Berenice, María Lú, y Erika Cecilia, por todos
los momentos me han permitido compartir y el cariño que me han brindado.

Agradezco a mi suegra, la señora Teresa Amador Ortiz, quien me ha brindado la confianza de ser el guardián de
uno de sus más grandes tesoros y quien con su ejemplo me ha mostrado que las más grandes barreras en nuestra
vida se superan con amor incondicional, sacrificio y tenacidad. A mis cuñados Rigel, Raúl y a mi cuñada Lileana,
quienes con amor han acompañaron a mi esposa durante su vida y que ahora de igual forma me han aceptado como
parte de su hermosa familia.

Agradezco a mis asesores, el Dr. Omar Humberto Longoria Gándara y el Dr. Javier Vázquez Castillo quienes me
han brindado su confianza y quienes con gran paciencia y entusiasmo me guiaron, compartido sus conocimientos

para el desarrollo de mi tesis. Agradezco al Dr. Roberto Carrasco Álvarez quien dedico gran cantidad de su tiempo
para la revisión de la redacción y el sustento matemático de los artículos publicados como parte de este trabajo de

tesis.

Agradezco al Instituto Tecnológico de Estudios Superiores de Occidente (ITESO) por el acceso a la educación y los

valores que me instruyó durante el transcurso de mi maestría para poder consolidarme como un ciudadano y
profesionista altamente comprometido con el desarrollo de la tecnología en México.

A SEP-PRODEP 2014 y CONACYT por el apoyo económico otorgado bajo el fondo CB-241272, para el desarrollo

del proyecto que se aborda en éste trabajo de tesis y las publicaciones derivadas.

v

Abstract

This thesis presents a new adaptive function segmentation methodology (AFSM), for the evaluation

of mathematical functions through piecewise polynomial approximation (PPA) methods. This

methodology is planned to be employed for the development of an efficient hardware-based

channel emulator in future development steps of the current project. In contrast to state-of-art

segmentation methodologies, which applicability is limited because these are highly dependent on

the function shape and require significant intervention from the user to setup appropriately the

algorithm, the proposed segmentation methodology is flexible and applicable to any continuous

function within an evaluation interval. Through the analysis of the first and second order

derivatives, the methodology becomes aware of the function shape and adapts the algorithm

behavior accordingly.

The proposed segmentation methodology aims towards hardware architectures of limited

resources that resort to fixed-point numeric representation where the hardware designer should

make a compromise between resources consumption and output accuracy. An optimization

algorithm is implemented to assist the user in searching the best segmentation parameters that

maximize the outcome of the design trade-offs for a given signal-to-quantization-noise ratio

requirement. When compared to state-of-the-art segmentation methodologies, the proposed AFSM

delivers better performance of approximation for the hardware-based evaluation of

transcendental functions given that fewer segments and consequently fewer hardware resources

are required.

vii

Table of Content

Abstract .. v

Table of Content .. vii

1 Introduction ... 1

1.1 MOTIVATION .. 2
1.2 STATE OF THE ART ... 3
1.3 PROBLEM STATEMENT ... 7
1.4 RESEARCH CONTRIBUTION ... 8
1.5 THESIS OBJECTIVES ... 8
1.6 DERIVED PUBLICATIONS .. 9

2 Adaptive Function Segmentation for Hardware Resources Optimization 11

2.1 FUNCTION SHAPE ANALYSIS THROUGH FIRST AND SECOND ORDER DERIVATIVES 11
2.1.1 Bidirectional Function Shape Analysis .. 15

2.2 CHORDAL SEGMENT LENGTH TUNING ... 16
2.3 POLYNOMIALS COEFFICIENT GENERATION .. 18

2.3.1 Least Square Polynomial Approximation and Error Treatment 19
2.3.2 miniMax Polynomial Approximation and Error Treatment ... 21

2.4 FIXED-POINT AND SQNR ANALYSIS .. 24
2.5 SEGMENTATION OPTIMIZATION ... 25

3 Segmentation Methodology Implementation ... 29

3.1 SEGMENTATION ALGORITHM SOFTWARE ARCHITECTURE ... 38
3.2 FUNCTIONAL DESCRIPTION OF THE SOFTWARE ARCHITECTURE MODULES 39

3.2.1 Adaptive Directional Exploration .. 39
3.2.2 First Derivative ... 42
3.2.3 Second Derivative .. 43
3.2.4 Segment Length Computation .. 44
3.2.5 Main Segmentation Algorithm ... 44
3.2.6 Coefficients Generation .. 47
3.2.7 LSPA Coefficients .. 48
3.2.8 MMPA Coefficients ... 49
3.2.9 Segments Polynomials Evaluation ... 50
3.2.10 Coefficients Assignment .. 50
3.2.11 Fixed Point Analysis .. 51
3.2.12 Floating Point Function Evaluation .. 52
3.2.13 Fixed Point Function Evaluation .. 53
3.2.14 Error and SQNR Computation ... 54
3.2.15 Coefficients Storage ... 55

4 Function Segmentation Tests and Results .. 57

viii

Conclusions .. 71

Future Work .. 73

Appendix .. 75

A. PUBLISHED PAPER FOR THE IEEE MTT-S LATIN AMERICA MICROWAVE

CONFERENCE ... 76
B. SUBMITTED PAPER FOR THE IEEE TRANSACTIONS ON MICROWAVE THEORY

AND TECHNIQUES .. 81

List of Figures .. 99

List of Tables ... 101

Index ... 103

1

1 Introduction

The development and implementation of modern wireless communication systems are

highly complex tasks that require exhaustive simulation during the design and verification of the

building blocks to develop a system that is cost effective and performs reliably under a broad set

of operational conditions. Under these circumstances, software-based simulation tools are not

adequate given the excessive amount of time required to complete numerically intensive types of

simulations.

The physical layer of a wireless communication system can be broken down into two

blocks, the baseband section, and the Tx/Rx RF front-end section. Although both blocks present

intrinsic undesired characteristics that limit the overall performance of the system, the greatest

impact is imposed by the degrading propagation phenomena of the communication channel, such

as scattering, reflections, diffraction and attenuation [1]. These propagation phenomena can be

modeled as noise with certain statistical properties, which can be efficiently imprinted to the signal

through hardware-based channel emulators.

In this sense, the bit error rate (BER) over the desired range of signal-to-noise ratio (SNR)

is the metric employed to evaluate the performance of the baseband wireless receiver under test.

The BER to SNR characteristic is generated through pervasive Monte Carlo simulations that can

take several days to weeks or even months if performed through software-based simulators [1].

On the other hand, the verification of the wireless communication systems’ physical layer can be

sped up several orders of magnitude if highly flexible and efficient wireless channel emulators are

implemented in hardware using field programmable gate arrays (FPGA) or application specific

integrated circuits (ASIC). Consequently, a broad set of configurations and transmission

environments such as indoor, urban, suburban, rural, and mobile, can be tested under controlled

conditions that warrant the repeatability of subsequent measurements [2]; something that is nearly

impossible to achieve through in-the-field testing methods.

1. INTRODUCTION

 2

If the reader is interested in obtaining the MATLAB code of the implementation presented

in this study, please feel free to send an email request at MD687149@iteso.mx.

1.1 Motivation

The Nakagami, Suzuki, and Weibull channel emulators are noise generators widely used

for generating stochastic processes with specific characteristics associated with the different

communication channels or environments. The Weibull processes are utilized to model power

variation of the signal multi-paths in vehicle-to-vehicle (V2V) applications [2] under urban

environments (land-mobile channels) [3]. The Suzuki processes are suitable to simulate a mobile

wireless channel affected by fading (small-scale process) and shadowing (large-scale process).

Additionally, the Suzuki processes are considered to be more precise for modeling channels in

urban environments where the specular component or line of sight (LoS) is not present [4]. Finally,

the Nakagami processes are used to represent a channel where multiple Rayleigh processes are

present (Channels with great temporal dispersion) such as in V2V communication channels.

Wireless channel models implement mathematical expressions and transcendental

functions that are evaluated to generate the statistical channel noise description when carrying out

the testing and simulation of a wireless communication system. In general, one of the simplest

methods to evaluate a transcendental function is through look-up tables (LUT); where a broad set

of output values obtained from a fine-grained pre-evaluation of the function are stored in advanced

in the LUT, and then retrieved back according to the input argument of the functions. However,

the downside of this evaluation method is that the hardware resources occupied by the LUT

increase exponentially along with increments in the accuracy requirements of the output [5].

With the objective to reduce the hardware resources footprint, this work proposes the

evaluation of the transcendental functions through piece-wise polynomial approximation methods

(PPA) where the function subject to evaluation is segmented out, and each segment is

approximated using a low-degree polynomial. Consequently, through this evaluation method, the

LUT only stores the coefficients of the polynomial that best fit each of the segments that

1. INTRODUCTION

 3

encompass the evaluation domain of the functions. However, the output accuracy achieved through

PPA methods heavily depends on the segmentation strategy employed to segment out the function

at hand; in other words, the quality of approximation of the original function is determined by

both, the location of the segments boundaries as well as the number of segments required.

1.2 State of the Art

Modern digital signal processing algorithms use high complexity building blocks, which

are associated with the evaluation of transcendental functions. In wireless communication channel

modeling, the channel emulation is carried out using models based on sum-of-cissoids (complex

exponentials), where the accuracy of evaluation of the sin() and cos() functions within the

models is a primary concern [6]. As an example, in Weibull fading channel emulators, which are

widely used for modeling V2V channels [7], the hardware implementation is significantly complex

due to the evaluation of ln() ,  , 1/ x , and exp() functions [7], [3]. Likewise, the efficient

hardware implementation of algorithms based on algebraic matrix operations such as QR

decomposition (QRD), commonly used for matrix inversion, is highly sensitive to the accuracy of

evaluation of the function  and 1/ x [8].

Currently, there are several methods for the evaluation of transcendental functions.

Although some of them offer certain advantages, they are also subject to disadvantages that make

them unsuitable for applications that require high accuracy and substantial computing throughput.

The iterative methods such as CORDIC (COordinate Rotation DIgital Computer) allow the

evaluation of transcendental functions [9], [10], [11] and [12] in a flexible manner. However, a

significant drawback that limits the development of hardware architectures for real-time

computing applications is that the output accuracy of the iterative methods is highly dependent on

the number of iteration that the algorithm is executed. An alternative methodology for evaluating

transcendental functions is via look-up tables, [3] and [13]; this is arguably the simplest and easiest

way to implement function evaluation blocks; however, the amount of memory needed for

allocating the function values increases significantly with increments on the output accuracy

requirement.

1. INTRODUCTION

 4

On the other hand, PPA is an alternative method for evaluating transcendental functions. It

offers flexible design trade-offs between computing speed, area, output accuracy, and hardware

architecture reuse because the design of the polynomials evaluator does not change across

functions. Approximating a function using PPA methods requires the input evaluation interval to

be partitioned into multiple segments. Each of these segments is approximated using a low-degree

polynomial, which is addressed through the hardware polynomial evaluator according to the input

values of the function. In this sense, the accuracy achieved using the PPA approximation

methodology significantly depends on the segmentation methodology utilized; i.e., sizable

approximation errors might be introduced when an inadequate segmentation strategy is employed,

resulting in reduced signal-to-quantization-noise ratio (SQNR) performance of the function

evaluation block.

Today, the most popular segmentation methodology for PPA is called hierarchical

segmentation method (HSM), [14], which embed the more basic segmentation methodologies

known as uniform and non-uniform-by-powers-of-two. In principle, any function could be

segmented out through these methodologies; however, the downside is that these are not sensitive

to the shape of the function, therefore, causing substantial accuracy loss and SQNR degradation of

the desired architecture.

Consider a continuous function f(x), with first and second order derivatives, where x X

and  L H,X x x . The uniform segmentation methodology divides the function interval X , in

equally sized segments; whereas, the non-uniform-by-powers-of-two segmentation methodology,

decreases the size of subsequent segments within X according to the geometric progression with a

common ratio of 1/2; the segmentation can be started either from Lx to Hx or vice-versa.

Fig. 1-1 and Fig. 1-2 show that the basic segmentation methodologies do not perform quite

well when dealing with functions that present non-monotonic curvature features. For example, the

uniform segmentation methodology is only suitable for functions that present a mostly constant or

slightly changing curvature within the evaluation interval. Otherwise, if the function exhibits both

fast-changing and slow-changing curvature features, an excessive amount of small segments are

1. INTRODUCTION

 5

also created around the regions with slow-changing curvature. The reason of this is that the high

density of segments that is needed to approximate the fast-changing curvature features

appropriately is kept uniform along the whole evaluation interval. On the other hand, the non-

uniform-by-powers-of-two segmentation methodology is only adequate for functions that present

a curvature that either increases or decreases in the same direction. As a result, the direction in

which the segments decrease in size is of utmost importance to appropriately approximate the

function; in this sense, the density of segments should increase as the curvature of the function

increases.

Fig. 1-1: Uniform segmentation, poor approximation accuracy to  () ln xf x  

1. INTRODUCTION

 6

Fig. 1-2: Non-uniform segmentation, insufficient approximation accuracy to

 () ln xf x  

The HSM is a hybrid segmentation methodology that employs both uniform and non-

uniform-by-powers-of-two segmentation methodologies to improve the approximation accuracy

to functions with non-monotonic curvature behaviors; however, since the segmentation

methodologies are employed in hierarchical levels, the control logic required for addressing the

hierarchy of segments is it too complex and requires a significant amount of hardware resources

in comparison to the proposed single level AFSM.

1. INTRODUCTION

 7

To employ the previously discussed state-of-art segmentation methodologies, the user

should properly select the segmentation strategy (or a combination of them), and the minimum

numbers of segments based on the shape of the function at hand. In many cases, this is an iterative

trial and error process carried out by the user until the SQNR requirement (accuracy) is satisfied.

Employing the inappropriate segmentation strategy results in a suboptimal trade-off between

hardware resource consumption and SQNR degradation. In contrast, the proposed AFSM, through

the analysis of the functions’ first and second order derivatives, tackles these issues given that the

algorithm automatically adapts the segmentation strategy and the density of segments to the shape

of the function at hand.

1.3 Problem Statement

Several segmentation methodologies have been proposed for the evaluation of

mathematical functions through PPA methods [14]; however, these segmentation methodologies

are unsuitable for the segmentation of arbitrary functions because the segmentation strategy

employed only delivers good approximation results if the function at hand presents specific

curvature characteristics. Consequently, the employment of the inappropriate segmentation

methodology causes the degradation of the SQNR, as well as, the usage of an excessive number

of segments in an attempt to satisfy the output accuracy requirements.

On the other hand, the state-of-art hierarchical segmentation methodologies that define a

segmentation hierarchy employing the more basic uniform and non-uniform methodologies,

require a complex segment addressing which consumes a considerable amount of logic resources;

furthermore, the segmentation solution, as well as the segment addressing logic is function-

specific, and it cannot be reused.

This work proposes a segmentation methodology that allows segmenting out an arbitrary

function based on the first order and second order derivatives of the function to be approximated

within a continuous interval X. The introduced segmentation methodology allows optimizing the

1. INTRODUCTION

 8

number of segments needed to satisfy the requirements of an objective function that best balances

the maximum approximation error, memory, and logic hardware resources.

1.4 Research Contribution

This thesis presents a new segmentation methodology for the approximation through PPA

methods of arbitrary transcendental functions through an automated function shape analysis based

on the functions’ first and second order derivatives. The proposed segmentation methodology

addresses the segmentation process as a constrained optimization problem to minimize the number

of segments according to design objectives such as SQNR and hardware area.

The simulation results show that the adaptive function segmentation methodology (AFSM)

provides better segmentation performance and higher SQNR with lower hardware resources

consumption in comparison to state of the art segmentation methodologies; therefore, the AFSM

represents an excellent alternative for implementing high accuracy PPA based transcendental

function evaluators embedded in sophisticated digital signal processing algorithms.

1.5 Thesis Objectives

The objectives of this thesis are the following:

 To develop an adaptive function segmentation methodology, for the evaluation of arbitrary

mathematical functions via PPA.

 To develop a shape analysis methodology for the efficient segmentation of arbitrary

functions based on the functions’ chordal length and the functions’ first order and second

order derivatives.

 The implementation of an optimization algorithm and the introduction of a cost function

for the optimization of hardware resources through the minimization of the number of

segments according to SQNR requirements of the application.

1. INTRODUCTION

 9

1.6 Derived Publications

As part of this thesis work, two papers were developed:

1) A conference paper for the IEEE Latin America Microwave Conference 2016 titled:

“A novel function segmentation methodology for implementing affordable channel

emulators”. The published paper can be found in Appendix A.

2) A journal paper for the IEEE LAMC-2016 Mini-Special Issue in IEEE Transactions

on Microwave Theory and Techniques titled: “An adaptive function segmentation

methodology based on first and second order derivatives for hardware optimization of

function evaluators”. The submitted paper can be found in Appendix B.

11

2 Adaptive Function Segmentation for Hardware
Resources Optimization

The development of an algorithm that automatically adapts the segmentation strategy

requires precise knowledge about the shape of the function under analysis and its curvature speed

of change within the evaluation interval. A convenient way to get such an insight is through the

implementation of an exploratory algorithm that analyzes the first and second order derivatives of

the function and identifies the points within the evaluation interval X where to split the function

into segments to maximize the accuracy of approximation through low-degree piecewise

polynomials. In this sense, the density of segments along X is automatically balanced according

to the progression of the functions’ curvature; consequently, the algorithm automatically allocates

a greater amount of segments around the regions that present a more pronounced curvature.

The calculations carried out by the algorithm are solved numerically; therefore, the

following sections utilize a discrete nomenclature for referring to the equations, functions, and

procedures used to describe the proposed segmentation algorithm.

2.1 Function Shape Analysis Through First and Second Order
Derivatives

The shape of the function f(x) and its curvature speed of change are analyzed through the

first and second order derivatives in a simple but yet powerful manner. To simplify the

segmentation process and to achieve improved approximation accuracy, the first step is to perform

a coarse segmentation by splitting the evaluation interval X at the critical points where the function

presents a local minimum, a local maximum or an inflection point. In this work, the segments

defined by this coarse segmentation stage are called main segments. The objective of the coarse

segmentation process is to define segments with a curvature that evolves monotonically (in the

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 12

same direction), either growing or decreasing, in order better approximate it through a 2-degree

polynomial.

The computation of the first and second order derivative is performed numerically through

(2-1) and (2-2). For the numerical computation of the functions’ derivatives, the interval X is

quantized into N points addressed as xi, where 1 ≤ i ≤ N.

1 1() ()()
()

2
i

i i
i

x x

f x f xdf x
g x

dx x
 




 


 (2-1)

2
1 1

2 2

() 2 () ()()
()

i

i i i
i

x x

f x f x f xd f x
h x

dx x
 



 
 


 (2-2)

where, 1 i ix x x i    .

The local minimum, maximum or inflection points of ()f x within the evaluation interval

X are found at a given point ix where there is a change of sign in ()g x or ()h x relative to the

next point 1ix  , i.e.,            1 1sign sign OR sign sign i i i ig x g x h x h x   . Therefore, the

set of main segments endpoints S encompasses the boundary points of the evaluation interval

 ,L Hx x and any other intermediate critical points ix , identified through the coarse segmentation

process. However, if no critical points are identified, then the entire evaluation interval delimited

by the segment endpoints at Lx and Hx is passed to the second segmentation step for further

segmentation tuning to achieve the SQNR requirement.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 13

Fig. 2-1: Coarse segmentation (square marks) of () sin()f x x at the critical points

(0) (1) (2) ()
, , ,...,

Js s s sx x x x .

To exemplify the previous point, let us think on () sin()f x x in Fig. 2-1, which is to be

segmented out within an interval that stretches along a full cycle,   0, 2X  . The limiting points

Lx and Hx of the evaluation interval are called the evaluation interval endpoints (circle marks),

which are automatically created by the segmentation algorithm and identified as
0

 sLx x , and

 

JsHx x where
0sx represents the initial endpoint of the first main segment and

 

Jsx represents

the last endpoint of the Jth main segment identified. The square marks in Fig. 2-1, at
(1)

 / 2sx  ,

(2)
 sx  and

(3)
 3 / 2sx  correspond to a local maximum, an inflection point, and a local

minimum of the function f(x) within the interval X. These locations are identified during the coarse

segmentation stage by the sign changes in either g(x) or h(x) and represent endpoints of the main

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 14

segments in f(x) where its curvature changes direction (marked by the vertical purple arrows).

After the coarse segmentation processes, the set of segments is defined as
     0 1

[, ,...,]
Js s sS x x x .

Fig. 2-2: Fine segmentation (asterisk marks) within the main segments.

The second step, as depicted in Fig. 2-2, has the purpose of further splitting the previously

defined main segments to achieve the SQNR requirement. This fine-tuning segmentation process

defines internal segments endpoints inside the main segments, which are bounded by the

consecutive main segment endpoints
   1

,
j js sx x



 
 

 identified through the previous coarse

segmentation step. A new internal endpoint is defined at any xi where the relative change of value

on the first order derivative between the previously defined endpoint at
 jsx and the nearest

subsequent point
   1

j ji s i sx x x x


   exceeds a given γ threshold. The next mathematical

expression synthesizes the previous description.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 15

 

 

()
() ()

()
j

j

jss i

s

g x g x

g x


 
 (2-3)

If the condition expressed in (2-3) is satisfied, then the current xi is defined as a new

segment endpoint in the set S; therefore, the newly defined segment endpoint is now identified as

 jsx where
 

jsx  xi. From this stage, the search for the next internal endpoint continues repeating

the previously mentioned steps until reaching the end of the current main segment that is identified

as
 1

jsx


.

2.1.1 Bidirectional Function Shape Analysis

As depicted in Fig. 2-3, to improve the accuracy of approximation to f(x), the bidirectional

fine tuning segmentation of each main segment according to the γ threshold is performed, from

 jsx to
 1jsx


(forward segmentation), and from
 1jsx


 to
 jsx (backward segmentation). The

bidirectional exploration of the fine-tuning segmentation is carried out given that the location of

the segments endpoints, xi, where the γ threshold is met differs depending on the starting point of

the segmentation process; therefore, the approximating polynomials and consequently the

accuracy of approximation obtained from each direction of segmentation are different. After

performing both forward and backward fine-tuning segmentation exploration processes for each

segment, the polynomials that deliver the best approximation accuracy are selected. The

implementation of the bidirectional fine-tuning segmentation allows independently maximizing

the approximation accuracy for each main segment given that the direction of segmentation that

delivers the best approximation results is independent between main segments.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 16

Fig. 2-3: Independent bi-directional fine-tuning segmentation.

2.2 Chordal Segment Length Tuning

In addition to the shape analysis based on the γ threshold, the proposed algorithm also

implements a minimum chordal length control that serves as a design knob for the optimization

process through the minimum chordal length threshold κ. The κ threshold is expressed as a

percentage of the functions’ total chordal length within the evaluation interval; therefore, 0% ˂ κ

≤ 100%.

The κ threshold serves two purposes; the first one is to achieve a better balance in the

density of segments allocated when dealing with functions that present both regions of pronounced

curvature as well as regions of subtle curvature. In this sense, the κ threshold makes it possible to

avoid having an excessive amount of tightly spaced segments around areas with pronounced

curvature when the value of the γ threshold is too small. Inconveniently small values for the γ

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 17

threshold can result due to a poor selection from the user of the initial γ value or because the

optimization process itself has taken γ towards the design space of small values.

The second purpose of the κ threshold is to prevent having too small segments that would

cause the PPA algorithm to become unstable and fail in finding a suitable set of coefficients. This

failure manifests itself when the integer part of the generated coefficients is too big that its fixed-

point representation requires most available bits from the word length. A consequence of this is a

severe loss of accuracy given that only a few bits remain for the fractional part of the coefficients.

Consequently, the definition of a new segment endpoint at a given xi requires that both γ and κ

thresholds be satisfied.

Fig. 2-4 exemplifies how the chordal length of a function within the interval limited by xa and xb

is approximated by summing up the length of the hypotenuse of the many small triangles that fit

within such interval.

Fig. 2-4: Chordal segment length approximation.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 18

The length of the triangles’ hypotenuse is computed through the Pythagoras theorem expressed in

(2-4), where the length of the triangles opposite and adjacent sides is defined as 1i ix x x   and

1() ()i if x f x  respectively.

    2 2
1length , () ()()

b

a b i i
i a

x x x f x f x


    (2-4)

2.3 Polynomials Coefficient Generation

After each iteration of the AFSM splitting the function interval X into the set with J

segments (such that
  (1)0

 [,]
jj

J

s sj
X x x


 , where

    ()1 Jj js s sx x x


  , are the endpoints

computed according to the γ and κ thresholds), the thm order polynomials coefficients that best fit

each segment are computed. The polynomials employed to approximate the function segments can

be of any order, m ≥ 1 for m . However, the usage of low-even-order polynomials is advised

for the proposed segmentation methodology given that the coarse segmentation step already

ensures that the curvature of the function evolves monotonically within each segment. Therefore,

low-even-order polynomials fit well the curvature of the segments and require less memory than

odd-order polynomials to store the coefficients as well as fewer logic resources to carry on the

coefficients multiplications.

For the proposed AFSM, two PPA methods were tested for the computation of the best fit

polynomials coefficients. The polynomial least square approximation method (LSPA) [15, p. 28]

and the miniMax polynomial approximation method (mMPA) [15, p. 32], which is based on the

Remez algorithm [16]. Each of the employed PPA methods treats the approximation error

differently and consequently provide different levels of SQNR and accuracy between the original

function f(xi) and the polynomial-based approximation function ˆ () |
jj i pf x  in (2-5).

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 19

(0) (1) ()
..ˆ () | .

j m

m
j jj i p i j if p p x px x    (2-5)

where,

 j represents the segment index for the set of segments S .


(0) (1) ()

, , ...,
mj j j jp p p p   


 are the polynomial coefficients of the mth order polynomial

used to approximate to the jth segment of the function f(x).

2.3.1 Least Square Polynomial Approximation and Error Treatment

From the set of data points  , ()i ix f x within the segment delimited by
   1

,
j js sx x



 
  , the

objective of the LSPA is to determine the 1m  coefficients of an m-degree polynomial, as

expressed in (2-5), that minimize the error of approximation in the least square sense between the

original function f(x) and the approximating polynomial. Therefore, the sum of squared residuals

of the jth segment is minimum when the condition expressed in (2-6) is satisfied [5] for all the

polynomial coefficients.

()
0, 0,...,j

j

R
for j J

p


 


 (2-6)

where,

 1
2

ˆ() () |
j

j

j

s

j i j i p
i s

R f x f x




     (2-7)

The polynomial coefficients values are obtained by solving the partial derivatives in (2-6) for all

 jp . This procedure yields the following set of normal equations.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 20

       

       

       

1 1 1 1

1 1 1 1

1 1 1 1

0 1

2 1
0 1

1 2
0 1

1 ... ()

... ()

... ()

j j j j

j j j j

j

j j j j

j j j j

j

j j

j j j

j

m
i m i i

i s i s i s i s

m
i i m i i i

i s i s i s i s

m m m m
i i m i i

s s s s

s s s s

s s

i
i s i s i s i s

s s

p p x p x f x

p x p x p x x f x

p x p x p x x f x

   

   

   

   



   



   

   

   

   

   

   

   



 (2-8)

For (2-8) the right-hand side of the set of normal equations can be represented as
     1 1 1

() () ... ()
j

j

j

j

j

j

m
i i

s

i i i
i s i s i s

s s

b f x x f x x f x
  

  

 
  
  
  


. Therefore, by defining a matrix A as follows,

     

     

   (1) 1 1

2

2
1 1 1

2
2 2 2

2

1

1

1

1

j j j

j j j

j j j

j j j

m
s s s

m
s s s

m
s s s

m
s s s

x x x

x x x

A x x x

x x x
  

  

  

 
 
 
 
 
 
 
 












   


 (2-9)

the set of normal equations in (2-8) can be condensed as the following linear system (the A matrix

is known as the Vendermonde matrix), which can be solved using the well-known Gauss-Jordan

method [17] to obtain the values of the polynomial’s coefficients that minimize the error of

approximation.

 TA A p b


 (2-10)

An important remark is that from (2-6) and (2-7) one can observe that the error treatment

strategy of the LSPA algorithm provides direct benefit to the improvement of the SQNR because

it explicitly minimizes the sum of squared residuals expression in (2-11). Such error expression,

in fact, represents the quantization noise energy; a factor that lies as the denominator of the SQNR

expression that is presented in Section 2.4.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 21

0

[]
J

j
j

E R R


 (2-11)

2.3.2 miniMax Polynomial Approximation and Error Treatment

The objective of the miniMax polynomial approximation algorithm (mMPA) is to

minimize the maximum absolute error or discrepancy between the approximation polynomial

ˆ () |
jj i pf x  and the original function ()if x in the uniform norm sense L . The mMPA algorithm

employs Chebyshev polynomials [18] of order m within the interval
1

,
j js sx x


   that delimits the

thj segment.

The computation of the polynomials coefficient that minimizes the maximum error of

approximation is performed by solving the following optimization problem.

  arg min () , for 0,...,
p j

j jjp e p j J


 


  
 (2-12)

where,

1
() [,..., ,...,]

j jj j s i se p e e e



 

 (2-13)

1
ˆ() () | , for

ji i j i p j je f x f x s i s     (2-14)

In this sense, ˆ () |
jj i pf x  is a miniMax polynomial with coefficients jp


 if it satisfies the

condition that there are at least ݉ ൅ 2 points within the segment evaluation interval
1

,
j js sx x


 
 

where:

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 22

0 0
ˆ ˆ ˆ() | () | () (1) () () |) (

j j j

i
j i p j j pi pf x ff x f x x x f xf


           (2-15)

The expression in (2-15) means that for ˆ () |
jj i pf x  to be a miniMax polynomial, it should

satisfy the condition that the maximum error is reached 2m times (the total number of minimum

and maximum extrema points) and that the sign of such error alternates at each error extrema.

Henceforth, the Remez exchange algorithm, which is summarized in the flow diagram of Fig. 2-5,

determines the coefficients of miniMax polynomials by exploiting this important property; for

more detail on the implementation of the Remez´s algorithm refer to [15].

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

23

Fig. 2-5: Flow diagram of the Remez´s exchange algorithm.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 24

In comparison to the least square method, for regular functions, the miniMax method yields

a smaller error of approximation [15]; however, the miniMax method does not guarantee a lower

SQNR than that achieved through least square.

2.4 Fixed-Point and SQNR Analysis

For this work, the SQNR is the metric employed for measuring the accuracy of the

approximation to the reference function f(x) through a set of fixed-point low-degree polynomials.

The SQNR, defined in (2-16), is an intuitive and widely used metric of accuracy, which is based

on the ratio between the power of the signal of interest and the power of the quantization noise, as

it was mentioned in Section 2.3.1. In other words, the SQNR expresses how well an analog signal

is approximated through a digital fixed-point representation given the finite number of bits of the

system’s word length.

1

2

1
10

2

1

()
10log

ˆ[() (() |)]
j

j

j

N

i
i

dB sJ

i j i p
j i s

f x
SQNR

f x Q f x




 

 
 
   
  
 



 

 (2-16)

The term ()Q  in the denominator of (2-16) is the operator that quantizes the argument

using a word length of WL bits, from which, QI bits are assigned to the integer part and QF bits

are assigned to the fractional part [19]; the previous is expressed as follows:

WL QI QF  (2-17)

The first step to determine the most appropriated fixed-point representation as to avoid

overflow or truncation is to compute the minimum number of bits assigned to QI. In this sense,

the expression in (2-18) provides the minimum QI bits required to represent signed values in two’s

complement with a range that is symmetric around zero. The expression in (2-18) takes into

account the magnitude of the entire set of polynomials coefficients for all segments, the magnitude

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 25

of the values in the evaluation interval X, and the magnitude of the range of the function being

approximated.

  2log max 1 1QI      (2-18)

where,

  , , , , j i ip x f x i j  


 A fixed-point variable  for which the minimum number of QI and QF bits are determined

through (2-17) and (2-18), can take values in the range    1 12 2 1QI QI      , [19].

The proposed segmentation methodology relies on an iterative optimization algorithm to

determine the best segmentation approach. Therefore, once the fixed-point analysis has been

carried out for each segmentation iteration, the achieved SQNR is computed and fed back to the

optimization algorithms’ objective function to determine whether the SQNR requirement has been

satisfied or further segmentation refinement is required.

2.5 Segmentation Optimization

The proposed AFSM implements an optimization algorithm that searches in the design

space ℝ2 of the γ and κ threshold parameters, looking for a suitable set of values that satisfy the

SQNR requirement while minimizing the required number of segments. The implemented search

algorithm solves the constrained non-linear optimization problem defined in (2-19), for a target

SQNR requirement, which is provided by the user as a range with an upper ubd and a lower limit

 lbd according to application-specific needs.

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 26

  2

*

arg

d

lb ub

d min U S d

subject to

d d d




 




 

  
 (2-19)

where,

 2 , [,]d d   
 
 ; is the vector of design variables subject to optimization.

 * 2 * * *, [,]d d   
 

 ; is the vector of design variables after the optimization process has

been completed.

 2,lb ubd d 
 

 ; are the upper and lower design-feasibility restrictions for the design

variables.

 2()S d  


  ; is the function that performs the segmentation process according to the

input design variables in d


. The function returns the SQNR scalar value.

 :U   ; is the cost function that computes the error between the current design SQNR

and the target SQNR requirement.

The solution of the constrained non-linear optimization problem is simplified if the boxed

constraints (lb ubd d d 
  

) are incorporated into an unconstrained optimization problem; refer to

(2-20). For this, the design variables in d


 are transformed into z


 through (2-21). After applying

the suggested transformation, the restrictions of the optimization problem are now embedded in

the design variables because their range, due to the  arcsin  function (See Fig. 2-6), is now

bounded within the interval [0, 1.5708]; for further reference, see [20].

 * arg ()
z

z min U S z 
 

 (2-20)

lb

i i
i ub lb

i i

d d
z arcsin

d d

  
  

 


 
(2-21)

2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION

 27

Fig. 2-6: Graphical representation of the boxed constraints transformation.

For this particular work, the solution to the unconstrained non-linear optimization problem

for z


 is done through the Nelder-Mead algorithm [21]; however, many other local or global search

methods can be employed as well.

29

3 Segmentation Methodology Implementation

The Algorithm 1 condenses the verbal methodology description provided in previous

sections to facilitate the reproducibility of the proposed segmentation methodology. Given that the

AFSM was implemented in MATLAB, the pseudocode employs sub-index notation to address the

discrete elements of vectors and collections of objects. Further detail of the pseudocode variables

and their usage is summarized in TABLE 1.

TABLE 1: DESCRIPTION OF VARIABLES EMPLOYED IN THE PSEUDO-CODE OF THE
ADAPTIVE FUNCTION SEGMENTATION METHODOLOGY.

Variable name Description

x The vector of the evaluation interval X that is quantized from Lx to Hx .

y The vector with the evaluation results of ()f x within the interval X .

FxdPtx The x vector in fixed-point representation.

FxdPty The y vector in fixed-point representation.

h , g The vectors that store the first and second derivatives.

Dx The discretization resolution for x , the default is 10

2
H Lx x

x


  .

Dg
A temporary variable used to store the first derivative delta between the

previous segment and a subsequent point ix .

Lx The lower limit of the evaluation interval X .

Hx The upper limit of the evaluation interval X .

quantElmts The number of quantization elements within the evaluation interval X .

mainSegmts
The collection to store the segment objects from the coarse segmentation

process.

LSPAallSegmts
The collection to store all the segments objects that delivered the largest

SQNR through the LSPA.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 30

MMPAallSegmts
The collection to store all the segments objects that delivered the largest

SQNR through the mMPA.

fwdSegmts
A temporary collection that stores the segments from the forward

segmentation exploration.

bwdSegmts
A temporary collection that stores the segments from the backward

segmentation exploration.

LSPAfwdCoeffs
A collection of LSPA coefficients for the segments from the forward

segmentation exploration.

LSPAbwdCoeffs
A collection of LSPA coefficients for the segments from the backward

segmentation exploration.

MMPAfwdCoeffs
A collection of mMPA coefficients for the segments from the forward

segmentation exploration.

MMPAbwdCoeffs
A collection of mMPA coefficients for the segments from the backward

segmentation exploration.

_LSPA FxdPtfwdCoeffs
A collection of LSPA coefficients in fixed-point representation for the

segments from the forward segmentation exploration.

_LSPA FxdPtbwdCoeffs
A collection of LSPA coefficients for the segments from the backward

segmentation exploration.

_MMPA FxdPtfwdCoeffs
A collection of mMPA coefficients in fixed-point representation for the

segments from the forward segmentation exploration.

_MMPA FxdPtbwdCoeffs
A collection of mMPA coefficients in fixed-point representation for the

segments from the backward segmentation exploration.

LSPAallCoeffs
 The collection of polynomial coefficients for the current segmentation

realization through Least Square PPA method.

LSPA_FxdPtallCoeffs
 A collection of polynomial coefficients in fixed-point representation for

the current segmentation realization through Least Square PPA method.

MMPAallCoeffs
 The collection of polynomial coefficients for the current segmentation

realization through miniMax PPA method.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 31

MMPA_FxdPtallCoeffs

 The collection of polynomial coefficients in fixed-point representation

for the current segmentation realization through the miniMax PPA

method.

LSPAcoeffsLUT
 Stores the set of LSPA coefficients for the segmentation that satisfies the

SQNR requirement.

MMPAcoeffsLUT
Stores the set of MMAP coefficients for the segmentation that satisfies

the SQNR requirement.

LSPAfwdSQNR
SQNR result from the forward segmentation exploration of the jth main

segment through the LSPA method.

LSPAbwdSQNR
SQNR result from the backward segmentation exploration of the jth main

segment through the LSPA method.

MMPAfwdSQNR
SQNR result from the forward segmentation exploration of the jth main

segment through the mMPA method.

MMPAbwdSQNR
SQNR result from the backward segmentation exploration of the jth main

segment through the mMPA method.

LSPASQNR
The resulting SQNR responses from the last segmentation over the whole

interval X with coefficients obtained through the LSPA method.

MMPASQNR
The resulting SQNR responses from the last segmentation over the whole

interval X with coefficients obtained through the mMPA method.

Th The design parameter for optimization, first derivative threshold.

Th
 The design parameter for optimization, minimum chordal segment

length threshold.

lbSQNR Lower bound of the target SQNR requirement.

ubSQNR Upper bound of the target SQNR requirement.

LenW The system word length.

m The polynomial degree, the default is 2.

accumLen A temporary variable that holds the accumulated chordal length.

i , j , k The for-loop iteration count variables.

contSearch The control flag for the optimization process stop condition.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 32

Parameter Definitions and Parameters Initialization sections of the pseudocode,

introduce and initialize the variables and constants that are used across the code to set up the

algorithm functionality and to store the computation results. The main body of the segmentation

algorithm is showed within the do while loop (lines 17 through 63) that resembles the

optimization process, which iterates until the SQNR design requirement is met or the stop

conditions of the optimization algorithm are reached.

Within the first for loop construct in the pseudo-code (lines 21 through 29), the coarse

segmentation is performed based on the sign changes of the first and second order derivatives; the

segments therein created are stored in the mainSegmts collection. After this step, within the

second for loop construct (lines 32 through 45), the segmentation tuning stage is performed

according to the design parameters Th and Th . The following steps (lines 47 through 49) in the

pseudocode are to compute the polynomial approximation coefficients through both, LSPA and

mMPA methods, the fixed-point analysis, and the respective LSPASQNR and MMPASQNR

responses. The ternary conditional construct on line 50 selects the higher SQNR response out of

those obtained through the LSPA and the mMPA methods. The selected SQNR value is then

provided to the cost function (line 51) to determine whether the target SQNR has been satisfied or

further search should be carried out. The conditional constructs on lines 52 through 61 assess

whether the SQNR requirement has been satisfied or the stop conditions have been reached; based

on the result of these conditional evaluations, the optimization loop control flag is set or cleared

for the search process to continue or stop, accordingly. Finally, the optimal set of polynomial

coefficients from the optimized segmentation process is stored in the hardware LUT.

01:

Parameters definition: x , y , FxdPtx , FxdPty , h , g , Dx , D g , Lx , Hx , quantElmts ,

mainSegmts , LSPAallSegmts , MMPAallSegmts , fwdSegmts , bwdSegmts , LSPAfwdCoeffs ,

LSPAbwdCoeffs , MMPAfwdCoeffs , MMPAbwdCoeffs , _LSPA FxdPtfwdCoeffs , _LSPA FxdPtbwdCoeffs

, _MMPA FxdPtfwdCoeffs , _MMPA FxdPtbwdCoeffs , LSPAallCoeffs , LSPA_FxdPtallCoeffs ,

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 33

MMPAallCoeffs , _MMPA FxdPtallCoeffs , LSPAfwdSQNR , LSPAbwdSQNR , MMPAfwdSQNR ,

MMPAbwdSQNR , LSPASQNR , MMPASQNR , Th , Th ,
lbSQNR ,

ubSQNR , LenW , m ,

accumLen , contSearch , i , j , k

02: Parameters initialization:

03: Set _ ,default is 0Lx User Input

04: Set _ ,default is 1Hx User Input

05:
10_ ,default is 2User InpquantElm tts u

06: Set H Lx x
Dx

quantElmts




07: Set L Hvector(x : : x)x Dx

08: Set Th _ ,default is 50%User Input 

09: Set Th _ ,default is 5%User Input 

10: Set  _ ,default is 60dB, 70dBlb ubSQNR ,SQNR User Input  

11: Set _ , default is 32bitsLenW User Input

12: Set _ , default is 2degreep User Input

13: Set 1i  , 1j  , 1k 

14: Set   funcEvaly f x

15: To load the initial Th and Th design parameters into optimization algorithm

16: Do

17: To clear required variables (Segments and Coefficients collections)

18:

19: .createNewSegment()mainSegmts

20: (.count).startIndex 1mainSegmts mainSegmts 

21: for loop 1: length()i x

22: To compute
()

i
idf x

g
dx

 and
2

2

()i
i

d f x
h

dx


3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 34

23: Do coarse segmentation by finding sign changes in g and h :

24: if          1 1sign sign sign signi i i ig g h h   then

25: Set (.count).endIndex (1)mainSegmts mainSegmts i 

26: .createNewSegment()mainSegmts

27: Set (count).startIndexmainSegmts mainSegmts. i

28: end if

29: end for

30: Set  .count .endIndexmainSegmts mainSegmts  MaxIndexOf()x

31: Set 1j 

32: for loop c t1: . ounmainSegmtsj 

33: Set ()fwdSegmts mainSegmts j

34: Set ()bwdSegmts mainSegmts j

35: Perform forward segmentation exploration:

36: parfor loop (1).startIndex : (1).endIndexi fwdSegmts fwdSegmts

37: Set lastSegmt.lengthFromStartUpTo()ifwdSegaccumL mten s. x

38: To compute first derivative delta,
.startIndex

.startIndex

| g g |
g 100

| g |
fwdSegmts i

fwdSegmts

D


 

39: if  ThDg  and  ThaccumLen  then

40: To split current temporary main segment at ix :

41: .lastSegmt.splitSegmtAt()fwdSegmts i

42: end if

43: end parfor

44: Perform backward segmentation exploration:

45: parfor loop (1).endIndex : (1).startIndexi bwdSegmts bwdSegmts

46: Set .firstSegmt.lengthFromEndUpTo()ibwdSegmaccum tsLe xn

47: To compute first derivative delta,
.endIndex

.endIndex

| g g |
g 100

| g |
bwdSegmts i

bwdSegmts

D


 

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 35

48: if  ThDg  and  accumLen Th then

49: To split first temporary main segment at ix :

50: .firstSegmt.splitSegmtAt()bwdSegmts i

51: end if

52: end parfor

53: To compute the forward and backward segments coefficients:

54: Set .computeLSPA()LSPAfwdCoeffs fwdSegmts m

55: Set .computeMMPA()MMPAfwdCoeffs wdSegmtsf m

56: Set .computeLSPA()LSPAbwdCoeffs wdSegmtsb m

57: Set .computeMMPA()MMPAbwdCoeffs wdSegmtsb m

58:

 To compute fixed-point analysis for the given LenW : …

 (LS _FxdP PtAfwdCoeffs , MMPA_FxdPtfwdCoeffs , LSPA_FxdPtbwdCoeffs ,

 MMPA_FxdPtbwdCoeffs , FxdPtx , FxdPty)

59:
 To compute thj main segment SQNR for forward and

 backward segmentation…

60: (LSPAfwdSQNR , MMPAfwdSQNR , LSPAbwdSQNR , MMPAbwdSQNR)

61: To select the segmentation direction of higher SQNR:

62: if  >LSPA LSPAfwdSQNR bwdSQNR

63: .addSegments()LSPAallSegmts fwdSegmts

64: Set LSPA LSPAallCoeffs fwdCoeffs

65: Set LSPA_FxdPt LSPA_FxdPtallCoeffs fwdCoeffs

66: else

67: .addSegments()LSPAallSegmts bwdSegmts

68: Set LSPA LSPAallCoeffs bwdCoeffs

69: Set LSPA_FxdPt LSPA_FxdPtallCoeffs bwdCoeffs

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 36

70: end if

71: if  >MMPA MMPAfwdSQNR bwdSQNR

72: .addSegments()MMPAallSegmts fwdSegmts

73: Set MMPA MMPAallCoeffs fwdCoeffs

74: Set MMPA_FxdPt MMPA_FxdPtallCoeffs fwdCoeffs

75: else

76: .addSegments()MMPAallSegmts bwdSegmts

77: Set MMPA MMPAallCoeffs bwdCoeffs

78: Set MMPA_FxdPt MMPA_FxdPtallCoeffs bwdCoeffs

79: end if

80: end for

81:
 To compute overall SQNR for the thk optimization iteration: …

 (LSPASQNR , MMPASQNR)

82: if stop conditions have been met? then

83: Searcconti h Fnu Ee ALS

84: Else

85: if     and lb ub lb ub

LSPA MMPA
SQNR SQNR SQNR SQNR SQNR SQNR    then

86: To search for alternative design parameters: (Th , Th)

87: Searcont chinue TRUE

88: else

89: Searcconti h Fnu Ee ALS

90: end if

91: end if

92: To increment optimization iterations counter:

93: Set 1j j 

94: while (continueSearch)

95: To store the coefficients that deliver best overall SQNR:

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 37

96: _LSPA LSPA FxdPtcoeffsLUT allCoeffs

97: _MMPA MMPA FxdPtcoeffsLUT allCoeffs

98: _ _LSPA FxdPt LSPA FxdPtLUTSegmts allSegmts

99: _ _MMPA FxdPt MMPA FxdPtLUTSegmts allSegmts

Algorithm 1: Algorithmic description of the adaptive function segmentation methodology.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 38

3.1 Segmentation Algorithm Software Architecture

The following diagram depicts the overall functional architecture of the implemented

MATLAB code for the adaptive function segmentation methodology. Each square box represents

a MATLAB function, and the hierarchical enclosing of boxes convey the actual dependencies

across functions.

Fig. 3-1: Software architecture of the adaptive function segmentation methodology.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 39

3.2 Functional Description of the Software Architecture Modules

3.2.1 Adaptive Directional Exploration

This function is the driver of the optimization algorithm implemented for the bidirectional

adaptive segmentation methodology. It takes the values of the design parameters subject to

optimization d0 = [γTH, κTH], and a set of predefined design parameters through the vector dP. Also,

this function requires some global variables to be defined in the top file and set with the appropriate

values for the correct functionality of the algorithm. The input parameters, the global variables, as

well as the output parameters of the function are described in further detail in TABLE 2.

TABLE 2: LIST OF THE INPUT PARAMETERS, GLOBAL VARIABLES AND OUTPUT
PARAMETERS OF THE ADAPTIVE DIRECTIONAL EXPLORATION FUNCTION.

Parameter definition Description

d0 = […]

Vector with the initial design parameters for the adaptive segmentation

algorithm.

deriv_delta: First derivative threshold γTH expressed as a percentage;

it takes values greater than 0% up to values that make sense for the

function at hand, let say X0 = 500% for a 5-times derivative change

from the previous segment endpoint.

min_seg_length: The minimum chordal segment length threshold.

This value is expressed as a percentage; valid values are those greater

than 0% and smaller than 100%.

dP = […]

Vector for the predefined design parameters, which are listed as

follows:

word_length: The system word length, the default value is 32 bits.

step_size: Number of subsequent samples on the x vector to skip for

the calculation of the chordal segment length.

samples_power: Amount of samples in which the evaluation interval

X is to be quantized.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 40

min_x: The lower value of the evaluation interval X, which was

previously introduced as xL.

max_x: The upper value of the evaluation interval X, which was

previously introduced as xH.

poly_degree: Polynomial degree to be employed for the polynomial

approximation, which was previously introduced as m.

step_factor: Amount of subsequent quantization samples of the x

vector to skip throughout the sweep of the fine-tuning derivative

exploration, the default is 1 (No samples are skipped, sample_index =

sample_index + step_factor).

Global variables Description

global funct A global variable that stores the function handler to be segmented out.

The signature of the function is as follows:

funct = @(x)function_name(parameters in terms of x)

global exec_count Global counter variable utilized to achieve the execution of certain

initialization code within optimization procedure only for the first

iteration of the segmentation algorithm. The user does not need to set

this parameter.

global approx_method The global variable used by the algorithm to select which

approximation method should be utilized for the computation of the

polynomials.

0: Least Square Polynomial Approximation (LSPA).

1: miniMax Polynomial Approximation (mMPA).

Output parameters Description

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 41

seg_bounds A vector containing the collection of segments endpoints/boundaries,

(the values in the evaluation interval X where a segment ends and the

following begins).

SQNR The SQNR result from current segmentation realization.

Data A vector that contains the following information about the current

segmentation realization.

seg_bounds: Vector that holds the collection of indexes of the vector

x for the defined segments endpoints/boundaries.

boundaries: Vector that holds the collection of values within the

vector x for the defined segments endpoints/boundaries.

boundaries_fxp: Collection that contains the values of the vector x in

fixed-point representation for the endpoints of the defined segment.

vect_x: Vector of the quantized evaluation interval X.

vect_eval_y: Vector that contains the results of the evaluation of the

function for each element in vect_x.

fltPnt_poly_vect_eval_y: Vector that contains the results of the

evaluation of the functions’ polynomial approximation in floating-

point representation for each element in vect_x.

fxdPnt_poly_vect_eval_y: Vector that contains the results of the

evaluation of the function approximated through the segments

polynomials in fixed-point representation for each element in vect_x.

fixedPoint_vect_x_obj.data: The vector of the quantized interval X

in fixed-point representation.

Error_FltPntGolden_to_FltPntPoly: Vector that contains the

absolute errors of approximation between the original function and the

polynomial approximation in floating-point representation.

Error_FltPntGolden_to_FxdPntPoly: Vector that contains the

absolute errors of approximation between the original function and the

polynomial approximation in fixed-point representation.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 42

samples_power: The number of samples in which the evaluation

interval X was quantized, (2samples_power).

QI_MaxCoeff: Number of bits required to represent the integer part

of the maximum number required.

QF_Xargument: Number of bits remaining, from the predefined word

length and the required QI bits for the representation of the floating

portion of the numbers.

D1_collection: Vector with the values of the functions’ first order

derivative at every point in vect_x.

D2_collection: Vector with the values of the functions’ second-order

derivative at every point in vect_x.

.

3.2.2 First Derivative

This function computes the first order derivative of the function at the specified point in x.

This function implements the centered differencing formula [22] to get a more accurate

approximation of the first order derivative of f(x). The details of the input and output parameters

are given in TABLE 3.

TABLE 3: INPUT AND OUTPUT PARAMETERS OF THE FIRST DERIVATIVE
FUNCTION.

Parameter definition Description

Fun

Function handler with the signature:

funct = @(x)function_name(parameters in terms of x)

x0 Point in x where to evaluate the first order derivative of the function.

vect_x

The vector of the quantized evaluation interval X. In this case, this

vector is employed to handle the computation of the derivative for

those functions that are undefined outside of the evaluation interval.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 43

Output parameters Description

D The value of the first order derivative at the x0.

3.2.3 Second Derivative

This function computes the second order derivative of the function to be approximated, at the

specified point within the evaluation interval X. This function implements the fifth stencil of the

centered differencing formula [23] to get a more accurate and stable approximation of the second

order derivative of f(x). The details of the input and output parameters are given in TABLE 4.

TABLE 4: INPUT AND OUTPUT PARAMETERS OF THE SECOND DERIVATIVE
FUNCTION.

Parameter definition Description

Fun

Function handler with the following function signature:

funct = @(x)function_name(parameters_in_terms_of_x)

x0
The point within X where to evaluate the second order derivative of the

function.

vect_x

The vector of the quantized evaluation interval X. In this case, this

vector is employed to handle the computation of the derivative at the

boundaries of the evaluation interval.

Output parameters Description

D The value of the second order derivative of the function at x0.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 44

3.2.4 Segment Length Computation

This function computes the chordal length of the function within a given interval. The details of

the input and output parameters are given in TABLE 5.

TABLE 5: INPUT AND OUTPUT PARAMETERS OF THE SEGMENT LENGHT
COMPUTATION FUNCTION.

Parameter definition Description

vect_x The vector of the quantized evaluation interval X.

vect_eval_y

The vector that contains the results of the function evaluation for every

element in vect_x.

step_size

Number of samples to skip between subsequent iterations along the

sweep of the interval of evaluation X. This parameter allows speeding

up the computation of the chordal length at the expense of lost in

accuracy.

Output parameters Description

segment_length

The value of the chordal segment length for the interval of evaluation

in vect_x.

3.2.5 Main Segmentation Algorithm

This function implements the actual fine-tuning bidirectional segmentation algorithm

according to the parameters provided by the optimization process. The details of the input and

output parameters are given in TABLE 6.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 45

TABLE 6: INPUT AND OUTPUT PARAMETERS OF THE MAIN SEGMENTATION
ALGORITHM FUNCTION.

Parameter definition Description

startPoint

Index inside the vector vect_x where to start the fine-tuning

bidirectional segmentation exploration.

approx_method

Polynomial approximation method that should be used to compute the

segments polynomials.

derivative_criteria An input parameter that is used to alter the behavior of derivative

threshold design parameter.

0: The absolute derivative change between the current xi point and the

previous segment endpoint should be compared against the derivative

threshold expressed as a percentage.

1: The absolute derivative change between the current xi point and the

previous segment endpoint should be compared against the derivative

threshold expressed as a percentage of the absolute range of derivative

values within the whole evaluation interval X.

2: The absolute derivative change between the current xi point and the

previous segment endpoint should be compared against the derivative

threshold expressed as a percentage of the absolute range of derivative

values within the interval of evaluation that has not yet been segmented

out.

3: The absolute derivative change between the current xi point and the

previous segment endpoint should be compared against the derivative

threshold expressed as a percentage of the average of the range of

derivative values within the specified evaluation interval.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 46

4: The absolute derivative change between the current xi point and the

previous segment endpoint should be compared against the derivative

threshold expressed as a percentage of the average of the range of

derivative values within the interval of evaluation that has not yet been

segmented out.

deriv_delta The first order derivative threshold γTH.

vect_x The vector of the quantized evaluation interval X.

vect_eval_y The vector that contains the results from the evaluation of the function

for every element in vect_x.

D1_collection Vector with the first order derivative values of the function at every

point in vect_x.

step_factor

Number of samples in vect_x to skip for each iteration of the

segmentation exploration.

poly_degree The polynomial degree to be employed for the polynomial

approximation, which was previously introduced as m.

WordLength The predefined word length of the system.

chunk_length The input parameter for the minimum length allowed for the trailing

segment. It controls whether the remaining of the evaluation interval

which does not meet the design thresholds (γTH and κTH) is defined as

a new segment or merged with the previous one.

step_size Number of samples in vect_x to skip for each iteration of the chordal

length calculation loop.

min_seg_length The minimum segment chordal length threshold κTH.

Output parameters Description

seg_bounds A collection that contains the indexes of vect_x for the defined

segments endpoints/boundaries.

SQNR The SQNR result from current segmentation realization.

Data A vector that contains information about the current segmentation

realization as described in TABLE 2.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 47

3.2.6 Coefficients Generation

This function computes the coefficients of the polynomial to approximate all the defined

segments within a given evaluation interval. The details of the input and output parameters are

given in TABLE 7.

TABLE 7: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS GENERATION
FUNCTION.

Parameter definition Description

segment_bounds
Collection that contains the indexes of vect_x for the defined

segments endpoints/boundaries.

poly_degree
The polynomial degree to be employed for the polynomial

approximation, which was previously introduced as m.

vect_x The vector of the quantized evaluation interval X.

vect_eval_y
The vector that contains the results from the evaluation of the function

for every element in vect_x.

approx_method
Polynomial approximation method that should be used to compute the

segments polynomials.

Output parameters Description

polynomial_coefficients The vector that contains the collection of coefficients for all the

defined segments in the evaluation interval.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 48

3.2.7 LSPA Coefficients

This function computes the LSPA polynomials to approximate all the defined segments

within the evaluation interval. The details of the input and output parameters are given in TABLE

8.

TABLE 8: INPUT AND OUTPUT PARAMETERS OF THE LSPA COEFFICIENTS
FUNCTION.

Parameter definition Description

segment_bounds
Collection that contains the indexes of vect_x for the defined

segments endpoints/boundaries.

poly_degree
The polynomial degree to be employed for the polynomial

approximation, which was previously introduced as m.

vect_x The vector of the quantized evaluation interval X.

vect_eval_y
The vector that contains the results from the evaluation of the function

for every element in vect_x.

Output parameters Description

polynomial_coefficients The vector that contains the collection of LSPA coefficients for all

the defined segments in the evaluation interval.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 49

3.2.8 MMPA Coefficients

This function computes the mMPA polynomials to approximate all the defined segments

within the evaluation interval. The details of the input and output parameters are given in TABLE

9.

TABLE 9: INPUT AND OUTPUT PARAMETERS OF THE MMPA COEFFICIENTS
FUNCTION.

Parameter definition Description

segment_bounds
Collection that contains the indexes of vect_x for the defined

segments endpoints/boundaries.

poly_degree
The polynomial degree to be employed for the polynomial

approximation, which was previously introduced as m.

vect_x The vector of the quantized evaluation interval X.

vect_eval_y
The vector that contains the results from the evaluation of the function

for every element in vect_x.

Output parameters Description

polynomial_coefficients The vector that contains the collection of mMPA coefficients for all

the defined segments in the evaluation interval.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 50

3.2.9 Segments Polynomials Evaluation

This function performs the floating point evaluation of the function through approximated

polynomials. The details of the input and output parameters are given in TABLE 10.

TABLE 10: INPUT AND OUTPUT PARAMETERS OF THE SEGMENTS POLYNOMIALS
EVALUATION FUNCTION.

Parameter definition Description

posx_values
Collection that contains the values of x for the defined segments

endpoints/boundaries.

coef_ram
A vector that contains the collection of coefficients for all the defined

segments in the evaluation interval.

vect_x The vector of the quantized evaluation interval X.

Output parameters Description

fltPnt_poly_vect_eval_y A vector that contains the results of the evaluation of the function

through the polynomial approximation in floating-point

approximation.

3.2.10 Coefficients Assignment

This function assigns the polynomial coefficients to the corresponding segment. The details

of the input and output parameters are given in TABLE 11.

TABLE 11: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS
ASSIGNMENT FUNCTION.

Parameter definition Description

posx_values
Collection that contains the values of x for the defined segments

endpoints/boundaries.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 51

coef_ram
A vector that contains the collection of coefficients for all the defined

segments in the evaluation interval.

Xdata The vector of the quantized evaluation interval X.

Output parameters Description

Assigned The matrix that contains the coefficients arranged correspondingly to

each defined segment.

3.2.11 Fixed Point Analysis

This function performs the fixed-point analysis to determine the correct configuration to

appropriately represent all the numbers within the evaluation interval, as well as the values of the

domain of the function and the polynomial’s coefficients. The details of the input and output

parameters are given in TABLE 12.

TABLE 12: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT ANALYSIS
FUNCTION.

Parameter definition Description

coef_ram The matrix that contains the coefficients of the defined segments.

vect_x The vector of the quantized evaluation interval X.

vect_eval_y
A vector that contains the results of the evaluation of the function

for each point in vect_x.

word_length Predefined system word length.

Output parameters Description

QI_MaxCoeff The number of bits required to represent the integer part of the

maximum number required.

QF_Xargument The number of bits remaining, from the predefined word length

and the required QI bits, for the representation of the fractional

portion of the numbers.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 52

range_min_limit Minimum number that can be represented by the fixed-point

configuration Q[QI_MaxCoeff, QF_Xagument].

range_max_limit The maximum number that can be represented with the fixed-point

configuration Q[QI_MaxCoeff, QF_Xagument].

fixed_point_resolution Resolution provided by the fixed-point configuration

Q[QI_MaxCoeff, QF_Xagument].

coef_ramA_fxp_obj MATLAB fixed-point object that holds the fixed-point values of

the p0 coefficients for all the defined segments.

coef_ramB_fxp_obj MATLAB fixed-point object that holds the fixed-point values of

the p1 coefficients for all the defined segments.

coef_ramC_fxp_obj MATLAB fixed-point object that holds the fixed-point values of

the p2 coefficients for all the defined segments.

fixedPoint_vect_x_obj MATLAB fixed-point object that holds the fixed-point values of

the evaluation interval x.

3.2.12 Floating Point Function Evaluation

This function performs the evaluation of the function through the polynomials

approximation using floating-point representation. The details of the input and output parameters

are given in TABLE 13.

TABLE 13: INPUT AND OUTPUT PARAMETERS OF THE FLOATING POINT
EVALUATION FUNCTION.

Parameter definition Description

fltPnt_posx_values
Collection that contains the values within x for the defined

segments endpoints/boundaries in floating-point representation.

coef_ram The matrix that contains the coefficients of the defined segments.

fxdPnt_vect_x
A vector that contains the values of x that conform the evaluation

interval in fixed-point representation.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 53

vect_x

A vector that contains the values of x that conform the evaluation

interval.

Output parameters Description

fltPnt_poly_vect_eval_y

A vector that contains the results of the evaluation of the function

through the polynomial approximation in floating-point

approximation.

3.2.13 Fixed Point Function Evaluation

This function performs the evaluation of the function through the polynomials

approximation using fixed-point representation. The details of the input and output parameters are

given in TABLE 14.

TABLE 14: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT FUNCTION
EVALUATION FUNCTION.

Parameter definition Description

fxdPnt_posx_values Collection that contains the values within x for the defined

segments endpoints/boundaries in fixed-point representation.

coef_ramA_fxp A vector that contains the values of the polynomial coefficient p0

in fixed-point representation.

coef_ramB_fxp A vector that contains the values of the polynomial coefficient p1

in fixed-point representation.

coef_ramC_fxp A vector that contains the values of the polynomial coefficient p2

in fixed-point representation.

fxdPnt_vect_x A vector that contains the values of x that conform the evaluation

interval in fixed-point representation.

WordLength Predefined system word length, the default is 32 bits.

QF_Xargument The number of bits remaining from the predefined word length and

the required QI bits, for the representation of the floating portion

of the numbers.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 54

Output parameters Description

fxdPnt_poly_vect_eval_y

A vector that contains the results of the evaluation of the function

through the polynomial approximation in fixed-point

representation.

3.2.14 Error and SQNR Computation

This function computes the vector of absolute approximation error and the SQNR response

from the performed segmentation realization. The details of the input and output parameters are

given in TABLE 15.

TABLE 15: INPUT AND OUTPUT PARAMETERS OF THE ERROR AND SQNR
COMPUTATION FUNCTION.

Parameter definition Description

vect_eval_y
A vector that contains the results of the evaluation of the

function for each element in vect_x.

fltPnt_poly_vect_eval_y

A vector that contains the results of the evaluation of the

function for each element in vect_x using floating-point

representation.

fxdPnt_poly_vect_eval_y

A vector that contains the results of the evaluation of the

function for each element in vec_x using fixed-point

representation.

Output parameters Description

Error_FltPntGolden_to_FltPntPoly

A vector that contains the absolute errors of

approximation between the original function and the

polynomial approximation in floating-point

representation.

Error_FltPntGolden_to_FxdPntPoly

A vector that contains the absolute errors of

approximation between the original function and the

polynomial approximation in fixed-point representation.

3. SEGMENTATION METHODOLOGY IMPLEMENTATION

 55

SQNR
The value of the SQNR response of the performed

segmentation realization.

3.2.15 Coefficients Storage

This function creates the Verilog code for the ROM blocks that store the segments

endpoints and the corresponding polynomial coefficients. The details of the input and output

parameters are given in TABLE 16.

TABLE 16: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS STORAGE
FUNCTION.

Parameter definition Description

fixedPoint_vect_x_obj
Vector that contains the values of x that conform the

evaluation interval in fixed-point representation.

fxdPnt_posx_values

Collection that contains the values of x for the defined

segments endpoints/boundaries in fixed-point

representation.

coef_ramA_fxp_ob
A vector that contains the values of the polynomial

coefficient p0 in fixed-point representation.

coef_ramB_fxp_obj
A vector that contains the values of the polynomial

coefficient p1 in fixed-point representation.

coef_ramC_fxp_obj
A vector that contains the values of the polynomial

coefficient p2 in fixed-point representation.

57

4 Function Segmentation Tests and Results

The segmentation performance and approximation accuracy of the proposed AFSM were

evaluated for the set of test bench functions listed in TABLE 17. These functions are widely

employed to construct hardware blocks with application in the fields of numerical analysis, digital

signal processing, wireless channel emulation, artificial neural networks [24], amongst others.

For all the test bench functions, the optimization process of the segmentation algorithm

was set up to maintain the output SQNR within the specified range, 60dB to 70dB. TABLE 17

summarizes the approximation results from the proposed AFSM employing both Least Squares

and miniMax PPA methods. The columns “  * %Th ” and “  * %Th ” present the optimal design

parameters (first order derivative and minimum chordal length thresholds) of the segmentation

algorithm that satisfy the SQRN requirement. The column “ *()SQNR dB ” presents the achieved

SQNR through the optimized design parameters in columns “  * % ” and “  * %Th ”. The column

“Required Segments” shows the minimum number of segments needed to meet the SQNR

requirement.

The columns “QI (bits)” and “QF (bits)” present the number of bits assigned to the integer

and fractional parts of the fixed-point representation of the polynomial coefficients, the range, and

the domain of the approximated function. The maximum absolute error of approximation between

each function and its piecewise polynomial approximation is presented in the “Max |Error|”

column. Finally, the column “ROM (Bytes)” shows the bytes of memory required by the LUT for

the storage of the polynomial’s coefficients of all the segments needed to achieve the SQNR

requirement for each PPA method tested; the memory requirements are calculated as

Required_Segments (1)
8
Len

Bytes

W
ROM m    .

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 58

 Although the proposed AFSM can be employed to approximate transcendental functions

using polynomials of any degree, to reduce the number of coefficients required for each segment,

second-degree polynomials were used for both Least Square and miniMax methods. In this sense,

the polynomial approximation tests were carried out with a uniform word length of Len 32W  bits.

This decision is supported by the fact that most modern field programmable gate arrays (FPGA)

or systems on a chip (SoC) have these or even greater bus width capabilities; therefore, no

additional resources expenditure is required.

TABLE 17: SEGMENTATION AND APPROXIMATION ACCURACY RESULTS FROM
THE PROPOSED AFSM FOR BOTH LS AND MINIMAX PPA METHODS. THESE
RESULTS WHERE OBTAINED USING Len 32W  BITS AND POLYNOMIALS OF

DEGREE 2m  .

 PPA

Method

*
Th

(%)

*
Th

(%)

*SQNR

dB

Required

Segments

QI

(bits)

QF

(bits)

Max

|Error|

ROM

(Bytes)

1() ()f x x
LSPA 28.5 10 65.25 7 13 19 0.0099 84

mMPA 41 10 62.48 6 12 20 0.0055 72

2

1
()f x

x


LSPA 30 30 66.85 14 16 16 0.0075 168

mMPA 93.4 10 63.12 10 16 16 0.0096 120

3() sin()f x x

LSPA 60 25 66.78 12 5 27 0.0013 144

mMPA 91.8 25 64.61 12 5 27 0.0007 144

24 () log ()
2

x
f x x

LSPA 72 20 64.71 9 6 26 0.0019 108

mMPA 95.7 20 64.36 8 7 25 0.0005 96

1
5 () cos ()f x x

LSPA 4 10 64.52 9 11 21 0.0338 108

mMPA 10 10 64.66 8 14 28 0.0078 96

6() ln()f x x 

LSPA 37 15 62.28 12 15 17 0.0146 108

mMPA 20 15 60.24 12 15 17 0.007 96

7 () ln(1)f x x 

LSPA 90 40 64.49 2 2 30 0.0008 144

mMPA 40 40 63.22 2 2 30 0.0005 144

8

1
()

1
f x

x




LSPA 100 30 62.16 2 2 30 0.0019 24

mMPA 100 30 60.68 2 2 30 0.0011 24

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 59

39 4 2

0.0004 0.0002
()

1.96 1.348 0.378 0.0373

x x
f x

x x x x




   

LSPA 143 8 60.52 30 11 21 0.0031 360

mMPA 143 8 60.32 30 11 21 0.0020 360

10() tansig()f x x LSPA 50 25 62.02 8 33 29 0.0025 96

mMPA 50 25 60.08 8 33 29 0.0014 96

One can observe in TABLE 17 that for the functions f1(x), f4(x), and f5(x) one less segment

is needed to reach the target SQNR when the polynomial approximation is carried out through the

mMPA method than when it is performed through the LSPA method. Furthermore, given that the

mMPA finds the polynomial coefficients that minimize the maximum error of approximation, for

most of the test bench functions, the maximum absolute error achieved through the mMPA method

was smaller in comparison to that obtained through the LSPA method. However, one can observe

that for the functions f3(x), f6(x), f7(x), f8(x), and f9(x) the achieved SQNR though the mMPA

method was slightly lower in comparison to that obtained through LSPA method. The reason of

this is that the objective of the LSPA method is to find a set of polynomial coefficients for each

segment that minimize the sum of the squared residual between the original function and the

approximating polynomial. Consequently, the denominator of the SQNR expression in (2-16) that

accounts for the quantization noise is minimized explicitly.

TABLE 18: SEGMENTATION PERFORMANCE COMPARISON BETWEEN THE
PROPOSED AFSM VERSUS THE UNIFORM AND THE NON-UNIFORM-BY-POWERS-

OF-TWO SEGMENTATION METHODOLOGIES.

Function Segmentation

Methodology

Required

Segments

QI

(bits)

QF

(bits)

SQNR

(dB)

1
5 () cos ()f x x

AFTM 8 14 18 64.66

Uniform 128 13 19 58.64

Non-Uniform 8 13 19 66.53

6 () ln()f x x 
AFSM 12 15 17 62.28

Uniform 128 18 14 60.95

Non-Uniform 16 15 17 65.74

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 60

39 4 2

0.0004 0.0002
()

1.96 1.348 0.378 0.0373

x x
f x

x x x x




   

AFSM 30 11 21 60.52

Uniform 64 11 21 61.96

Non-Uniform 32 11 21 46.80

10() tansig()f x x AFSM 8 3 28 62.02

Uniform 8 3 29 59.62

Non-Uniform 16 3 29 61.19

For the functions f5(x), f6(x), f9(x), and f10(x), TABLE 18 shows a comparison of the

approximation performance obtained through the proposed AFSM, the uniform, and non-uniform-

by-powers-of-two segmentation methodologies for an SQNR requirement between 60 dB and 70

dB. These functions were selected for comparison because these present curvature features that

are challenging to approximate through a basic segmentation methodology alone; prove of this is

that for functions such as f9(x) and f10(x) the SQNR requirements was not satisfied employing the

non-uniform and the uniform segmentation methodologies, respectively.

For example, given the specified SQNR, f5(x) can be approximated using only eight

segments through both the proposed AFSM (plotted in Fig. 4-1) and the non-uniform-by-powers-

of-two methodology (plotted in Fig. 4-2). On the other hand, the uniform segmentation

methodology, plotted in Fig. 4-3, does not perform satisfactorily because an excessive number of

128 segments are required in an attempt to reduce the absolute approximation error shown in Fig.

4-4, which increases as the curvature of f5(x) increases. Similarly, the uniform segmentation

methodology for the functions f6(x) and f9(x) (plotted in Fig. 4-7 and Fig. 4-11 respectively)

requires a significantly greater amount of segments compared to the proposed AFSM. In this sense,

for the functions f6(x) and f9(x), the uniform segmentation methodology requires 128 and 64

segments respectively, while the proposed AFSM requires only 12 and 30 segments, respectively.

The advantages of the proposed AFSM, over the previously discussed basic segmentation

methodologies, are demonstrated through the more elaborated curvature shapes of the functions

f6(x), f9(x), and f10(x), which are plotted in Fig. 4-5, Fig. 4-9, and Fig. 4-13, accordingly. For these

test functions, the proposed AFSM meets the SQNR requirement with the minimum number of

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 61

segments amongst the comparing segmentation methodologies. Also, and most importantly,

through the proposed AFSM, the segmentation and approximation procedure was automatically

performed and optimized according to the evolution of the curvature shape without intervention

from the user.

In contrast, in order to apply the non-uniform-by-powers-of-two segmentation

methodology on these functions, the user should intervene in the definition of a segmentation

hierarchy within the sub-intervals in X. This segmentation hierarchy is needed to change the

direction of segmentation to match the evolution of the function’s shape and allocate more

segments to the regions with increasing curvature [14]. An example of this is shown in Fig. 4-6,

where the evaluation interval of f6(x) was first divided in half at x=0.5 using uniform segmentation.

Then starting at x=0.5, the sub-interval (0, 0.5] was hierarchically segmented from right to left

using the non-uniform-by-powers-of-two segmentation. Finally, the sub-interval (0.5, 1] was

segmented out using the non-uniform-by-powers-of-two segmentation from left to right. Likewise,

for f9(x) in Fig. 4-10, and for f10(x) in Fig. 4-14, the first level of the segmentation hierarchy divides

the evaluation interval into four uniform sub-intervals. Then, for the second segmentation level of

both f9(x) and f10(x), each of the uniformly divided sub-intervals is hierarchically segmented using

the non-uniform-by-powers-of-two segmentation in the direction (left to right or vice versa) that

allocates the maximum number of segments to the regions of higher curvature.

As it was already mentioned, an important drawback of the hierarchical segmentation

methodology is that the user should determine the most appropriate direction of segmentation

through visual inspection of the functions’ shape. In this sense, one can observe on TABLE 18 that

for f9(x), plotted in Fig. 4-10, the hierarchical segmentation does not meet the SQNR requirements

because the endpoints of the uniformly spaced segments do not quite match with the regions where

the function presents the higher curvature. As a consequence, the tightly spaced segments from the

second level non-uniform segmentation are defined at inappropriate locations, causing the error of

approximation to increase at the regions of the function that present the maximum curvature.

The uniform segmentation of f5(x), f6(x), and f9(x) is shown in Fig. 4-3, Fig. 4-7, and Fig.

4-11, respectively. One can observe that the uniform segmentation of these functions requires an

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 62

excessive number of segments because this technique is not appropriate for functions with highly

varying curvature shapes. On the contrary, since the evolution of the curvature of f10(x) in Fig.

4-15 is fairly smooth, the uniform segmentation delivers similar results to the proposed AFSM.

The plots of the absolute error of approximation for f5(x), f6(x), f9(x) and f10(x) are shown

in Fig. 4-4, Fig. 4-8, Fig. 4-12, and Fig. 4-16 respectively. In these plots, one can clearly observe

that the proposed AFSM does not deliver the minimum absolute approximation error at every point

within the evaluation interval; instead of that, the approximation error is controlled and balanced

according to the evolution of the curvature of an arbitrary function. The previous is an important

effect that allows the proposed segmentation algorithm to adapt to functions of arbitrary shape and

achieve a good balance between the number of segments and the accuracy requirements.

The advantages of the AFSM over the compared segmentation methodologies in term of

the required number of segments is directly translated into a significant reduction memory

resources required to store the LUT of polynomial coefficients. As an example, to achieve similar

accuracy results for f5(x) and f6(x), the uniform segmentation requires a total of 128 segments,

which translates to 1536 bytes of ROM. On the other hand, through the AFSM, for f5(x) only eight

segments (96 bytes) are required, and for f6(x) only 12 segments (144 bytes) are required

respectively. The previous calculations account for a 1600% and a 1066.66% reduction of the

corresponding memory resources.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 63

Fig. 4-1. Segmentation and approximation result for f5(x) through the proposed AFSM.

Fig. 4-2: Segmentation and approximation result for f5(x) through the non-uniform methodology.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 64

Fig. 4-3. Segmentation and approximation result for f5(x) through the uniform segmentation
methodology.

Fig. 4-4. Absolute error of approximation for f5(x) from the proposed AFSM, non-uniform-by-
powers-of-two, and uniform segmentation methodologies.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 65

Fig. 4-5. Segmentation and approximation result for f6(x) through the proposed AFSM.

Fig. 4-6. Segmentation and approximation result for f6(x) through the non-uniform segmentation
methodology.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 66

Fig. 4-7. Segmentation and approximation result for f6(x) through the uniform segmentation
methodology.

Fig. 4-8. Absolute error of approximation for f6(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 67

Fig. 4-9. Segmentation and approximation result for f9(x) through the proposed AFSM.

Fig. 4-10. Segmentation and approximation result for f9(x) through the non-uniform
segmentation methodology.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 68

Fig. 4-11. Segmentation and approximation result for f9(x) through the uniform segmentation
methodology.

Fig. 4-12. Absolute error of approximation for f9(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 69

Fig. 4-13. Segmentation and approximation result for f10(x) through the proposed AFSM.

Fig. 4-14. Segmentation and approximation result for f10(x) through the non-uniform
segmentation methodology.

4. FUNCTION SEGMENTATION TESTS AND RESULTS

 70

Fig. 4-15. Segmentation and approximation result for f10(x) through the uniform segmentation
methodology.

Fig. 4-16. Absolute error of approximation for f10(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies.

 71

Conclusions

This thesis presented a novel adaptive function segmentation methodology for the accurate

approximation of transcendental functions through piecewise-polynomials for the efficient

implementation of hardware-based functions evaluators. The proposed adaptive segmentation

methodology is based on the analysis of the first and second order derivatives to perform the shape-

aware segmentation of any continuous function and determine the size and location of the

segments in such a way that the accuracy of the polynomial approximation is maximized. In this

sense, the segmentation algorithm employs an automatic optimization algorithm that searches for

the proper values of the segmentation design parameters to obtain the best balance between the

number of segments and the accuracy requirements. Henceforth, the introduced algorithm can be

used for implementing low area and efficient channel emulators for testing wireless

communication systems.

The introduced segmentation method offers significant advantages over state-of-art

segmentation methodologies such as the uniform and the non-uniform-by-powers-of-two because

it can be flexibly employed for any arbitrarily-shaped continuous function, and the amount of

memory required to store the coefficients of the polynomials is optimized in accord with the

applications’ SQNR requirements. Furthermore, the segment addressing and evaluation logic of

the proposed segmentation methodology is simpler to implement than that required by the

hierarchical segmentation method because it does not require the definition of addressing and

evaluation hierarchies.

The presented approximation results emphasize the flexibility and accuracy offered by the

proposed methodology for performing the approximation and evaluation of transcendental

functions of diverse shapes. Additionally, the small hardware resourced required to make the

proposed segmentation methodology an efficient and cost-effective option for implementing low

area computing arithmetic blocks using PPA methodologies.

 73

Future Work

The following are the activities planned for future work:

 The implementation of range reduction techniques to improve the approximation accuracy.

However, range reduction techniques are applicable on a per function basis; therefore, the

flexibility of applying the technique to any arbitrary continuous function without much

intervention from the user is sacrificed.

 The implementation of a global search method such as particle swarm optimization or

simulated annealing to find the global minimum amount of segments of the design space.

 The application of the polynomial coefficients into a hardware-based evaluator to obtain

results of the accuracy from real hardware.

 The implementation of a case study where the proposed adaptive segmentation

methodology is employed to develop a hardware channel emulator and tested to reproduce

the characteristics of a real wireless transmission scenarios.

 75

Appendix

 76

A. PUBLISHED PAPER FOR THE IEEE MTT-S LATIN
AMERICA MICROWAVE CONFERENCE

 77

 78

 79

 81

B. SUBMITTED PAPER FOR THE IEEE TRANSACTIONS ON
MICROWAVE THEORY AND TECHNIQUES

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 95

References

[1] A. Alimohammad, S. F. Fard and B. F. Cockburn, "Reconfigurable performance
measurement system-on-a-chip for baseband wireless algorithm design
and verification," IEEE Wireless Communications, vol. 19, pp. 84-91,
12 2012.

[2] D. W. Matolak, "V2V Communication Channels: State of Knowledge, New Results, and
What’s Next," in Communication Technologies for Vehicles, 2013.

[3] A. Alimohammad, S. F. Fard and B. F. Cockburn, "Hardware Implementation of Nakagami
and Weibull Variate Generators," IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, pp. 1276-1284, Jul 2012.

[4] N. M. a. E. D. Wirastuti and N. P. Sastra, "APPLICATION OF THE SUZUKI
DISTRIBUTION TO SIMULATION OF SHADOWING/FADING
EFFECTS IN MOBILE COMMUNICATION," in ICST, Surabaya
Indonesia, 2007.

[5] S. Chatterjee, A. S. Hadi and B. Price, Regression Analysis by Example, 3rd ed., New, York:
Wiley-Interscience, 1999.

[6] J. Vázquez Castillo, L. Vela-Garcia, C. A. Gutiérrez and R. Parra-Michel, "A reconfigurable
hardware architecture for the simulation of Rayleigh fading channels
under arbitrary scattering conditions," International Journal of
Electronics and Communications, pp. 1-13, 2014.

[7] P. Huang, D. Rajan and J. Camp, "Weibull and Suzuki fading channel generator design to
reduce hardware resources," in 2013 IEEE Wireless Communications
and Networking Conference (WCNC), 2013.

[8] L. Canche Santos, A. Castillo Atoche, J. Vázquez Castillo, O. Longoria-Gándara, R.
Carrasco Alvarez and J. Ortegon Aguilar, "An improved hardware
design for matrix inverse based on systolic array QR decomposition and
piecewise polynomial approximation," 2015.

[9] S. D. Munoz and J. Hormigo, "High-Throughput FPGA Implementation of QR
Decomposition," IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 62, pp. 861-865, Sept 2015.

 96

[10] A. Vázquez and J. D. Bruguera, "Iterative Algorithm and Architecture for Exponential,
Logarithm, Powering, and Root Extraction," IEEE Transactions on
Computers, vol. 62, pp. 1721-1731, Sept 2013.

[11] M. Shabany, D. Patel and P. G. Gulak, "A Low-Latency Low-Power QR-Decomposition
ASIC Implementation in 0.13 CMOS," IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 60, pp. 327-340, Feb 2013.

[12] V. Tiwari and N. Khare, "Hardware implementation of neural network with Sigmoidal
activation functions using CORDIC," Microprocessors and
Microsystems, vol. 39, pp. 373-381, Aug 2015.

[13] F. Ren and Y. R. Zheng, "A novel emulator for discrete-time MIMO triply selective fading
channels," IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 57, pp. 2542-2551, Sep 2010.

[14] D.-U. Lee, R. C. C. Cheung, W. Luk and J. D. Villasenor, "Hierarchical Segmentation for
Hardware Function Evaluation," IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 17, pp. 103-116, Jan 2009.

[15] J.-M. Muller, Elementary Functions: Algorithms and Implementation, 2nd ed., Birkhäuser,
2005.

[16] E. W. Cheney, Introduction to Approximation Theory, 2 edition ed., New York, N.Y.: Amer
Mathematical Society, 2000.

[17] G. Strang, Linear Algebra and Its Applications, 4th Edition, 4th edition ed., Belmont, CA:
Cengage Learning, 2006.

[18] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities. Graduate Texts in
Mathematics, vol. 161, Springer-Verlag, New York, NY, 1995.

[19] R. Yates, "Computer Science and Engineering. University of Washington. CSE 467:
Advanced Digital Design," 23 08 2007. [Online]. Available:
http://www.cs.washington.edu/education/courses/. [Accessed 15 06
2016].

[20] S. S. Rao, Engineering Optimization: Theory and Practice, 4 edition ed., Hoboken, N.J:
Wiley, 2009.

[21] J. A. Nelder and R. Mead, "A Simplex Method for Function Minimization," The Computer
Journal, vol. 7, pp. 308-313, 1 1965.

 97

[22] R. Hamming, Numerical Methods for Scientists and Engineers, Courier Corporation, 2012.

[23] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables, Courier Corporation, 2012.

[24] P. M. a. E. Fiesler, "Neural network adaptations to hardware implementations," Handbook
of Neural Computation, vol. 1, p. 2, 1997.

[25] Y. Li, B. Ai, X. Cheng, S. Lin and Z. Zhong, "A TDL Based Non-WSSUS Vehicle-to-
Vehicle Channel Model," International Journal of Antennas and
Propagation, vol. 2013, p. e103461, #nov# 2013.

 99

List of Figures

Fig. 1-1: Uniform segmentation, poor approximation accuracy to  () ln xf x   5

Fig. 1-2: Non-uniform segmentation, insufficient approximation accuracy to  () ln xf x   6

Fig. 2-1: Coarse segmentation (square marks) of () sin()f x x at the critical points

(0) (1) (2) ()
, , ,...,

Js s s sx x x x . .. 13

Fig. 2-2: Fine segmentation (asterisk marks) within the main segments. 14
Fig. 2-3: Independent bi-directional fine-tuning segmentation. ... 16
Fig. 2-4: Chordal segment length approximation. .. 17
Fig. 2-5: Flow diagram of the Remez´s exchange algorithm. ... 23
Fig. 2-6: Graphical representation of the boxed constraints transformation. 27
Fig. 3-1: Software architecture of the adaptive function segmentation methodology. 38
Fig. 4-1. Segmentation and approximation result for f5(x) through the proposed AFSM. 63
Fig. 4-2: Segmentation and approximation result for f5(x) through the non-uniform methodology.
... 63
Fig. 4-3. Segmentation and approximation result for f5(x) through the uniform segmentation
methodology. .. 64
Fig. 4-4. Absolute error of approximation for f5(x) from the proposed AFSM, non-uniform-by-
powers-of-two, and uniform segmentation methodologies. ... 64
Fig. 4-5. Segmentation and approximation result for f6(x) through the proposed AFSM. 65
Fig. 4-6. Segmentation and approximation result for f6(x) through the non-uniform segmentation
methodology. .. 65
Fig. 4-7. Segmentation and approximation result for f6(x) through the uniform segmentation
methodology. .. 66
Fig. 4-8. Absolute error of approximation for f6(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies. .. 66
Fig. 4-9. Segmentation and approximation result for f9(x) through the proposed AFSM. 67
Fig. 4-10. Segmentation and approximation result for f9(x) through the non-uniform
segmentation methodology. .. 67
Fig. 4-11. Segmentation and approximation result for f9(x) through the uniform segmentation
methodology. .. 68
Fig. 4-12. Absolute error of approximation for f9(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies. .. 68
Fig. 4-13. Segmentation and approximation result for f10(x) through the proposed AFSM. 69
Fig. 4-14. Segmentation and approximation result for f10(x) through the non-uniform
segmentation methodology. .. 69
Fig. 4-15. Segmentation and approximation result for f10(x) through the uniform segmentation
methodology. .. 70
Fig. 4-16. Absolute error of approximation for f10(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies. .. 70

 101

List of Tables

TABLE 1: DESCRIPTION OF VARIABLES EMPLOYED IN THE PSEUDO-CODE OF THE
ADAPTIVE FUNCTION SEGMENTATION METHODOLOGY. .. 29
TABLE 2: LIST OF THE INPUT PARAMETERS, GLOBAL VARIABLES AND OUTPUT
PARAMETERS OF THE ADAPTIVE DIRECTIONAL EXPLORATION FUNCTION. 39
TABLE 3: INPUT AND OUTPUT PARAMETERS OF THE FIRST DERIVATIVE
FUNCTION. ... 42
TABLE 4: INPUT AND OUTPUT PARAMETERS OF THE SECOND DERIVATIVE
FUNCTION. ... 43
TABLE 5: INPUT AND OUTPUT PARAMETERS OF THE SEGMENT LENGHT
COMPUTATION FUNCTION. ... 44
TABLE 6: INPUT AND OUTPUT PARAMETERS OF THE MAIN SEGMENTATION
ALGORITHM FUNCTION. .. 45
TABLE 7: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS GENERATION
FUNCTION. ... 47
TABLE 8: INPUT AND OUTPUT PARAMETERS OF THE LSPA COEFFICIENTS
FUNCTION. ... 48
TABLE 9: INPUT AND OUTPUT PARAMETERS OF THE MMPA COEFFICIENTS
FUNCTION. ... 49
TABLE 10: INPUT AND OUTPUT PARAMETERS OF THE SEGMENTS POLYNOMIALS
EVALUATION FUNCTION. .. 50
TABLE 11: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS
ASSIGNMENT FUNCTION. ... 50
TABLE 12: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT ANALYSIS
FUNCTION. ... 51
TABLE 13: INPUT AND OUTPUT PARAMETERS OF THE FLOATING POINT
EVALUATION FUNCTION. .. 52
TABLE 14: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT FUNCTION
EVALUATION FUNCTION. .. 53
TABLE 15: INPUT AND OUTPUT PARAMETERS OF THE ERROR AND SQNR
COMPUTATION FUNCTION. ... 54
TABLE 16: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS STORAGE
FUNCTION. ... 55
TABLE 17: SEGMENTATION AND APPROXIMATION ACCURACY RESULTS FROM
THE PROPOSED AFSM FOR BOTH LS AND MINIMAX PPA METHODS. THESE
RESULTS WHERE OBTAINED USING Len 32W  BITS AND POLYNOMIALS OF

DEGREE 2m  58
TABLE 18: SEGMENTATION PERFORMANCE COMPARISON BETWEEN THE
PROPOSED AFSM VERSUS THE UNIFORM AND THE NON-UNIFORM-BY-POWERS-
OF-TWO SEGMENTATION METHODOLOGIES. .. 59

 103

Index

A

Approximation, 40

B

Bytes, 57

C

chordal, 9, 16, 17, 31, 32, 39, 45, 47, 57

Coefficients, 33, 48, 49, 50, 51

D

Derivative, 42, 43

E

Error, 41, 42, 57

L

Least Square, 30, 40, 57, 58

Length, 45

LSPA, 18, 19, 20, 29, 30, 31, 32, 40, 49, 59,
98

M

Minimum, 53

P

Parameter, 32

Parameters, 32, 33

Polynomial, 40, 46, 48

PPA, v, 2, 4, 8, 9, 17, 18, 30, 31, 57, 58, 71,
98

S

SQNR, 4, 8, 9, 12, 14, 18, 20, 24, 25, 26, 29,
30, 31, 32, 35, 36, 37,
41, 47, 55, 56, 57, 59,
60, 61, 71, 98

W

Wireless, 2

