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Abstract

This thesis presents a new adaptive function segmentation methodology (AFSM), for the evaluation
of mathematical functions through piecewise polynomial approximation (PPA) methods. This
methodology is planned to be employed for the development of an efficient hardware-based
channel emulator in future development steps of the current project. In contrast to state-of-art
segmentation methodologies, which applicability is limited because these are highly dependent on
the function shape and require significant intervention from the user to setup appropriately the
algorithm, the proposed segmentation methodology is flexible and applicable to any continuous
function within an evaluation interval. Through the analysis of the first and second order
derivatives, the methodology becomes aware of the function shape and adapts the algorithm

behavior accordingly.

The proposed segmentation methodology aims towards hardware architectures of limited
resources that resort to fixed-point numeric representation where the hardware designer should
make a compromise between resources consumption and output accuracy. An optimization
algorithm is implemented to assist the user in searching the best segmentation parameters that
maximize the outcome of the design trade-offs for a given signal-to-quantization-noise ratio
requirement. When compared to state-of-the-art segmentation methodologies, the proposed AFSM
delivers better performance of approximation for the hardware-based evaluation of
transcendental functions given that fewer segments and consequently fewer hardware resources

are required.
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1 Introduction

The development and implementation of modern wireless communication systems are
highly complex tasks that require exhaustive simulation during the design and verification of the
building blocks to develop a system that is cost effective and performs reliably under a broad set
of operational conditions. Under these circumstances, software-based simulation tools are not
adequate given the excessive amount of time required to complete numerically intensive types of

simulations.

The physical layer of a wireless communication system can be broken down into two
blocks, the baseband section, and the Tx/Rx RF front-end section. Although both blocks present
intrinsic undesired characteristics that limit the overall performance of the system, the greatest
impact is imposed by the degrading propagation phenomena of the communication channel, such
as scattering, reflections, diffraction and attenuation [1]. These propagation phenomena can be
modeled as noise with certain statistical properties, which can be efficiently imprinted to the signal

through hardware-based channel emulators.

In this sense, the bit error rate (BER) over the desired range of signal-to-noise ratio (SNR)
is the metric employed to evaluate the performance of the baseband wireless receiver under test.
The BER to SNR characteristic is generated through pervasive Monte Carlo simulations that can
take several days to weeks or even months if performed through software-based simulators [1].
On the other hand, the verification of the wireless communication systems’ physical layer can be
sped up several orders of magnitude if highly flexible and efficient wireless channel emulators are
implemented in hardware using field programmable gate arrays (FPGA) or application specific
integrated circuits (ASIC). Consequently, a broad set of configurations and transmission
environments such as indoor, urban, suburban, rural, and mobile, can be tested under controlled
conditions that warrant the repeatability of subsequent measurements [2]; something that is nearly

impossible to achieve through in-the-field testing methods.
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If the reader is interested in obtaining the MATLAB code of the implementation presented
in this study, please feel free to send an email request at MD687149@jiteso.mx.

1.1 Motivation

The Nakagami, Suzuki, and Weibull channel emulators are noise generators widely used
for generating stochastic processes with specific characteristics associated with the different
communication channels or environments. The Weibull processes are utilized to model power
variation of the signal multi-paths in vehicle-to-vehicle (V2V) applications [2] under urban
environments (land-mobile channels) [3]. The Suzuki processes are suitable to simulate a mobile
wireless channel affected by fading (small-scale process) and shadowing (large-scale process).
Additionally, the Suzuki processes are considered to be more precise for modeling channels in
urban environments where the specular component or line of sight (LoS) is not present [4]. Finally,
the Nakagami processes are used to represent a channel where multiple Rayleigh processes are

present (Channels with great temporal dispersion) such as in V2V communication channels.

Wireless channel models implement mathematical expressions and transcendental
functions that are evaluated to generate the statistical channel noise description when carrying out
the testing and simulation of a wireless communication system. In general, one of the simplest
methods to evaluate a transcendental function is through look-up tables (LUT); where a broad set
of output values obtained from a fine-grained pre-evaluation of the function are stored in advanced
in the LUT, and then retrieved back according to the input argument of the functions. However,
the downside of this evaluation method is that the hardware resources occupied by the LUT

increase exponentially along with increments in the accuracy requirements of the output [5].

With the objective to reduce the hardware resources footprint, this work proposes the
evaluation of the transcendental functions through piece-wise polynomial approximation methods
(PPA) where the function subject to evaluation is segmented out, and each segment is
approximated using a low-degree polynomial. Consequently, through this evaluation method, the

LUT only stores the coefficients of the polynomial that best fit each of the segments that
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encompass the evaluation domain of the functions. However, the output accuracy achieved through
PPA methods heavily depends on the segmentation strategy employed to segment out the function
at hand; in other words, the quality of approximation of the original function is determined by

both, the location of the segments boundaries as well as the number of segments required.

1.2  State of the Art

Modern digital signal processing algorithms use high complexity building blocks, which
are associated with the evaluation of transcendental functions. In wireless communication channel
modeling, the channel emulation is carried out using models based on sum-of-cissoids (complex

exponentials), where the accuracy of evaluation of the sin(-) and cos(-) functions within the

models is a primary concern [6]. As an example, in Weibull fading channel emulators, which are

widely used for modeling V2V channels [7], the hardware implementation is significantly complex
due to the evaluation of In(-), v+, 1/x, and exp(") functions [7], [3]. Likewise, the efficient

hardware implementation of algorithms based on algebraic matrix operations such as QR

decomposition (QRD), commonly used for matrix inversion, is highly sensitive to the accuracy of

evaluation of the function v and 1/ x [8].

Currently, there are several methods for the evaluation of transcendental functions.
Although some of them offer certain advantages, they are also subject to disadvantages that make
them unsuitable for applications that require high accuracy and substantial computing throughput.
The iterative methods such as CORDIC (COordinate Rotation DIgital Computer) allow the
evaluation of transcendental functions [9], [10], [11] and [12] in a flexible manner. However, a
significant drawback that limits the development of hardware architectures for real-time
computing applications is that the output accuracy of the iterative methods is highly dependent on
the number of iteration that the algorithm is executed. An alternative methodology for evaluating
transcendental functions is via look-up tables, [3] and [13]; this is arguably the simplest and easiest
way to implement function evaluation blocks; however, the amount of memory needed for
allocating the function values increases significantly with increments on the output accuracy

requirement.
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On the other hand, PPA is an alternative method for evaluating transcendental functions. It
offers flexible design trade-offs between computing speed, area, output accuracy, and hardware
architecture reuse because the design of the polynomials evaluator does not change across
functions. Approximating a function using PPA methods requires the input evaluation interval to
be partitioned into multiple segments. Each of these segments is approximated using a low-degree
polynomial, which is addressed through the hardware polynomial evaluator according to the input
values of the function. In this sense, the accuracy achieved using the PPA approximation
methodology significantly depends on the segmentation methodology utilized; i.e., sizable
approximation errors might be introduced when an inadequate segmentation strategy is employed,
resulting in reduced signal-to-quantization-noise ratio (SQNR) performance of the function

evaluation block.

Today, the most popular segmentation methodology for PPA is called hierarchical
segmentation method (HSM), [14], which embed the more basic segmentation methodologies
known as uniform and non-uniform-by-powers-of-two. In principle, any function could be
segmented out through these methodologies; however, the downside is that these are not sensitive
to the shape of the function, therefore, causing substantial accuracy loss and SQNR degradation of

the desired architecture.

Consider a continuous function f{x), with first and second order derivatives, where x € X

and X =[x, ,x,]. The uniform segmentation methodology divides the function interval X, in

equally sized segments; whereas, the non-uniform-by-powers-of-two segmentation methodology,
decreases the size of subsequent segments within X according to the geometric progression with a

common ratio of 1/2; the segmentation can be started either from x; to x;; or vice-versa.

Fig. 1-1 and Fig. 1-2 show that the basic segmentation methodologies do not perform quite
well when dealing with functions that present non-monotonic curvature features. For example, the
uniform segmentation methodology is only suitable for functions that present a mostly constant or
slightly changing curvature within the evaluation interval. Otherwise, if the function exhibits both

fast-changing and slow-changing curvature features, an excessive amount of small segments are

4
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also created around the regions with slow-changing curvature. The reason of this is that the high
density of segments that is needed to approximate the fast-changing curvature features
appropriately is kept uniform along the whole evaluation interval. On the other hand, the non-
uniform-by-powers-of-two segmentation methodology is only adequate for functions that present
a curvature that either increases or decreases in the same direction. As a result, the direction in
which the segments decrease in size is of utmost importance to appropriately approximate the
function; in this sense, the density of segments should increase as the curvature of the function

increases.

3.393%
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Fig. 1-1: Uniform segmentation, poor approximation accuracy to f(x)=,/—In(x)
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3.3938m T S
! — Reference, f(z) = /—In(x)

- - Polynomial aproximation (non-uniform segmentation)
® Non-uniformly spaced segments endpoints

2.199
2.038
___ 1.861
=B
= 1.664
1.441
I
E 1177
=+"‘§

0.832

Fig. 1-2: Non-uniform segmentation, insufficient approximation accuracy to

f(x)="In(x)

The HSM is a hybrid segmentation methodology that employs both uniform and non-
uniform-by-powers-of-two segmentation methodologies to improve the approximation accuracy
to functions with non-monotonic curvature behaviors; however, since the segmentation
methodologies are employed in hierarchical levels, the control logic required for addressing the
hierarchy of segments is it too complex and requires a significant amount of hardware resources

in comparison to the proposed single level AFSM.
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To employ the previously discussed state-of-art segmentation methodologies, the user
should properly select the segmentation strategy (or a combination of them), and the minimum
numbers of segments based on the shape of the function at hand. In many cases, this is an iterative
trial and error process carried out by the user until the SQNR requirement (accuracy) is satisfied.
Employing the inappropriate segmentation strategy results in a suboptimal trade-off between
hardware resource consumption and SQNR degradation. In contrast, the proposed AFSM, through
the analysis of the functions’ first and second order derivatives, tackles these issues given that the
algorithm automatically adapts the segmentation strategy and the density of segments to the shape

of the function at hand.

1.3 Problem Statement

Several segmentation methodologies have been proposed for the evaluation of
mathematical functions through PPA methods [14]; however, these segmentation methodologies
are unsuitable for the segmentation of arbitrary functions because the segmentation strategy
employed only delivers good approximation results if the function at hand presents specific
curvature characteristics. Consequently, the employment of the inappropriate segmentation
methodology causes the degradation of the SQNR, as well as, the usage of an excessive number

of segments in an attempt to satisfy the output accuracy requirements.

On the other hand, the state-of-art hierarchical segmentation methodologies that define a
segmentation hierarchy employing the more basic uniform and non-uniform methodologies,
require a complex segment addressing which consumes a considerable amount of logic resources;
furthermore, the segmentation solution, as well as the segment addressing logic is function-

specific, and it cannot be reused.

This work proposes a segmentation methodology that allows segmenting out an arbitrary
function based on the first order and second order derivatives of the function to be approximated

within a continuous interval X. The introduced segmentation methodology allows optimizing the
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number of segments needed to satisfy the requirements of an objective function that best balances

the maximum approximation error, memory, and logic hardware resources.

1.4 Research Contribution

This thesis presents a new segmentation methodology for the approximation through PPA
methods of arbitrary transcendental functions through an automated function shape analysis based
on the functions’ first and second order derivatives. The proposed segmentation methodology
addresses the segmentation process as a constrained optimization problem to minimize the number

of segments according to design objectives such as SQNR and hardware area.

The simulation results show that the adaptive function segmentation methodology (AFSM)
provides better segmentation performance and higher SQNR with lower hardware resources
consumption in comparison to state of the art segmentation methodologies; therefore, the AFSM
represents an excellent alternative for implementing high accuracy PPA based transcendental

function evaluators embedded in sophisticated digital signal processing algorithms.

1.5 Thesis Objectives

The objectives of this thesis are the following:

e To develop an adaptive function segmentation methodology, for the evaluation of arbitrary
mathematical functions via PPA.

e To develop a shape analysis methodology for the efficient segmentation of arbitrary
functions based on the functions’ chordal length and the functions’ first order and second
order derivatives.

e The implementation of an optimization algorithm and the introduction of a cost function
for the optimization of hardware resources through the minimization of the number of

segments according to SQNR requirements of the application.
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1.6 Derived Publications

As part of this thesis work, two papers were developed:

1) A conference paper for the IEEE Latin America Microwave Conference 2016 titled:
“A novel function segmentation methodology for implementing affordable channel

emulators”. The published paper can be found in Appendix A.

2) A journal paper for the [IEEE LAMC-2016 Mini-Special Issue in IEEE Transactions
on Microwave Theory and Techniques titled: “An adaptive function segmentation
methodology based on first and second order derivatives for hardware optimization of

function evaluators”. The submitted paper can be found in Appendix B.






2 Adaptive Function Segmentation for Hardware
Resources Optimization

The development of an algorithm that automatically adapts the segmentation strategy
requires precise knowledge about the shape of the function under analysis and its curvature speed
of change within the evaluation interval. A convenient way to get such an insight is through the
implementation of an exploratory algorithm that analyzes the first and second order derivatives of
the function and identifies the points within the evaluation interval X where to split the function
into segments to maximize the accuracy of approximation through low-degree piecewise
polynomials. In this sense, the density of segments along X is automatically balanced according
to the progression of the functions’ curvature; consequently, the algorithm automatically allocates

a greater amount of segments around the regions that present a more pronounced curvature.

The calculations carried out by the algorithm are solved numerically; therefore, the
following sections utilize a discrete nomenclature for referring to the equations, functions, and

procedures used to describe the proposed segmentation algorithm.

2.1 Function Shape Analysis Through First and Second Order
Derivatives

The shape of the function f(x) and its curvature speed of change are analyzed through the
first and second order derivatives in a simple but yet powerful manner. To simplify the
segmentation process and to achieve improved approximation accuracy, the first step is to perform
a coarse segmentation by splitting the evaluation interval X at the critical points where the function
presents a local minimum, a local maximum or an inflection point. In this work, the segments
defined by this coarse segmentation stage are called main segments. The objective of the coarse

segmentation process is to define segments with a curvature that evolves monotonically (in the

11
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same direction), either growing or decreasing, in order better approximate it through a 2-degree
polynomial.

The computation of the first and second order derivative is performed numerically through
(2-1) and (2-2). For the numerical computation of the functions’ derivatives, the interval X is

quantized into N points addressed as xi, where 1 <i < N.

— df(x) ~ f(xi+1)_f(xi71)
T dx 2Ax (2-1)

X=X;

g(x)

h(x,) = d2f(x)| ~ f(Xi+1)_2f()2Ci)+f(xi_l)

dx2 AX (2_2)

X=X;

where, Ax =

X\ —xi| V.

The local minimum, maximum or inflection points of f(x) within the evaluation interval

X are found at a given point x; where there is a change of sign in g(x) or A(x) relative to the

next point X,,,, i.e., sign(g(xl.+1 )) # sign(g(xl. )) OR sign(h(xi+1 )) # sign(h(xi )) . Therefore, the
set of main segments endpoints S encompasses the boundary points of the evaluation interval
[xL,xH] and any other intermediate critical points X, identified through the coarse segmentation

process. However, if no critical points are identified, then the entire evaluation interval delimited
by the segment endpoints at x;, and x, is passed to the second segmentation step for further

segmentation tuning to achieve the SQNR requirement.

12
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— f(z) = sin(x) ®
— —g(a) = cos(a) :
------ hz) = —sin(x) 4

Main segments endpoints e

from coarse segmentation *,
@ Siegn change in g(z) and h(z) k
@ Evaluation interval endpoints

sin ()

/!

/
’

f(x)

) ’
main segment 2 , main segment 3

27

T, = = Tsp

:L‘S(lj ',1;5(2j Isr:;} €

x (rad)

S(0) 1

Fig. 2-1: Coarse segmentation (square marks) of f(x)=sin(x) at the critical points
xS ’xS 3xS

05052750y

To exemplify the previous point, let us think on f(x)=sin(x) in Fig. 2-1, which is to be
segmented out within an interval that stretches along a full cycle, X = [O, 27r] . The limiting points
x, and x, of the evaluation interval are called the evaluation interval endpoints (circle marks),

and

Sy 2

which are automatically created by the segmentation algorithm and identified as x;, = x

Xy =X, where x, represents the initial endpoint of the first main segment and X5 represents

S(J
the last endpoint of the J” main segment identified. The square marks in Fig. 2-1, at X, =7 /2,

=7 and X =37/2 correspond to a local maximum, an inflection point, and a local

S
minimum of the function f{x) within the interval X. These locations are identified during the coarse

segmentation stage by the sign changes in either g(x) or 4(x) and represent endpoints of the main

13
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segments in f(x) where its curvature changes direction (marked by the vertical purple arrows).

1.

After the coarse segmentation processes, the set of segments is defined as § = [xs(o) s X o X

L) 1
— J(x) = sin(z) -
— -g(z) = cos(x)
e h(2) = —sin(zx)
# Fine tuning segmentation endpoints
@ Evaluation interval endpoints
B Coarse segmentation endpoints <
# Sign change in g(z) and h(zx)

/

0 %ﬁ 2T
Ls(;19) L3 Ty = Ty,
z (rad)

Fig. 2-2: Fine segmentation (asterisk marks) within the main segments.

The second step, as depicted in Fig. 2-2, has the purpose of further splitting the previously
defined main segments to achieve the SQNR requirement. This fine-tuning segmentation process

defines internal segments endpoints inside the main segments, which are bounded by the

consecutive main segment endpoints [ X, X, } identified through the previous coarse

(1) S(7+1)

segmentation step. A new internal endpoint is defined at any x; where the relative change of value

on the first order derivative between the previously defined endpoint at x, and the nearest

(/)

subsequent point x; V x

(7

<X <X exceeds a given y threshold. The next mathematical

expression synthesizes the previous description.

14
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8x, ) -8(x,)| ., (2-3)
‘ g(xs(/) ) ‘

If the condition expressed in (2-3) is satisfied, then the current x; is defined as a new
segment endpoint in the set S; therefore, the newly defined segment endpoint is now identified as

X, where X, =X From this stage, the search for the next internal endpoint continues repeating

(

the previously mentioned steps until reaching the end of the current main segment that is identified

as x.

S

2.1.1 Bidirectional Function Shape Analysis

As depicted in Fig. 2-3, to improve the accuracy of approximation to f{x), the bidirectional
fine tuning segmentation of each main segment according to the y threshold is performed, from

x,  to X0 (forward segmentation), and from X to X, (backward segmentation). The

X0
bidirectional exploration of the fine-tuning segmentation is carried out given that the location of
the segments endpoints, xi, where the y threshold is met differs depending on the starting point of
the segmentation process; therefore, the approximating polynomials and consequently the
accuracy of approximation obtained from each direction of segmentation are different. After
performing both forward and backward fine-tuning segmentation exploration processes for each
segment, the polynomials that deliver the best approximation accuracy are selected. The
implementation of the bidirectional fine-tuning segmentation allows independently maximizing
the approximation accuracy for each main segment given that the direction of segmentation that

delivers the best approximation results is independent between main segments.
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T T T
= : : a |
: — f(z) = sin(x) B
i - +g(x) = cos(x)
i h(z) = —sin(z)
! ¥ Fine tuning segmentation endpoints
: % Points in g(x) where 7 is exceeded
E B Coarse segmentation endpoints -
! @ Sign change in g(x) and h(z)
’é‘ E ® Evaluation interviil endpoints
= i / i s
5 M \ I
“ main segment 0 E\ main segment 1 i main segment 2 ’5 main segment 3 ’
— A & 1 "
8 boa ! .
Preg \ ! !
- . ! :
' * ! !
05k X i | i
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! N ! !
A ! !
S SN I !
Backward +  Forward : E
-1k segmentation ¢ segmentation L : '_ |
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0 5 27
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Fig. 2-3: Independent bi-directional fine-tuning segmentation.
2.2 Chordal Segment Length Tuning

In addition to the shape analysis based on the y threshold, the proposed algorithm also

implements a minimum chordal length control that serves as a design knob for the optimization

process through the minimum chordal length threshold k. The x threshold is expressed as a

percentage of the functions’ total chordal length within the evaluation interval; therefore, 0% < «

< 100%.

The « threshold serves two purposes; the first one is to achieve a better balance in the

density of segments allocated when dealing with functions that present both regions of pronounced

curvature as well as regions of subtle curvature. In this sense, the k threshold makes it possible to

avoid having an excessive amount of tightly spaced segments around areas with pronounced

curvature when the value of the y threshold is too small. Inconveniently small values for the y
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threshold can result due to a poor selection from the user of the initial y value or because the

optimization process itself has taken y towards the design space of small values.

The second purpose of the « threshold is to prevent having too small segments that would
cause the PPA algorithm to become unstable and fail in finding a suitable set of coefficients. This
failure manifests itself when the integer part of the generated coefficients is too big that its fixed-
point representation requires most available bits from the word length. A consequence of this is a
severe loss of accuracy given that only a few bits remain for the fractional part of the coefficients.
Consequently, the definition of a new segment endpoint at a given x; requires that both y and k

thresholds be satisfied.

Fig. 2-4 exemplifies how the chordal length of a function within the interval limited by x. and x»
is approximated by summing up the length of the hypotenuse of the many small triangles that fit

within such interval.

1.57

w— f(X) =acos(x)

=
=
S
S
o
I :
é adjacent = |f(x,.,) - f{x,)|
'\ 1 opposite = Ax 4
\:\ 7
N 4
1 . N e e /l
1
] 1
P |
I 1 :
0 — ! :
0 P X, X+ 1
: DN —— : :
: i dx= %57 - Xl : :
X ¥, X} Xy

Fig. 2-4: Chordal segment length approximation.
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The length of the triangles’ hypotenuse is computed through the Pythagoras theorem expressed in

(2-4), where the length of the triangles opposite and adjacent sides is defined as Ax=|x,,, —X, ‘ and
‘ S(x respectively.
length ([, x, ZJ )+ ()= ()Y (2-4)

2.3 Polynomials Coefficient Generation

After each iteration of the AFSM splitting the function interval X into the set with J

1 wherex, <...<x, <...<x, , are the endpoints

segments (such that X = U X W o o
computed according to the y and « thresholds), the m" order polynomials coefficients that best fit
each segment are computed. The polynomials employed to approximate the function segments can
be of any order, m > 1 for m € Z . However, the usage of low-even-order polynomials is advised
for the proposed segmentation methodology given that the coarse segmentation step already
ensures that the curvature of the function evolves monotonically within each segment. Therefore,
low-even-order polynomials fit well the curvature of the segments and require less memory than

odd-order polynomials to store the coefficients as well as fewer logic resources to carry on the

coefficients multiplications.

For the proposed AFSM, two PPA methods were tested for the computation of the best fit
polynomials coefficients. The polynomial least square approximation method (LSPA) [15, p. 28]
and the miniMax polynomial approximation method (mMPA) [15, p. 32], which is based on the
Remez algorithm [16]. Each of the employed PPA methods treats the approximation error

differently and consequently provide different levels of SQNR and accuracy between the original

function f{x;) and the polynomial-based approximation function fj(xi) |; I (2-5).

18



2. ADAPTIVE FUNCTION SEGMENTATION FOR HARDWARE RESOURCES OPTIMIZATION
7 _ m
FiG) ;= pj, %+t P X (2-5)

where,

e jrepresents the segment index for the set of segments S .

° p,= [ PPy p/m] are the polynomial coefficients of the m™ order polynomial

used to approximate to the j” segment of the function f{x).

2.3.1 Least Square Polynomial Approximation and Error Treatment

From the set of data points (x,, /(x,)) within the segment delimited by [xs( X } , the
objective of the LSPA is to determine the m+1 coefficients of an m-degree polynomial, as
expressed in (2-5), that minimize the error of approximation in the least square sense between the
original function f(x) and the approximating polynomial. Therefore, the sum of squared residuals
of the j” segment is minimum when the condition expressed in (2-6) is satisfied [5] for all the

polynomial coefficients.

=0, for j=0,...,J (2-6)

where,

S(+) :

R =Y [fe)-F,, ] 2-7)

l=S/-

The polynomial coefficients values are obtained by solving the partial derivatives in (2-6) for all

p; - This procedure yields the following set of normal equations.
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S+ S(j+1 S+

) (j+1)
p021+p12xi+...+pm

=s;

) S+
m _
x'=> f(x)
i:s, i:s/-
S0+ S0 S0 S0+

pOin+pIle?+...+mex;"+l=inf(xi) (2-8)

S(j+1) S(j+1) S(j+1) S(j+1

)
P X o DX ek p, DX = D f ()

i=s; i=s; i=s; =s;

For (2-8) the right-hand side of the set of normal equations can be represented as

- S S S(j+1)
b=|> f(x) D xf(x) .. D x"f(x,) | Therefore, by defining a matrix 4 as follows,
i=s; i=s; i=s;
g , -
xS/ ij X J
2 m
1 'xs(j)+l 'xs(j)+l b xs(j)+l
— 2 m
A - 1 xs(/.)+2 xs(/.)+2 e ‘xs(/)+2 (2_9)
2 m
S(j+1) S(j+1) Tt xs(m) i

the set of normal equations in (2-8) can be condensed as the following linear system (the 4 matrix
is known as the Vendermonde matrix), which can be solved using the well-known Gauss-Jordan

method [17] to obtain the values of the polynomial’s coefficients that minimize the error of

approximation.

(4"4)p=b (2-10)

An important remark is that from (2-6) and (2-7) one can observe that the error treatment
strategy of the LSPA algorithm provides direct benefit to the improvement of the SQNR because
it explicitly minimizes the sum of squared residuals expression in (2-11). Such error expression,

in fact, represents the quantization noise energy; a factor that lies as the denominator of the SQNR

expression that is presented in Section 2.4.
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J
E[R]=) R, 2-11)

Jj=0

2.3.2 miniMax Polynomial Approximation and Error Treatment

The objective of the miniMax polynomial approximation algorithm (mMPA) is to

minimize the maximum absolute error or discrepancy between the approximation polynomial

j}j(xi) |, and the original function f(x;) in the uniform norm sense L. The mMPA algorithm

employs Chebyshev polynomials [18] of order m within the interval [xs/_ ,XSH] that delimits the

j" segment.

The computation of the polynomials coefficient that minimizes the maximum error of

approximation is performed by solving the following optimization problem.

;j = argrr}in{uéj(ﬁj)uw}, forj=0,...,J (2-12)
where,
éj(ﬁj):[e;j,...,ei,...,esf+l] (2-13)

, forsj Si<s;, (2-14)

& =|/()-7,)1;

In this sense, fj(xl.) |; is @ miniMax polynomial with coefficients ; ; 1f it satisfies the

condition that there are at least m + 2 points within the segment evaluation interval [xsj ,XSN]

where:
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(2-15)

5l = £ = Y [ 7 0] = £|re-7m1,

o0

The expression in (2-15) means that for fj(xi) |; to be a miniMax polynomial, it should

satisfy the condition that the maximum error is reached m+ 2 times (the total number of minimum
and maximum extrema points) and that the sign of such error alternates at each error extrema.
Henceforth, the Remez exchange algorithm, which is summarized in the flow diagram of Fig. 2-5,
determines the coefficients of miniMax polynomials by exploiting this important property; for

more detail on the implementation of the Remez’s algorithm refer to [15].
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Determine the initialm+2 error extrema points X, ‘ X 2x s x; . forthe i
segment using: i !

l|’x:-:-i—]'. _xil,:l )

2

L .

X, +X;
7] [ AL

N TR

P
cosi Jem L 0<k<sm+1
k”+lJ

Construct the linear equations system

Po+ o+ %+ + oy — f (%) =+e
Do+ P+ PG+t Pt = (%) =-c
. A o 1

por i gl g cepad el ) =) e

Solve the linear equation system for: Py P - Py and = |

Find the roots of the new determined polynomial f-:rrthejm segment.
Si(x)=py+ Ax+...+ pux”
% LH<x  where &= f;(d- f(x)

has its extremes (minima and maxima values).

Find the m + 2 points £

i %

2 (5,0~ 100)=0

Replace the previous X; points by the corresponding .?ﬁ ones

Has the algorithm converged?

<l+g

Fig. 2-5: Flow diagram of the Remez’s exchange algorithm.
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In comparison to the least square method, for regular functions, the miniMax method yields
a smaller error of approximation [15]; however, the miniMax method does not guarantee a lower

SQNR than that achieved through least square.

2.4 Fixed-Point and SQNR Analysis

For this work, the SQNR is the metric employed for measuring the accuracy of the
approximation to the reference function f{x) through a set of fixed-point low-degree polynomials.
The SQNR, defined in (2-16), is an intuitive and widely used metric of accuracy, which is based
on the ratio between the power of the signal of interest and the power of the quantization noise, as
it was mentioned in Section 2.3.1. In other words, the SQNR expresses how well an analog signal
is approximated through a digital fixed-point representation given the finite number of bits of the

system’s word length.

Zf(x,-)2

SONR,, =10log,, (2-16)

J S/‘+1

> 3@) -0, ()1)F

j=li=s;

The term Q(-) in the denominator of (2-16) is the operator that quantizes the argument
using a word length of WL bits, from which, QI bits are assigned to the integer part and OF bits

are assigned to the fractional part [19]; the previous is expressed as follows:
WL=QIl+QF (2-17)

The first step to determine the most appropriated fixed-point representation as to avoid
overflow or truncation is to compute the minimum number of bits assigned to QI. In this sense,
the expression in (2-18) provides the minimum QI bits required to represent signed values in two’s
complement with a range that is symmetric around zero. The expression in (2-18) takes into

account the magnitude of the entire set of polynomials coefficients for all segments, the magnitude
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of the values in the evaluation interval X, and the magnitude of the range of the function being

approximated.

ol :[log2 (max(a)+1)—|+l (2-18)

where,

9x,'9

a:{‘[yj f(xi)‘} LY,
A fixed-point variable ¢ for which the minimum number of QI and QF bits are determined

through (2-17) and (2-18), can take values in the range (—2Q’"1 ) <a< (—291‘1 - 1), [19].

The proposed segmentation methodology relies on an iterative optimization algorithm to
determine the best segmentation approach. Therefore, once the fixed-point analysis has been
carried out for each segmentation iteration, the achieved SQNR is computed and fed back to the
optimization algorithms’ objective function to determine whether the SQNR requirement has been

satisfied or further segmentation refinement is required.

2.5 Segmentation Optimization

The proposed AFSM implements an optimization algorithm that searches in the design
space R? of the y and « threshold parameters, looking for a suitable set of values that satisfy the
SQNR requirement while minimizing the required number of segments. The implemented search

algorithm solves the constrained non-linear optimization problem defined in (2-19), for a target
SQNR requirement, which is provided by the user as a range with an upper d*” and a lower limit

d"” according to application-specific needs.
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d" = arg min U(S(c?))

subject to (2-19)
d"<d<d"”
where,
e deR*d= [7,K]; is the vector of design variables subject to optimization.
e deRd = [7",x ]; is the vector of design variables after the optimization process has
been completed.
o d".d"e R*; are the upper and lower design-feasibility restrictions for the design
variables.
o S (c? )ye R*> > R; is the function that performs the segmentation process according to the
input design variables in d . The function returns the SQNR scalar value.
e U:R — R;isthe cost function that computes the error between the current design SQNR

and the target SQNR requirement.

The solution of the constrained non-linear optimization problem is simplified if the boxed

constraints (c? b<d<d “>) are incorporated into an unconstrained optimization problem; refer to

(2-20). For this, the design variables in d are transformed into Z through (2-21). After applying

the suggested transformation, the restrictions of the optimization problem are now embedded in

the design variables because their range, due to the arcsin(-) function (See Fig. 2-6 ), is now

bounded within the interval [0, 1.5708]; for further reference, see [20].

7 =arg min U (8(2)) (2-20)

(2-21)

Z, = arcsin
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5 Box constraints transformation

Odl b dub
d;

Fig. 2-6: Graphical representation of the boxed constraints transformation.

For this particular work, the solution to the unconstrained non-linear optimization problem
for Z is done through the Nelder-Mead algorithm [21]; however, many other local or global search

methods can be employed as well.
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3 Segmentation Methodology Implementation

The Algorithm 1 condenses the verbal methodology description provided in previous
sections to facilitate the reproducibility of the proposed segmentation methodology. Given that the
AFSM was implemented in MATLAB, the pseudocode employs sub-index notation to address the
discrete elements of vectors and collections of objects. Further detail of the pseudocode variables

and their usage is summarized in TABLE 1.

TABLE 1: DESCRIPTION OF VARIABLES EMPLOYED IN THE PSEUDO-CODE OF THE
ADAPTIVE FUNCTION SEGMENTATION METHODOLOGY .

Variable name Description

X The vector of the evaluation interval X that is quantized from x, to x, .
y The vector with the evaluation results of f(x) within the interval X .
Xpups The x vector in fixed-point representation.

Yeape The y vector in fixed-point representation.

h,g The vectors that store the first and second derivatives.

Dx The discretization resolution for X, the default is Ax = PCZ%J )

A temporary variable used to store the first derivative delta between the

Dg
previous segment and a subsequent point X;.
X, The lower limit of the evaluation interval X .
Xy The upper limit of the evaluation interval X .
quantElmts The number of quantization elements within the evaluation interval X .
) The collection to store the segment objects from the coarse segmentation
mainSegmts
process.
The collection to store all the segments objects that delivered the largest
allSegmts, o,

SQNR through the LSPA.
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The collection to store all the segments objects that delivered the largest

allSegmts
i SQNR through the mMPA.
A temporary collection that stores the segments from the forward
fwdSegmts
segmentation exploration.
A temporary collection that stores the segments from the backward
bwdSegmts
segmentation exploration.
A collection of LSPA coefficients for the segments from the forward
ﬁ/\} dcoe-ff:gLSPA . .
segmentation exploration.
A collection of LSPA coefficients for the segments from the backward
bwdCoeffs, g,
segmentation exploration.
A collection of mMPA coefficients for the segments from the forward
fwdCoeffs, ;s
segmentation exploration.
A collection of mMPA coefficients for the segments from the backward
bwdCoeffs,

segmentation exploration.

SwdCoeffs, p, _ Fxdpt

A collection of LSPA coefficients in fixed-point representation for the

segments from the forward segmentation exploration.

bwdCoeffs LSPA_ FxdPt

A collection of LSPA coefficients for the segments from the backward

segmentation exploration.

SwdCoeffs, 4 _ FxdPt

A collection of mMPA coefficients in fixed-point representation for the

segments from the forward segmentation exploration.

bwdCoeffs, ., _ FxdPt

A collection of mMPA coefficients in fixed-point representation for the

segments from the backward segmentation exploration.

The collection of polynomial coefficients for the current segmentation

allCoeffs
B realization through Least Square PPA method.
A collection of polynomial coefficients in fixed-point representation for
all CoefﬁgLSPAfodPt ) o
the current segmentation realization through Least Square PPA method.
The collection of polynomial coefficients for the current segmentation
allCoeffs, s,

realization through miniMax PPA method.
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allCoeffS\py rsap

The collection of polynomial coefficients in fixed-point representation

for the current segmentation realization through the miniMax PPA

method.
Stores the set of LSPA coefficients for the segmentation that satisfies the
coeffsSLUT p,
SQNR requirement.
Stores the set of MMARP coefficients for the segmentation that satisfies
coeffSLUT,
the SQNR requirement.
SQNR result from the forward segmentation exploration of the j main
JWdSONR, g,
segment through the LSPA method.
SQNR result from the backward segmentation exploration of the j# main
bwdSONR, .,
segment through the LSPA method.
SQNR result from the forward segmentation exploration of the j# main
JWASONR, .,
segment through the mMPA method.
SQNR result from the backward segmentation exploration of the j# main
bwdSONR, ,, »,
segment through the mMPA method.
SONR The resulting SQNR responses from the last segmentation over the whole
o interval X with coefficients obtained through the LSPA method.
SONR The resulting SQNR responses from the last segmentation over the whole
et interval X with coefficients obtained through the mMPA method.
V1 The design parameter for optimization, first derivative threshold.
The design parameter for optimization, minimum chordal segment
K
" length threshold.
SONR" Lower bound of the target SQNR requirement.
SONR" Upper bound of the target SQNR requirement.
/% The system word length.
m The polynomial degree, the default is 2.
accumLen A temporary variable that holds the accumulated chordal length.
i, j,k The for-loop iteration count variables.
contSearch The control flag for the optimization process stop condition.
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Parameter Definitions and Parameters Initialization sections of the pseudocode,
introduce and initialize the variables and constants that are used across the code to set up the
algorithm functionality and to store the computation results. The main body of the segmentation
algorithm is showed within the do—while loop (lines 17 through 63) that resembles the
optimization process, which iterates until the SQNR design requirement is met or the stop

conditions of the optimization algorithm are reached.

Within the first for —loop construct in the pseudo-code (lines 21 through 29), the coarse
segmentation is performed based on the sign changes of the first and second order derivatives; the

segments therein created are stored in the mainSegmis collection. After this step, within the
second for—loop construct (lines 32 through 45), the segmentation tuning stage is performed
according to the design parameters 75, and &, . The following steps (lines 47 through 49) in the
pseudocode are to compute the polynomial approximation coefficients through both, LSPA and
mMPA methods, the fixed-point analysis, and the respective SONR, .., and SONR,, .,

responses. The ternary conditional construct on line 50 selects the higher SQNR response out of
those obtained through the LSPA and the mMPA methods. The selected SQNR value is then
provided to the cost function (line 51) to determine whether the target SQNR has been satisfied or
further search should be carried out. The conditional constructs on lines 52 through 61 assess
whether the SQNR requirement has been satistied or the stop conditions have been reached; based
on the result of these conditional evaluations, the optimization loop control flag is set or cleared
for the search process to continue or stop, accordingly. Finally, the optimal set of polynomial

coefficients from the optimized segmentation process is stored in the hardware LUT.

Parameters definition: X, ¥, Xpp»> Vs > g» Dx, Dg, X;, X, ,quantElmts

mainSegmts , allSegmts,,,, allSegmts,, ., , fwdSegmts, bwdSegmts , fwdCoeffs,p,,
01:
bwdCoeffs, sy, fWdCoeffs,py» OWACOE[fS s> fWACOLS g1y prapy »DWACOCSSS s prap

s wdCoeffS,nps pap>  DWACOCSS yups prap o allCoeffs, g,  all Coeﬁ%LSPAfodPt )
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02:
03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14.

15:

16:
17:
18:
19:
20:

21:

22:

allCoeffs,ppy, — AllCOCNS\ppy g »  JWASONR gy, DWASONR, g, fWwdSONR, .,

bWASONR s, SONR g5, SONRyppss Vry» K> SONR", SONR™.W,,. m,

accumLen , contSearch ,i, j, k
Parameters initialization:

Set X, <—<Uver_lnput>,defalﬂt is0

Set X, (—<Us‘er_lnput>,default is 1
quantElms < (User _Input),default is 2'°

X, —X
Set Dx <« M
quantElmts

Set x <— vector(X, : Dx:Xxy)

Set <—<Uver_lnput>,default is 50%

Set Ky, <—<Uver_1nput>,default 18 5%

Set | SONR”, SONR" |« (User _Input), default is [60dB, 70dB]

Set 17, <—<User_lnput>, default is 32bits

Len
Set D jogree <—<Uver_lnput> , default is 2
Seti<1, j«1, k<1

Set y « funcEval( f (x))

To load the initial )1, and Ky, design parameters into optimization algorithm

Do

To clear required variables (Segments and Coefficients collections)

mainSegmts.createNewSegment()
mainSegmts(mainSegmts.count).startindex <« 1

for loop i < 1:length(x)

#) o L)
d [ 2

To compute g, <
X dx
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23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34.

35:

36:

37:

38:

39:

40:

41:
42:
43:
44.

45:

46:

47:

Do coarse segmentation by finding sign changes in g and # :

if (sign(g, ) #sign(g,.,))ll(sign(/ ) #sign(/,,)) then
Set mainSegmts(mainSegmts.count).endIndex < (i —1)
mainSegmts.createNewSegment()
Set mainSegmts(mainSegmts.count).startindex < i
end if
end for
Set mainSegmits (mainSegmts.count).endIndex <— MaxIndexOf(x)
Set j«1
for loop j < 1:mainSegmts.count
Set fwdSegmts <— mainSegmts( j)
Set bwdSegmts <— mainSegmts(j)
Perform forward segmentation exploration:

parfor loop i < fwdSegmts(1).startindex : fwdSegmts(1).endIlndex

Set accumLen <— fwdSegmts.last Segmt.lengthFromStartUpTo(x, )

To compute first derivative delta, Dg <—
| g fwdSegmts startindex |

if (Dg >7,,)and (accumLen > i, ) then

To split current temporary main segment at X, :

fwdSegmts.lastSegmt.splitSegmtAt(7)
end if
end parfor
Perform backward segmentation exploration:

parfor loop i <— bwdSegmts(1).endIndex : bwdSegmts(1).startindex

Set accumLen <— bwdSegmts firstSegmt.lengthFromEndUpTo(x,)

| gbwdSegmmAendIndex - gi | %

To compute first derivative delta, Dg <—
| gbwdSegmts.endIndex |
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48:

49:

50:
51:
52:
53:

54.

55:

56:

57:

58:

59:

60:

61:

62:

63:

64:

65:

66:

67:

68:

69:

if (Dg >7,,)and (accumLen > &, ) then

To split first temporary main segment at X, :

bwdSegmts.firstSegmt.splitSegmtAt(7)
end if
end parfor

To compute the forward and backward segments coefficients:

Set fwdCoeffs, s, <— fwdSegmts.computeLSPA(m)
Set fwdCoeffs,,;p, < fwdSegmts.computeMMPA (m)
Set bwdCoeffs, i, <— bwdSegmts.computeLSPA(m)
Set bwdCoeffs, ,», < bwdSegmts.computeMMPA(m)

To compute fixed-point analysis for the given W, : ...

(SwdCoeffs sp, peapi» JWACOENS 1 peapi» DWACOCLS 5, paps»
bwdCoeffS\ppy apres X mapes Y reare )

To compute jth main segment SQNR for forward and

backward segmentation...

(fwdSONR, ., fwdSONR,,,,bWdSONR, ,,, bwdSONR, )

To select the segmentation direction of higher SQNR:
if ( JWASONR, o, > bwdSONR, o, A)
allSegmts, ,,, addSegments(fwdSegmts)

Set allCoeffs, ., <— fwdCoeffs, ,,

Set allCoeffs; py pap < SWACOCL]S 514 1

else

allSegmts o, addSegments(bwdSegmts)
Set allCoeffs, ,, <= bwdCoeffs, ,,

Set allCoeffs s pap < bWACOE[S 54 pap
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70: end if
71: it ( fWdSONR,,,,, > bWdSONR, )
72: allSegmts, , »,.addSegments(fwdSegmts)
73: Set allCoeffs,,p, < fWdCoeffs, 4
74. Set all CoefﬁMMPAindPt <« fw dcoe.f]%MMPAindPt
75: else
76: allSegmts, ., addSegments(bwdSegmits)
77: Set allCoeffs,, ., <= bwdCoeffs, .,
78: Set allCoeffSpy peape <= bWACOENS,\ 1, piap
79: end if
80: end for
To compute overall SQNR for the k" optimization iteration: ...
. (SONR,g5,. SONR,y1)
82: if stop conditions have been met? then
83: continueSearch < FALSE
84: Else
85: if (SONR" < SONR,,,, < SONR" ) and ( SONR" < SONR,,,,, < SONR" ) then
86: To search for alternative design parameters: (), , K, )
87: continueSearch <— TRUE
88: else
89: continueSearch < FALSE
90: end if
91: end if
92: To increment optimization iterations counter:
93: Set j « j+1

94: while (continueSearch)

95: To store the coefficients that deliver best overall SQNR:
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3. SEGMENTATION METHODOLOGY IMPLEMENTATION

96: C0€fﬁ‘L UTLSPA A allcoefﬁLSPAﬁdePt
97: coeffSLUT, ypy <= allCoeffS s papi
98: LUTSegmts sp, pyp, < allSegmis, g, p.gp,

99:; L UTSngtsMMPAindPt <~ allSQgMISMMPAindPt

Algorithm 1: Algorithmic description of the adaptive function segmentation methodology.
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3. SEGMENTATION METHODOLOGY IMPLEMENTATION

3.1 Segmentation Algorithm Software Architecture

The following diagram depicts the overall functional architecture of the implemented
MATLAB code for the adaptive function segmentation methodology. Each square box represents
a MATLAB function, and the hierarchical enclosing of boxes convey the actual dependencies

across functions.

Segmentation Optimization Top

Adaptive Directional Exploration

First Derivative
Second Derivative

l Compute Segment Length

Main Segmentation Algorithm

| Segment Length Computation ‘

Coefficients Generation

l LSPA Coefficients ‘

[ MMPA Coefficients

Segments Polynomials Evaluation

l Coefficients Assignment

I Fixed Point Analysis

Floating Point Function Evaluation

‘ Coefficients Assignment ‘

Fixed Point Function Evaluation

‘ Coefficients Assignment ‘

Error and SONR Computation ‘

Segments Polynomials Evaluation

Coefficients Assignment |

Fixed Point Analysis ‘

Floating Point Function Evaluation

] Coefficients Assignment ‘

Fixed Point Function Evaluation

[ Coefficients Assignment ‘

__Error and SQNR Computation ‘

Coefficients Storage ‘

Fig. 3-1: Software architecture of the adaptive function segmentation methodology.
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Functional Description of the Software Architecture Modules

3.2.1 Adaptive Directional Exploration

This function is the driver of the optimization algorithm implemented for the bidirectional

adaptive segmentation methodology. It takes the values of the design parameters subject to

optimization do= [yru, xrr], and a set of predefined design parameters through the vector dp. Also,

this function requires some global variables to be defined in the top file and set with the appropriate

values for the correct functionality of the algorithm. The input parameters, the global variables, as

well as the output parameters of the function are described in further detail in TABLE 2.

TABLE 2: LIST OF THE INPUT PARAMETERS, GLOBAL VARIABLES AND OUTPUT
PARAMETERS OF THE ADAPTIVE DIRECTIONAL EXPLORATION FUNCTION.

Parameter definition Description

do=1...]

Vector with the initial design parameters for the adaptive segmentation
algorithm.

deriv_delta: First derivative threshold yrn expressed as a percentage;
it takes values greater than 0% up to values that make sense for the
function at hand, let say Xo= 500% for a 5-times derivative change
from the previous segment endpoint.

min_seg length: The minimum chordal segment length threshold.
This value is expressed as a percentage; valid values are those greater

than 0% and smaller than 100%.

dr=1...]

Vector for the predefined design parameters, which are listed as
follows:

word_length: The system word length, the default value is 32 bits.
step_size: Number of subsequent samples on the x vector to skip for
the calculation of the chordal segment length.

samples _power: Amount of samples in which the evaluation interval

X is to be quantized.
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min_x: The lower value of the evaluation interval X, which was
previously introduced as xr.

max_x: The upper value of the evaluation interval X, which was
previously introduced as x#.

poly_degree: Polynomial degree to be employed for the polynomial
approximation, which was previously introduced as m.

step_factor: Amount of subsequent quantization samples of the x
vector to skip throughout the sweep of the fine-tuning derivative
exploration, the default is 1 (No samples are skipped, sample index =

sample index + step_factor).

Global variables Description
global funct A global variable that stores the function handler to be segmented out.

The signature of the function is as follows:

funct = @(x)function_name(parameters in terms of x)

global exec count Global counter variable utilized to achieve the execution of certain
initialization code within optimization procedure only for the first
iteration of the segmentation algorithm. The user does not need to set

this parameter.

global approx_method | The global variable used by the algorithm to select which
approximation method should be utilized for the computation of the

polynomials.

0: Least Square Polynomial Approximation (LSPA).
1: miniMax Polynomial Approximation (mMPA).

Output parameters Description
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seg_bounds A vector containing the collection of segments endpoints/boundaries,
(the values in the evaluation interval X where a segment ends and the
following begins).

SQNR The SQNR result from current segmentation realization.

Data A vector that contains the following information about the current

segmentation realization.

seg_bounds: Vector that holds the collection of indexes of the vector
x for the defined segments endpoints/boundaries.

boundaries: Vector that holds the collection of values within the
vector x for the defined segments endpoints/boundaries.
boundaries_fxp: Collection that contains the values of the vector x in
fixed-point representation for the endpoints of the defined segment.
vect_x: Vector of the quantized evaluation interval X.

vect_eval y: Vector that contains the results of the evaluation of the
function for each element in vect x.

fitPnt_poly _vect_eval_y: Vector that contains the results of the
evaluation of the functions’ polynomial approximation in floating-
point representation for each element in vect x.
fxdPnt_poly vect eval y: Vector that contains the results of the
evaluation of the function approximated through the segments
polynomials in fixed-point representation for each element in vect Xx.
fixedPoint_vect x_obj.data: The vector of the quantized interval X
in fixed-point representation.

Error_FItPntGolden_to_FIltPntPoly: Vector that contains the
absolute errors of approximation between the original function and the
polynomial approximation in floating-point representation.
Error_FltPntGolden to FxdPntPoly: Vector that contains the
absolute errors of approximation between the original function and the

polynomial approximation in fixed-point representation.

41



3. SEGMENTATION METHODOLOGY IMPLEMENTATION

samples_power: The number of samples in which the evaluation
interval X was quantized, (252mples_power)

QI_MaxCoeff: Number of bits required to represent the integer part
of the maximum number required.

QF_Xargument: Number of bits remaining, from the predefined word
length and the required QI bits for the representation of the floating
portion of the numbers.

D1_collection: Vector with the values of the functions’ first order
derivative at every point in vect X.

D2 _collection: Vector with the values of the functions’ second-order

derivative at every point in vect X.

3.2.2 First Derivative

This function computes the first order derivative of the function at the specified point in x.
This function implements the centered differencing formula [22] to get a more accurate
approximation of the first order derivative of f{x). The details of the input and output parameters

are given in TABLE 3.

TABLE 3: INPUT AND OUTPUT PARAMETERS OF THE FIRST DERIVATIVE
FUNCTION.

Function handler with the signature:

Fun
funct = @(x)function_name(parameters in terms of x)
X0 Point in x where to evaluate the first order derivative of the function.
The vector of the quantized evaluation interval X. In this case, this
vect X vector is employed to handle the computation of the derivative for

those functions that are undefined outside of the evaluation interval.
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D The value of the first order derivative at the Xo.

3.2.3 Second Derivative

This function computes the second order derivative of the function to be approximated, at the
specified point within the evaluation interval X. This function implements the fifth stencil of the
centered differencing formula [23] to get a more accurate and stable approximation of the second

order derivative of f{x). The details of the input and output parameters are given in TABLE 4.

TABLE 4: INPUT AND OUTPUT PARAMETERS OF THE SECOND DERIVATIVE
FUNCTION.

Parameter definition Description

Function handler with the following function signature:

Fun

funct = @(x)function_name(parameters_in_terms of x)

The point within X where to evaluate the second order derivative of the
X0

function.

The vector of the quantized evaluation interval X. In this case, this
vect x vector is employed to handle the computation of the derivative at the

boundaries of the evaluation interval.

Output parameters Description

D The value of the second order derivative of the function at xo.
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3.2.4 Segment Length Computation

This function computes the chordal length of the function within a given interval. The details of

the input and output parameters are given in TABLE 5.

TABLE 5: INPUT AND OUTPUT PARAMETERS OF THE SEGMENT LENGHT

COMPUTATION FUNCTION.
vect x The vector of the quantized evaluation interval X.
vect eval y The vector that contains the results of the function evaluation for every

element in vect X.
Number of samples to skip between subsequent iterations along the
step_size sweep of the interval of evaluation X. This parameter allows speeding

up the computation of the chordal length at the expense of lost in

accuracy.
segment_length The value of the chordal segment length for the interval of evaluation
in vect x.

3.2.5 Main Segmentation Algorithm

This function implements the actual fine-tuning bidirectional segmentation algorithm
according to the parameters provided by the optimization process. The details of the input and

output parameters are given in TABLE 6.
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TABLE 6: INPUT AND OUTPUT PARAMETERS OF THE MAIN SEGMENTATION

ALGORITHM FUNCTION.
Parameter definition Description
startPoint Index inside the vector vect x where to start the fine-tuning

bidirectional segmentation exploration.

approx_method Polynomial approximation method that should be used to compute the

segments polynomials.

derivative_criteria An input parameter that is used to alter the behavior of derivative

threshold design parameter.

0: The absolute derivative change between the current x; point and the
previous segment endpoint should be compared against the derivative

threshold expressed as a percentage.

1: The absolute derivative change between the current x; point and the
previous segment endpoint should be compared against the derivative
threshold expressed as a percentage of the absolute range of derivative

values within the whole evaluation interval X.

2: The absolute derivative change between the current x; point and the
previous segment endpoint should be compared against the derivative
threshold expressed as a percentage of the absolute range of derivative
values within the interval of evaluation that has not yet been segmented

out.

3: The absolute derivative change between the current x; point and the
previous segment endpoint should be compared against the derivative
threshold expressed as a percentage of the average of the range of

derivative values within the specified evaluation interval.
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4: The absolute derivative change between the current x; point and the
previous segment endpoint should be compared against the derivative
threshold expressed as a percentage of the average of the range of
derivative values within the interval of evaluation that has not yet been

segmented out.

deriv_delta The first order derivative threshold yrx.
vect x The vector of the quantized evaluation interval X.
vect eval y The vector that contains the results from the evaluation of the function

for every element in vect x.

D1 _collection Vector with the first order derivative values of the function at every

point in vect X.

step_factor Number of samples in vect x to skip for each iteration of the

segmentation exploration.

poly degree The polynomial degree to be employed for the polynomial
approximation, which was previously introduced as m.

WordLength The predefined word length of the system.

chunk length The input parameter for the minimum length allowed for the trailing

segment. It controls whether the remaining of the evaluation interval
which does not meet the design thresholds (yzz and xrx) is defined as

a new segment or merged with the previous one.

step_size Number of samples in vect x to skip for each iteration of the chordal

length calculation loop.

min_seg length The minimum segment chordal length threshold «krn.
Output parameters Description
seg_bounds A collection that contains the indexes of vect x for the defined

segments endpoints/boundaries.

SQNR The SQNR result from current segmentation realization.

Data A vector that contains information about the current segmentation

realization as described in TABLE 2.
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3.2.6 Coefficients Generation

This function computes the coefficients of the polynomial to approximate all the defined

segments within a given evaluation interval. The details of the input and output parameters are

given in TABLE 7.

TABLE 7: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS GENERATION

Parameter definition

segment_bounds

FUNCTION.

Description
Collection that contains the indexes of vect x for the defined

segments endpoints/boundaries.

poly degree

The polynomial degree to be employed for the polynomial

approximation, which was previously introduced as m.

vect X

The vector of the quantized evaluation interval X.

vect_eval y

The vector that contains the results from the evaluation of the function

for every element in vect x.

approx_method

Polynomial approximation method that should be used to compute the

segments polynomials.

Output parameters

polynomial coefficients

Description

The vector that contains the collection of coefficients for all the

defined segments in the evaluation interval.
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3.2.7 LSPA Coefficients

This function computes the LSPA polynomials to approximate all the defined segments

within the evaluation interval. The details of the input and output parameters are given in TABLE

8.

TABLE 8: INPUT AND OUTPUT PARAMETERS OF THE LSPA COEFFICIENTS

Parameter definition

segment_bounds

FUNCTION.

Description
Collection that contains the indexes of vect x for the defined

segments endpoints/boundaries.

poly degree

The polynomial degree to be employed for the polynomial

approximation, which was previously introduced as m.

vect X

The vector of the quantized evaluation interval X.

vect_eval y

The vector that contains the results from the evaluation of the function

for every element in vect x.

Output parameters

polynomial coefficients

Description

The vector that contains the collection of LSPA coefficients for all

the defined segments in the evaluation interval.
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3.2.8 MMPA Coefficients

This function computes the mMPA polynomials to approximate all the defined segments
within the evaluation interval. The details of the input and output parameters are given in TABLE

9.

TABLE 9: INPUT AND OUTPUT PARAMETERS OF THE MMPA COEFFICIENTS
FUNCTION.

Parameter definition = Description

Collection that contains the indexes of vect x for the defined
segment_bounds ' '
segments endpoints/boundaries.

The polynomial degree to be employed for the polynomial
poly_degree o : . :
approximation, which was previously introduced as m.

vect x The vector of the quantized evaluation interval X.

| The vector that contains the results from the evaluation of the function
vect eval y
- for every element in vect x.

Output parameters Description
polynomial coefficients | The vector that contains the collection of mMPA coefficients for all

the defined segments in the evaluation interval.
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3.2.9 Segments Polynomials Evaluation

This function performs the floating point evaluation of the function through approximated

polynomials. The details of the input and output parameters are given in TABLE 10.

TABLE 10: INPUT AND OUTPUT PARAMETERS OF THE SEGMENTS POLYNOMIALS
EVALUATION FUNCTION.

Parameter definition ‘ Description

Collection that contains the values of x for the defined segments
posx_values

endpoints/boundaries.

A vector that contains the collection of coefficients for all the defined
coef ram ‘ o

segments in the evaluation interval.
vect X The vector of the quantized evaluation interval X.

Output parameters ‘ Description
fltPnt poly vect eval y | A vector that contains the results of the evaluation of the function
through the polynomial approximation in floating-point

approximation.

3.2.10 Coefficients Assignment

This function assigns the polynomial coefficients to the corresponding segment. The details

of the input and output parameters are given in TABLE 11.

TABLE 11: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS
ASSIGNMENT FUNCTION.

Parameter definition = Description

Collection that contains the values of x for the defined segments
posx_values ) )
endpoints/boundaries.
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A vector that contains the collection of coefficients for all the defined
coef ram ) o
segments in the evaluation interval.

Xdata The vector of the quantized evaluation interval X.

Output parameters Description

Assigned The matrix that contains the coefficients arranged correspondingly to

each defined segment.

3.2.11 Fixed Point Analysis

This function performs the fixed-point analysis to determine the correct configuration to
appropriately represent all the numbers within the evaluation interval, as well as the values of the
domain of the function and the polynomial’s coefficients. The details of the input and output

parameters are given in TABLE 12.

TABLE 12: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT ANALYSIS

FUNCTION.
vect X The vector of the quantized evaluation interval X.
A vector that contains the results of the evaluation of the function
vect_eval y
for each point in vect x.
word length Predefined system word length.
Output parameters Description
QI MaxCoeff The number of bits required to represent the integer part of the
maximum number required.
QF Xargument The number of bits remaining, from the predefined word length

and the required QI bits, for the representation of the fractional

portion of the numbers.
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range min_limit

Minimum number that can be represented by the fixed-point

configuration Q[QI MaxCoeff, QF Xagument].

range max_limit

The maximum number that can be represented with the fixed-point

configuration Q[QI MaxCoeff, QF Xagument].

fixed point_resolution

Resolution provided by the fixed-point configuration

Q[QI MaxCoeff, QF Xagument].

coef ramA fxp obj

MATLAB fixed-point object that holds the fixed-point values of

the po coefficients for all the defined segments.

coef ramB_fxp obj

MATLAB fixed-point object that holds the fixed-point values of

the p: coefficients for all the defined segments.

coef ramC fxp obj

MATLAB fixed-point object that holds the fixed-point values of

the p> coefficients for all the defined segments.

fixedPoint_vect x_obj

MATLAB fixed-point object that holds the fixed-point values of

the evaluation interval x.

3.2.12 Floating Point Function Evaluation

This function performs the evaluation of the function through the polynomials

approximation using floating-point representation. The details of the input and output parameters

are given in TABLE 13.

TABLE 13: INPUT AND OUTPUT PARAMETERS OF THE FLOATING POINT

EVALUATION FUNCTION.

Parameter definition Description

fltPnt_posx_values

Collection that contains the values within x for the defined

segments endpoints/boundaries in floating-point representation.

coef ram

The matrix that contains the coefficients of the defined segments.

fxdPnt_vect x

A vector that contains the values of x that conform the evaluation

interval in fixed-point representation.
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vect X

fltPnt poly vect eval y

Output parameters Description

A vector that contains the values of x that conform the evaluation

interval.

A vector that contains the results of the evaluation of the function

through the polynomial approximation in floating-point

approximation.

3.2.13 Fixed Point Function Evaluation

This function performs the evaluation of the function through the polynomials

approximation using fixed-point representation. The details of the input and output parameters are

given in TABLE 14.

TABLE 14: INPUT AND OUTPUT PARAMETERS OF THE FIXED POINT FUNCTION

EVALUATION FUNCTION.

Parameter definition Description

fxdPnt posx values

Collection that contains the values within x for the defined

segments endpoints/boundaries in fixed-point representation.

coef ramA_fxp

A vector that contains the values of the polynomial coefficient po

in fixed-point representation.

coef ramB_fxp

A vector that contains the values of the polynomial coefficient p;:

in fixed-point representation.

coef ramC _fxp

A vector that contains the values of the polynomial coefficient p2

in fixed-point representation.

fxdPnt_vect x

A vector that contains the values of x that conform the evaluation

interval in fixed-point representation.

WordLength

Predefined system word length, the default is 32 bits.

QF Xargument

The number of bits remaining from the predefined word length and
the required QI bits, for the representation of the floating portion

of the numbers.
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Output parameters Description

fxdPnt_poly vect eval y | A vector that contains the results of the evaluation of the function
through the polynomial approximation in fixed-point

representation.

3.2.14 Error and SQNR Computation

This function computes the vector of absolute approximation error and the SQNR response
from the performed segmentation realization. The details of the input and output parameters are

given in TABLE 15.

TABLE 15: INPUT AND OUTPUT PARAMETERS OF THE ERROR AND SQNR
COMPUTATION FUNCTION.

Parameter definition Description

A vector that contains the results of the evaluation of the

vect eval y

function for each element in vect x.

A vector that contains the results of the evaluation of the
fltPnt_poly vect eval y function for each element in vect x using floating-point

representation.

A vector that contains the results of the evaluation of the
fxdPnt_poly vect eval y function for each element in vec x using fixed-point

representation.
Output parameters Description

A vector that contains the absolute errors of
approximation between the original function and the
Error FltPntGolden to FIltPntPoly _ o ' ' .
polynomial approximation in floating-point

representation.

A vector that contains the absolute errors of
Error FltPntGolden to FxdPntPoly | approximation between the original function and the

polynomial approximation in fixed-point representation.
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The value of the SQNR response of the performed
SQNR

segmentation realization.

3.2.15 Coefficients Storage

This function creates the Verilog code for the ROM blocks that store the segments
endpoints and the corresponding polynomial coefficients. The details of the input and output

parameters are given in TABLE 16.

TABLE 16: INPUT AND OUTPUT PARAMETERS OF THE COEFFICIENTS STORAGE
FUNCTION.

Parameter definition Description

Vector that contains the values of x that conform the

fixedPoint_vect x obj o . . _
evaluation interval in fixed-point representation.

Collection that contains the values of x for the defined
fxdPnt posx values segments  endpoints/boundaries  in  fixed-point

representation.

A vector that contains the values of the polynomial

coef ramA_fxp_ob . _ ) _
coefficient po in fixed-point representation.

A vector that contains the values of the polynomial

coef ramB _fxp obj . _ ) '
coefficient p; in fixed-point representation.

' A vector that contains the values of the polynomial
coef ramC fxp obj

coefficient p> in fixed-point representation.
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4 Function Segmentation Tests and Results

The segmentation performance and approximation accuracy of the proposed AFSM were
evaluated for the set of test bench functions listed in TABLE 17. These functions are widely
employed to construct hardware blocks with application in the fields of numerical analysis, digital

signal processing, wireless channel emulation, artificial neural networks [24], amongst others.

For all the test bench functions, the optimization process of the segmentation algorithm
was set up to maintain the output SQNR within the specified range, 60dB to 70dB. TABLE 17

summarizes the approximation results from the proposed AFSM employing both Least Squares

and miniMax PPA methods. The columns “y,, (%)™ and “x;, (%) present the optimal design
parameters (first order derivative and minimum chordal length thresholds) of the segmentation
algorithm that satisfy the SQRN requirement. The column “SONR (dB)” presents the achieved
SQNR through the optimized design parameters in columns “ 7" (%) and “ x;, (%) . The column

“Required Segments” shows the minimum number of segments needed to meet the SQNR

requirement.

The columns “QI (bits)” and “QF (bits)” present the number of bits assigned to the integer
and fractional parts of the fixed-point representation of the polynomial coefficients, the range, and
the domain of the approximated function. The maximum absolute error of approximation between
each function and its piecewise polynomial approximation is presented in the “Max |Error|”
column. Finally, the column “ROM (Bytes)” shows the bytes of memory required by the LUT for
the storage of the polynomial’s coefficients of all the segments needed to achieve the SQNR

requirement for each PPA method tested; the memory requirements are calculated as

Bytes

ROM, = Wge” xRequired Segmentsx (m+1).
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Although the proposed AFSM can be employed to approximate transcendental functions
using polynomials of any degree, to reduce the number of coefficients required for each segment,

second-degree polynomials were used for both Least Square and miniMax methods. In this sense,
the polynomial approximation tests were carried out with a uniform word length of W, =32 bits.

This decision is supported by the fact that most modern field programmable gate arrays (FPGA)
or systems on a chip (SoC) have these or even greater bus width capabilities; therefore, no

additional resources expenditure is required.

TABLE 17: SEGMENTATION AND APPROXIMATION ACCURACY RESULTS FROM
THE PROPOSED AFSM FOR BOTH LS AND MINIMAX PPA METHODS. THESE

RESULTS WHERE OBTAINED USING W, =32 BITS AND POLYNOMIALS OF
DEGREE m =2.

PPA 7/;71 K;], SQNR* ReqUired QI QF Max

Segments | (bits bits Error
oo | o0 g (bits) (bits) [Error|

285| 10 | 6525 7 13 | 19 [ 0009 | 84
mMPA | 41 | 10 | 6248 6 12 [ 20 | 00055 | 72

1 LSPA | 30 | 30 | 66.85 14 16 | 16 | 0.0075 | 168

L) U mMPA | 934 10 | 63.12 10 16 | 16 | 0.0096 | 120
£i(x) =sin(x) LSPA | 60 | 25 | 66.78 12 27 | 00013 | 144

5
mMPA | 91.8 | 25 | 64.61 12 5 | 27 [ 00007 | 144
LSPA | 72 | 20 | 6471 9 6 | 26 | 00019 [ 108
mMPA | 957 | 20 | 6436 8 7 | 25 [0.0005 | 96
fix)=cos'(x) | LSPA [ 4 [ 10 [ 6452 9 11 | 21 | 00338 | 108

mMPA | 10 | 10 | 64.66 8 14 | 28 [ 00078 | 96

LSPA | 37 | 15 | 6228 12 15 | 17 | 00146 | 108
J6(x)=/~In(x)
mMPA | 20 | 15 | 60.24 12 15 | 17 | 0007 | 96

ﬂ(x)zglogz(x)

f>(x) =In(1+x) LSPA | 90 | 40 64.49 2 2 30 0.0008 144
mMPA | 40 | 40 63.22 2 2 30 0.0005 144

1 LSPA | 100 | 30 62.16 2 2 30 0.0019 24

S :E mMPA | 100 | 30 60.68 2 2 30 0.0011 24
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0.0004x +0.0002x
S ) = T 962" +1.348% —0.378x + 0.0373
LSPA | 143 8 | 60.52 30 11 [ 21 [ 00031 | 360
mMPA | 143 | 8 | 6032 30 11 | 21 | 00020 | 360
£,(x)=tansig(x) | LSPA | 50 | 25 | 62.02 8 33 | 29 | 00025 | 96
mMPA | 50 | 25 | 60.08 8 33 | 29 | 00014 | 96

One can observe in TABLE 17 that for the functions fi(x), f4(x), and f5(x) one less segment
is needed to reach the target SQNR when the polynomial approximation is carried out through the
mMPA method than when it is performed through the LSPA method. Furthermore, given that the
mMPA finds the polynomial coefficients that minimize the maximum error of approximation, for
most of the test bench functions, the maximum absolute error achieved through the mMPA method
was smaller in comparison to that obtained through the LSPA method. However, one can observe
that for the functions f3(x), fé(x), f7(x), fs(x), and fo(x) the achieved SQNR though the mMPA
method was slightly lower in comparison to that obtained through LSPA method. The reason of
this is that the objective of the LSPA method is to find a set of polynomial coefficients for each
segment that minimize the sum of the squared residual between the original function and the
approximating polynomial. Consequently, the denominator of the SQNR expression in (2-16) that

accounts for the quantization noise is minimized explicitly.

TABLE 18: SEGMENTATION PERFORMANCE COMPARISON BETWEEN THE
PROPOSED AFSM VERSUS THE UNIFORM AND THE NON-UNIFORM-BY-POWERS-
OF-TWO SEGMENTATION METHODOLOGIES.

Function Segmentation Required QI QF SONR
Methodology Segments (bits) (bits) (dB)
fu(x) = cos ' (x) AFTM 8 14 18 64.66
Uniform 128 13 19 58.64
Non-Uniform | 8 13 19 66.53
£.(x) :\/T(x) AFSM 12 15 17 62.28
Uniform 128 18 14 60.95
Non-Uniform | 16 15 17 65.74
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F)= 0.0004x + 0.0002x AFSM 30 11 21 60.52
’ x' —1.96x" +1.348x" —=0.378x+0.0373 | Uniform 64 11 71 61.96
Non-Uniform | 32 11 21 46.80

fro(x) = tansig(x) AFSM 8 3 28 | 62.02
Uniform 8 3 29 59.62

Non-Uniform | 16 3 29 61.19

For the functions f5(x), fé(x), fo(x), and fio(x), TABLE 18 shows a comparison of the
approximation performance obtained through the proposed AFSM, the uniform, and non-uniform-
by-powers-of-two segmentation methodologies for an SQNR requirement between 60 dB and 70
dB. These functions were selected for comparison because these present curvature features that
are challenging to approximate through a basic segmentation methodology alone; prove of this is
that for functions such as fo(x) and fio(x) the SQNR requirements was not satisfied employing the

non-uniform and the uniform segmentation methodologies, respectively.

For example, given the specified SQNR, f5(x) can be approximated using only eight
segments through both the proposed AFSM (plotted in Fig. 4-1) and the non-uniform-by-powers-
of-two methodology (plotted in Fig. 4-2). On the other hand, the uniform segmentation
methodology, plotted in Fig. 4-3, does not perform satisfactorily because an excessive number of
128 segments are required in an attempt to reduce the absolute approximation error shown in Fig.
4-4, which increases as the curvature of f5(x) increases. Similarly, the uniform segmentation
methodology for the functions fs(x) and fo(x) (plotted in Fig. 4-7 and Fig. 4-11 respectively)
requires a significantly greater amount of segments compared to the proposed AFSM. In this sense,
for the functions fs(x) and fo(x), the uniform segmentation methodology requires 128 and 64

segments respectively, while the proposed AFSM requires only 12 and 30 segments, respectively.

The advantages of the proposed AFSM, over the previously discussed basic segmentation
methodologies, are demonstrated through the more elaborated curvature shapes of the functions
fs(x), fo(x), and fi0(x), which are plotted in Fig. 4-5, Fig. 4-9, and Fig. 4-13, accordingly. For these

test functions, the proposed AFSM meets the SQNR requirement with the minimum number of
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segments amongst the comparing segmentation methodologies. Also, and most importantly,
through the proposed AFSM, the segmentation and approximation procedure was automatically
performed and optimized according to the evolution of the curvature shape without intervention

from the user.

In contrast, in order to apply the non-uniform-by-powers-of-two segmentation
methodology on these functions, the user should intervene in the definition of a segmentation
hierarchy within the sub-intervals in X. This segmentation hierarchy is needed to change the
direction of segmentation to match the evolution of the function’s shape and allocate more
segments to the regions with increasing curvature [14]. An example of this is shown in Fig. 4-6,
where the evaluation interval of fs(x) was first divided in half at x=0.5 using uniform segmentation.
Then starting at x=0.5, the sub-interval (0, 0.5] was hierarchically segmented from right to left
using the non-uniform-by-powers-of-two segmentation. Finally, the sub-interval (0.5, 1] was
segmented out using the non-uniform-by-powers-of-two segmentation from left to right. Likewise,
for fo(x) in Fig. 4-10, and for fio(x) in Fig. 4-14, the first level of the segmentation hierarchy divides
the evaluation interval into four uniform sub-intervals. Then, for the second segmentation level of
both fo(x) and fio(x), each of the uniformly divided sub-intervals is hierarchically segmented using
the non-uniform-by-powers-of-two segmentation in the direction (left to right or vice versa) that

allocates the maximum number of segments to the regions of higher curvature.

As it was already mentioned, an important drawback of the hierarchical segmentation
methodology is that the user should determine the most appropriate direction of segmentation
through visual inspection of the functions’ shape. In this sense, one can observe on TABLE 18 that
for fo(x), plotted in Fig. 4-10, the hierarchical segmentation does not meet the SQNR requirements
because the endpoints of the uniformly spaced segments do not quite match with the regions where
the function presents the higher curvature. As a consequence, the tightly spaced segments from the
second level non-uniform segmentation are defined at inappropriate locations, causing the error of

approximation to increase at the regions of the function that present the maximum curvature.

The uniform segmentation of f5(x), fs(x), and fo(x) is shown in Fig. 4-3, Fig. 4-7, and Fig.
4-11, respectively. One can observe that the uniform segmentation of these functions requires an
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excessive number of segments because this technique is not appropriate for functions with highly
varying curvature shapes. On the contrary, since the evolution of the curvature of fio(x) in Fig.

4-15 is fairly smooth, the uniform segmentation delivers similar results to the proposed AFSM.

The plots of the absolute error of approximation for f5(x), f6(x), fo(x) and fi0(x) are shown
in Fig. 4-4, Fig. 4-8, Fig. 4-12, and Fig. 4-16 respectively. In these plots, one can clearly observe
that the proposed AFSM does not deliver the minimum absolute approximation error at every point
within the evaluation interval; instead of that, the approximation error is controlled and balanced
according to the evolution of the curvature of an arbitrary function. The previous is an important
effect that allows the proposed segmentation algorithm to adapt to functions of arbitrary shape and

achieve a good balance between the number of segments and the accuracy requirements.

The advantages of the AFSM over the compared segmentation methodologies in term of
the required number of segments is directly translated into a significant reduction memory
resources required to store the LUT of polynomial coefficients. As an example, to achieve similar
accuracy results for f5(x) and fs(x), the uniform segmentation requires a total of 128 segments,
which translates to 1536 bytes of ROM. On the other hand, through the AFSM, for f5(x) only eight
segments (96 bytes) are required, and for fs(x) only 12 segments (144 bytes) are required
respectively. The previous calculations account for a 1600% and a 1066.66% reduction of the

corresponding memory resources.
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Fig. 4-1. Segmentation and approximation result for f5(x) through the proposed AFSM.
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Fig. 4-2: Segmentation and approximation result for f5(x) through the non-uniform methodology.
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Fig. 4-3. Segmentation and approximation result for f5(x) through the uniform segmentation
methodology.
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Fig. 4-4. Absolute error of approximation for f5(x) from the proposed AFSM, non-uniform-by-
powers-of-two, and uniform segmentation methodologies.
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Fig. 4-5. Segmentation and approximation result for fs(x) through the proposed AFSM.
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Fig. 4-6. Segmentation and approximation result for fsx) through the non-uniform segmentation
methodology.
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Fig. 4-7. Segmentation and approximation result for fs(x) through the uniform segmentation
methodology.
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Fig. 4-8. Absolute error of approximation for fs(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies.
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Fig. 4-9. Segmentation and approximation result for fo(x) through the proposed AFSM.
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Fig. 4-10. Segmentation and approximation result for fo(x) through the non-uniform
segmentation methodology.
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Fig. 4-11. Segmentation and approximation result for fo(x) through the uniform segmentation
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Fig. 4-12. Absolute error of approximation for fo(x) from the proposed AFSM, non-uniform, and

uniform segmentation methodologies.
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Fig. 4-13. Segmentation and approximation result for fo(x) through the proposed AFSM.
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Fig. 4-14. Segmentation and approximation result for f70(x) through the non-uniform
segmentation methodology.
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Fig. 4-15. Segmentation and approximation result for fio(x) through the uniform segmentation
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Fig. 4-16. Absolute error of approximation for f10(x) from the proposed AFSM, non-uniform, and
uniform segmentation methodologies.
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Conclusions

This thesis presented a novel adaptive function segmentation methodology for the accurate
approximation of transcendental functions through piecewise-polynomials for the efficient
implementation of hardware-based functions evaluators. The proposed adaptive segmentation
methodology is based on the analysis of the first and second order derivatives to perform the shape-
aware segmentation of any continuous function and determine the size and location of the
segments in such a way that the accuracy of the polynomial approximation is maximized. In this
sense, the segmentation algorithm employs an automatic optimization algorithm that searches for
the proper values of the segmentation design parameters to obtain the best balance between the
number of segments and the accuracy requirements. Henceforth, the introduced algorithm can be
used for implementing low area and efficient channel emulators for testing wireless

communication systems.

The introduced segmentation method offers significant advantages over state-of-art
segmentation methodologies such as the uniform and the non-uniform-by-powers-of-two because
it can be flexibly employed for any arbitrarily-shaped continuous function, and the amount of
memory required to store the coefficients of the polynomials is optimized in accord with the
applications’ SQNR requirements. Furthermore, the segment addressing and evaluation logic of
the proposed segmentation methodology is simpler to implement than that required by the
hierarchical segmentation method because it does not require the definition of addressing and

evaluation hierarchies.

The presented approximation results emphasize the flexibility and accuracy offered by the
proposed methodology for performing the approximation and evaluation of transcendental
functions of diverse shapes. Additionally, the small hardware resourced required to make the
proposed segmentation methodology an efficient and cost-effective option for implementing low

area computing arithmetic blocks using PPA methodologies.
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Future Work

The following are the activities planned for future work:

» The implementation of range reduction techniques to improve the approximation accuracy.
However, range reduction techniques are applicable on a per function basis; therefore, the
flexibility of applying the technique to any arbitrary continuous function without much

intervention from the user is sacrificed.

» The implementation of a global search method such as particle swarm optimization or

simulated annealing to find the global minimum amount of segments of the design space.

» The application of the polynomial coefficients into a hardware-based evaluator to obtain

results of the accuracy from real hardware.
» The implementation of a case study where the proposed adaptive segmentation

methodology is employed to develop a hardware channel emulator and tested to reproduce

the characteristics of a real wireless transmission scenarios.
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Abstract—AbstractNowadays, wireless channel emulators are
designed for chanmnel models that require the evaluation of
logarithms, trigonometrics, exponentials, and other transcen-
dental functions. These channel emulators are used for testing
wireless communication standards associated to Weibull, Suzuki,
Nakagami, Rayleigh and Gaussian distributions. Piecewise poly-
nomial approximation (PPA) technique allows the evaluation of
functions with an accuracy level that depends on the segmentation
used, being the uniform and non-uniform by the power of
two, the most commonly used. However, these segmentation
techniques lack the required flexibilit to be effectively used
for any function since the Signal to-Quantization-Noise-Ratio
(SQNR) is highly dependent on the function at hand. A new
function segmentation methodology is presented based on the
firs and second derivative. Simulation results show significan
SQNR advantages when the proposed methodology is compared
with state-of-art segmentation techniques.

Index Terms—Channel emulator, firs and second derivative,
piecewise polynomial approximation.

I. INTRODUCTION

Nowadays, the wireless communication system performance
is evaluated by means of special devices such as channel
emulators, which allow generating channel distortions in order
to emulate the different scattering propagation conditions of a
wireless communication environment.

Generally, the channel emulators implement models re-
ported in the open literature [1], to generate variates associated
to additive and multiplicative noise with different densities
according to the wireless environment under test (Weibull,
Suzuki, Nakagami, Rayleigh, Gaussian distributions, among
others). In all cases, the channel emulators implement arith-
metic computing blocks which carry out the evaluation of
special functions such as logarithm, trigonometric functions
(e.g. sines, cosines, etc.), exponential, and other transcendental
functions. However, these special functions are not available
off the shelf for hardware implementation and they need to be
designed efficient] to avoid introducing additional distortions
into the wireless communication channel under emulation. In
this sense, several techniques such as Lookup tables (LUT),
CORDIC (COordinate Rotation DIgital Computer) and Piece-

wise Polynomial Approximation (PAA) have been proposed
for implementing complex functions evaluators.

LUT-based designs are easy to implement, however, the
increment in memory is directly proportional to the accuracy
required by the hardware (HW) architecture. The memory
size could easily increase to several megabytes [2], depend-
ing on how high is the Signal-to-Quantization-Noise-Ratio
(SQNR) requirement. CORDIC implementations have proven
efficien for computing complex operations such as square
roots, sine, and cosine, among other functions [2]. However,
the accuracy of the CORDIC implementation heavily depends
on a number of algorithm iterations. For this, the execution
time requirement 1s an important drawback when designing
high throughput systems, in which case, the accuracy might
end up being sacrificed On the other hand, PPA techniques
offer fl xible design trade-offs involving computation speed,
memory, and accuracy. The input interval is able to be parti-
tioned into multiple segments (uniform or non-uniform) and
typically a low-degree polynomial is used to approximate each
segment. Through PPA, the accuracy of the approximation can
be controlled by modifying a number of segments, the segment
length, the polynomial degree, or the data word length.

Currently, some works have been reported in the open
literature related to the efficien implementation of channel
emulators, where the hardware function evaluation is carried
out following the paradigms of LUTs, CORDIC and PPA [2],
[3]. As it was mentioned, PPA technique provides area and
accuracy performance advantages; in addition, the hardware
architecture does not change when a new function evaluation
is required. However, this technique introduces approximation
errors that cause distortions in the emulated channel model,
when an inadequate segmentation strategy is employed. This
inconvenient, results due to segmentation techniques such as
uniform or non-uniform by the power of two are not sensitive
to the function shape to be approximated, which causes an
accuracy lost in the results and a degradation in the SQNR of
the desired architecture.

In this sense, this paper presents a novel function segmen-
tation methodology based on the firs order derivative and
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the second order derivative concepts. Likewise, the function
segmentation 1s carried out according to a control parameter,
provided by the firs order derivative, which define the
degrees of freedom for approaching the desired function with
a specifi  SQNR. The proposed method is applicable to any
function shape. Simulation results show the advantages of
the introduced methodology considering an SQNR level and
memory resources saved when it 1s compared with traditional
segmentation techniques which are proposed in recent works.

II. PROPOSED FUNCTION SEGMENTATION METHODOLOGY

The hierarchical segmentation method (HSM) proposed in
[4], is the most used function segmentation method. The
main segmentation technicues embedded in HSM are the
uniform and non-uniform by the power of two. Considering the
function {y(z)|z € 21 < # < zu}, the uniform segmentation
divides the desired function interval X = [z1,, zg] in equally
sized segments, whereas in the non-uniform segmentation, the
segment size decreases by power of two from the beginning
to the end of the function interval X. Arbitrary function
behaviors along the interval of interest are not correctly
approximated by the non-uniform segmentation, whereas uni-
form segmentation uses a significan amount of segments
increasing the memory resources for allocating the polynomial
coefficients

Our approach is based on the firs and second derivatives
of a fully define function y(x) to be segmented out within
the interval X = {z1, < z < zg}

aw) = 2. 0
42 d [d
o) - - () @

In this sense, the proposed methodology is carried out
according to the following steps:

The firs step in the derivative segmentation algorithm is
to split the overall X interval into the main sub-segments
(MainSegments), afterward by identify the points where
the function y(z) changes direction (inflectio points, local
minima or local maxima). This is at the locations where
the firs or second order derivatives of y(z) change of sign
(ie., as(z) and b;(z) in (1) and (2) respectively). However,
if the function does not present direction changes, then the
whole X interval is taken as the single main segment. As the
second step, for each of the identifie main sub-segments, an
internal segmentation is performed by sweeping through and
segmenting the function at the points where the absolute value
of the firs order derivative has met or exceeded a given user-
define threshold (A,. > aTy). This threshold is relative to
the derivative of the previous segment (o1astEndPoint). ThUs,
the segment length 1s indirectly controlled through the firs
order derivative, giving shorter segments for the regions with
greater derivative magnitude. The third step is to determine the
coefficient of the 2-degree polynomials that best fi each of the
segments. In the present work, the least square approximation
algorithm is used to obtain the polynomial coefficient using

Algorithm 1 Introduced segmentation methodology.

1: Parameter definitions arn, Segnr SQNRicvel, Wil, Pdegree.
2: for loop i = 1 : length(X) do

d d
3: To compute a; = gi—‘, b = d—;ﬁ'—.
4: To fin sign changes in a (=) or &(z) to defin main segments endpoints at =;
5: (MainSegments).
6. end for
7: for each MainSeg in Main3egments do
8: for loop 7 = MainSeg.startIndex : MainSeg.endIndex do
9: To compute accumulated length AccumLength from 1. 5cgEndPoint
10: to ;.
11: To calculate A, = —'—E—'-J—lalagtse EndPoint — % | % 100.

i %lastSegEndPoint

12 ir Aa7 > aopy, and AccumLength > Segyr, then
13:; To defin a new segment at #; (£lastSegEndPoint = %; )
14 end if
15: end for
16: end for

17 To compute polynomial coeff cients of all segments.
18: To compute Fixed Point requirements of all segments coefficients
19 To compute SQNR over the whole X interval.

the poly£it Matlab function, although other algorithms such
as MiniMax could be used (see Algorithm 1).

Since LS method produces high magnitude coefficient for
too short segments, a second user-define parameter 1s intro-
duced to control the minimum length of any given segment
Segur. In this sense both criteria, the percentage of change
of the firs order derivative and the mimimum segment length
requirement should be met to defin a new segment endpoint.

The appropriated amount of bits that should be allocated
for the integer (1) and fractional (QF) parts from the given
word length (W) is determined by.

&)
Q)

Through (3) and (4), the fi ed point analysis is carried
out taking into account all coefficient (ps, p1,po) and the
minimum and maximum values of z and y(z).

In order to achieve the required SQNR with the minimum
amount of segments for certain functions, the user might need
to test different derivative thresholds and minimum segment
lengths configurations This process could be automated by
implementing a local or global search algorithm where the ob-
jective function 1s formulated in terms of the SQNR, minimum
segment length, the maximum amount of segments required,
polynomial degree, among others.

QI = “Ogg (max ‘PQ,Pl, pOaXay(I)|)] ’
QF =W — QI

III. RESULTS

The proposed algorithm has been fully implemented in
Matlab for segmenting several functions in order to show
the accuracy of the piecewise polynomial approximation. For
each segment, 2-degree polynomials are considered; however,
the algorithm could use different degree polynomials. Table
I summarizes the segmentation results using the proposed
algorithm for several functions that were also used as test
bench in [2].

The segmentation tests were carried out assuming a word
length of Wy = 32 bits; this decision is supported by the
fact that modern FPGAs or SoCs systems possess such native
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TABLE I: Comparative segmentation results using the pro-
posed method for different functions with W, = 32 bits.

() amw Segvi % QI QF SQNREwor ROM
% % bits bits dBs Bytes

JE 285 10 7 13 19 6525 .009 84
- 30 30 14 16 16 6685 .0075 168
sin(z) 60 25 12 527 6678 0013 144
~Zlogy(z) 72 20 9 6 26 6471 0019 108
cosl(@) 4 10 9 11 21 6452 .0338 108
T 37 15 12 15 17 6228 .0l46 144
In(l+z) 90 40 2 2 30 6449 0008 24
L 100 30 2 2 30 6216 .0019 24

bus widths or even greater capabilities, thus no additional
resources expenditure is required. In addition, the reported
aty, and Segy, values allow us achieving SQN R values
greater than 60 dBs with the aim of obtaining the minimum
number of segments. It is highlighted that aTy}, is represented
as a percentage of the maximum magnitude value achieved
for the firs order derivative. On the other hand, Segy, is
expressed as a percentage of the length 1y — z1,. The ROM
column represents a number of memory resources (in bytes)
for allocating the polynomial coefficients which is calculated
as ROM= WT‘”’I X ##Segments X (Pdegree + 1), and Error
column shows the accumulated absolute error between the
reference functions and the approximated functions.

Table II shows the segmentation performance comparison
between the proposed methodology and the uniform segmen-
tation method. The segmentation was carried out in such a
way to ensure reaching a SQN R between 60 and 70 dBs
with both methods. For comparison the sin(z) and /—In(z)
functions were selected. It is important to highlight that the
selected functions can be used for implementing blocks in
channel emulators; e.g. Rayleigh fading generators based on
sum-of-cissoids, variates generation via inversive methods [2].
The proposed segmentation technique provides a significan
reduction in the amount of segments needed to reach the
target SQN R relative to the uniform segmentation technique,
which requires 38 and 128 segments for the functions sin(x)
and /—In(z) respectively. Such advantage can be directly
translated into significan reduction of the required memory
to achieve similar accuracy, given that through uniform seg-
mentation sin(x) requires 456 bytes, while y/— In(xz) requires
1536 bytes; this is 316.7% and 1066.6% of reduction in
memory respectively.

TABLE II: Segmentation performance comparison between
the proposed methodology and the uniform method.

y(x) Segmentation # Segments QI QF SQNR
bits  bits dBs
. Proposed 12 5 27 66.78
sin(®)  Uniform 38 527 66.24
\/T(z) Proposed 12 15 17 62.28
Uniform 128 18 14 60.95
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Finally, in Fig. la and Fig. 1b, the sin(z) and /— In(z)
reference functions and their approximations are plotted using
solid lines and dashed lines respectively. Likewise, in Fig
lc and Fig. 1d the approximation errors using the proposed
methodology and uniform segmentation method are compared
for both reference functions.

IV. CONCLUSIONS

In this paper, a novel function segmentation methodology
applicable to PPA techniques was presented. It is based on the
firs and second derivative concepts to achieve fl xibility and
segmentation performance given that the method 1s sensitive to
the shape of the function at hand. Comparison results show that
the proposed methodology can be used for evaluating arbitrary
functions with excellent SQNR performances.
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An adaptive function segmentation methodology
based on first and second order derivatives for
hardware optimization of function evaluators

J. M. Trejo-Arellano, J. Vazquez-Castillo, O. Longoria-Gandara, R. Carrasco-Alvarez,
C. A. Gutiérrez, A. Castillo-Atoche

Abstract—The evaluation of mathematical functions is funda-
mental in surrogate models such as wireless channel emulators
and other signal processing applications. This paper presents a
new adaptive function segmentation methodology for the eval-
uation of mathematical functions through piecewise-polynomial
approximation methods. In contrast to state-of-art segmentation
methodologies, which applicability is highly dependent on the
function shape and require significant intervention from the user
to setup the algorithm, the proposed segmentation methodology
is flexible and applicable to any continuous function within an
evaluation interval. Through the analysis of first and second
order derivatives, the methodology becomes aware of the function
shape and adapts the algorithm behavior accordingly. The
proposed segmentation methodology is aimed towards hardware
architectures of limited resources that resort to fixed-point nu-
meric representation where the function evaluation unit designer
should make a compromise between resources consumption and
output accuracy. An optimization algorithm is implemented
for searching the best segmentation parameters that maximize
the outcome of the design trade-offs for a given signal-to-
quantization-noise ratio specification, In comparison to state-of-
the-art segmentation methodologies, the proposed segmentation
methodology delivers better performance of approximation for
the in-hardware evaluation of transcendental functions; through
a flexible and automated process, the consumption of hardware
resources is minimized.

Index Terms—Function approximation, piecewise-polynomial,
hardware optimization, segmentation, hardware evaluation,
mathematical functions, surrogate modeling, wireless channel
emulator.

I. INTRODUCTION

Nowadays, digital signal processing algorithms use high
complexity blocks, which are associated with the evaluation of
transcendental functions. In wireless communication channel
modeling, the chamnel emulation can be considered as a
surrogate model of the wireless channel and is carried out
using various models such as ray tracing [1], [2], sum-of-
cissoids (complex exponentials) [3], [4], and others. Channel

J. M. Trejo-Arellano and O. Longoria-Gandara are whith Dept. of Elec-
tronics, Systems and IT, ITESO, Guadalajara, Jal., 45604 Méx. email:
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models based on sum-of-cissoids, the accuracy of evaluation of
the sin(-) and cos(-) functions within the models is a primary
concern. As an example, in Weibull fading charmel emulators,
which are widely used for modeling vehicle-vehicle (V2V)
channels [5], the hardware implementation is significantly
complex due to the evaluation of In(-), v/, 1/, and exp(")
functions [6], [7]. Likewise, the efficient hardware imple-
mentation of algorithms based on algebraic matrix operations
such as QR decomposition (QRD), commonly used for matrix
inversion, is highly sensitive to the accuracy of evaluation of
the function -/ and 1/+/ [8]. Additionally, function evalu-
ation is implemented for dealing with some high-complexity
blocks when communication systems are developed (e.g. pre-
distorters implemented in [9], [10], [11]), as well as for
hardware accelerator blocks in general-purpose computing and
graphic processor unit (GPU) applications [12].

Currently, there are several methods for the evaluation of
transcendental functions. Although some of them offer certain
advantages, they are also subject to disadvantages that make
them unsuitable for applications that require high accuracy
and substantial computing throughput. Iterative methods such
as CORDIC (COordinate Rotation Dlgital Computer) allow
the efficient evaluation of transcendental functions [13], [14],
[15], [16]. However, the output accuracy is highly dependent
on the mumber of iteration that the algorithm is executed
and represents a significant drawback that limits the devel-
opment of hardware architectures for real-time computing
applications. An alternative methodology for evaluating tran-
scendental functions is via look-up tables (LUT) [7], [17];
this is arguably the simplest and easiest way to implement
function evaluation blocks; however, the memory size needed
for allocating the function values increases along with the
output accuracy requirement.

On the other hand, piecewise-polynomial approximation
(PPA) is an alternative method for evaluating transcendental
functions. It offers flexible design trade-offs between comput-
ing speed, area, output accuracy, and hardware architecture
utilization because the design of the polynomials evaluator
does not change across functions. Approximating a functions
using PPA methods requires the input evaluation interval to
be partitioned into multiple segments. Each of these segments
is approximated using a low-degree polynomial, which is ad-
dressed through the hardware polynomial evaluator according
to the input value to the function. In this sense, the accuracy
achieved using the PPA approximation methodology signif-
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icantly depends on the segmentation methodology utilized;
i.e., sizable approximation errors might be introduced when an
inadequate segmentation strategy is emploved, resulting in re-
duced signal-to-quantization-noise ratio (SQNR) performance
of the function evaluation block.

Today, the most popular segmentation methodology for PPA
is called hierarchical segmentation method (HSM) [18], which
combines the more basic segmentation methodologies known
as uniform and non-uniform by the power of two. In princi-
ple, any function could be segmented out through all these
methodologies; however, the downside is that these methods
are not sensitive to the shape of the function, therefore, causing
substantial accuracy loss and SQNR degradation of the desired
hardware architecture. In this sense, this paper presents a new
segmentation methodology for arbitrary transcendental func-
tions, which addresses the segmentation process as a constraint
optimization problem where the goal is to determinate the
minimum number of segments according to design objectives
such as SQNR and hardware arca. The latter is achieved
through an automated function shape analysis using the first
and second order derivatives within the given evaluation in-
terval. This paper is an expanded version of the IEEE MTT-
S Latin America Microwave Conference, Dec. 12-14, 2016,
Puerto Vallarta, Mexico. The extended version of this work
adds an automatic search algorithm for the optimization of the
segmentation strategy and minimization of hardware resources.
Also, a cost function is defined in terms of the segmentation
design variables to assess the compliance of the segmentation
strategy with respect to the SQNR requirements. Furthermore,
a broader set of test functions is presented to emphasize the
benefits regarding accuracy and reduced hardware resources
delivered by the proposed function segmentation methodology.

The main contributions of this paper are summarized as
follows:

« A new adaptive function segmentation methodology
(AFSM), for the evaluation of arbitrary mathematical
functions via PPA.

« A shape analysis procedure for arbitrary functions based
on the first and second order derivatives.

+ The introduction of a cost function for finding the best
segmentation scheme according to specific design objec-
tives for hardware resources optimization.

The simulation results show that the AFSM provides better
performance in processing time and higher SQNR with lower
hardware resources consumption in comparison to state-of-art
segmentation methodologies; therefore, the AFSM represents
an excellent alternative for implementing high accuracy PPA
based transcendental functions evaluators embedded in sophis-
ticated digital signal processing algorithms.

The rest of the paper is divided as follows: state-of-art
approximation methods for implementing function evaluators
in hardware are described in Section II. The proposed adaptive
function segmentation method for hardware resource optimiza-
tion is presented in Section III. Correspondingly, the perfor-
mance results of the introduced segmentation methodology are
presented in Section IV. Finally, the conclusions are provided
in Section V.
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II. BACKGROUND

The approximation accuracy to a mathematical function
through piecewise-polynomial approximation (PPA) methods
highly depends on the function, the system word length,
the number of segments, and the segmentation methodology
employed. The segmentation methodologies most commonly
used for hardware-based function evaluators are the uniform,
non-uniform by powers of two, and the HSM proposed in [18].
Consider a continuous function f(z), with first and second
order derivatives, where # € X and X = [z1,,#n]. The uni-
form segmentation methodology divides the function interval
X, in equally sized segments; whereas, the non-uniform by
power of two segmentation methodology, decreases the size
of subsequent segments within X, according to the geometric
progression with a commen ratio of 1/2; the segmentation can
be started either from x1, to xy or vice-versa.

In Fig. la and Fig. 1b, the basic segmentation method-
ologies show bad performance when dealing with functions
that present non-monotonic curvature features. For example,
the uniform segmentation methodology is only suitable for
functions that present a mostly constant or slightly chang-
ing curvature within the evaluation interval. Otherwise, if
the function exhibits both fast-changing and slow-changing
curvature features, an excessive amount of small segments are
also created around the regions of slow-changing curvature.
The reason of this is that the high density of segments
that is needed to appropriately approximate the fast-changing
curvature features is kept uniform along the whole evaluation
interval. On the other hand, the non-uniform by power of
two segmentation methodology is only useful for functions
that present a curvature that either increases or decreases in
the same direction. As a result, the direction in which the
segments decrease in size is of utmost importance because
to appropriately approximate the function, the density of
segments should increase as the functions’ curvature increases.

The HSM is a hybrid segmentation methodology that em-
ploys both uniform and non-uniform by power of two segmen-
tation methodologies to improve the approximation accuracy
to functions with non-monotonic curvature behaviors; how-
ever, the control logic required for addressing the hierarchy of
segments is it too complex and requires a significant amount
of hardware resources.

To employ the previously discussed segmentation method-
ologies, the user should properly select the segmentation strat-
egy (or a combination of these), and the minimum numbers
of segments based on the shape of the function at hand. In
many cases, this is an iterative trial and error process carried
out by the user until the SQNR requirement (accuracy) is
satisfied. Employing the inappropriate segmentation strategy
results in a suboptimal trade-off between hardware resource
consumption and SQNR degradation. In contrast, the proposed
AFSM, through the analysis of the functions first and second
order derivatives, tackles these issues given that the algorithm
automatically adapts the segmentation strategy and the density
of segments to the shape of the function at hand.
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Fig. 1: (a) Poor approximation accuracy to f(z) = /— In(z))
when it is segmented out through the uniform segmenta-
tion methodology. (b) Insufficient approximation accuracy to
f(2) = +/—In(z)) when it is segmented out using the non-
uniform by the power of two segmentation methodology.

IT1. PROPOSED ADAPTIVE FUNCTION SEGMENTATION FOR
HARDWARE RESOURCE OPTIMIZATION

The implementation of an algorithm that automatically
adapts the segmentation strategy requires precise knowledge
about the shape of the function under analysis and how fast
it evolves within the evaluvation imterval. A comnvenient way
to get such an insight is through the implementation of an
exploratory algorithm that analyzes the first and second order
derivatives of the function and identifies the points in X where
to split the function into segments. In this sense, the density
of segments along X is automatically balanced according to
the progression of the curvature shape; consequently, the al-
gorithm automatically allocates a greater amount of segments
around the regions that present a more pronounced curvature.

It is important to mention that the calculations carried
out by the algorithm are solved numerically; therefore, the
following sections utilize a discrete nomenclature for referring

to the equations, functions, and procedures used to describe
the proposed methodology.

A. Function shape analysis through fist and second order
derivatives

The shape of f(z) and its curvature speed of change are
analyzed through the first and second order derivatives in a
simple but yet powerful manner. To simplify the segmentation
process and to achieve improved approximation accuracy, the
first step is to perform a coarse segmentation by splitting the
evaluation interval X at the critical points where the function
presents a local minimum, a local maximum or an inflection
point; the segments defined through this segmentation stage
are called main segments.

The computation of the first and second order derivative
is performed numerically through (1) and (2). Therefore, the
interval X is quantized into N points addressed as z;, where
1<i<N.

N di)) | feen) - faiy)
gz = = ¥ Ar 145
2 . _ . .
h(z;) = dd];(:) i o Flwer1) 22(5:21) + fzi1) 2)

where Az = 2541 — 24| ¥V &

The local minimum, maximum or inflection points are
found at the z; where g(z) or h{z) change sign, ie.,
sign(g(zit1)) # sign(g(z;)) OR sign(h(zipa)) #
sign(h(z;)). Thus, the set of endpoints S5 encompass the
points xr, zx and at any other z; identified through the
coarse segmentation process. However, if no critical points
are identified, then the entire interval delimited by the seg-
ment endpoints xy and zy is passed to the second step for
segmentation tuning.

To exemplify the previous point, let us think on f(r) =
sin(z) in Fig. 2a, which is to be segmented out within an
interval that stretches along a full cycle. In this sense, the
limiting points =y, and z of the interval are called the evalua-
tion interval endpoints (circle marks), which are automatically
created by the segmentation algorithm. The square marks in
Fig. 2a, at m/2, m and 37 /2 correspond to a local maximum,
an inflection point, and a local minimum in f(z). These
locations are identified during the coarse segmentation stage
by the sign changes in either g(z) or h(z) and represent the
main segment’s endpoints in f(z) where its curvature changes
direction.

The second step, as depicted in Fig. 2b, has the purpose
of further splitting the previously defined main segments to
achieve the SQNR requirement. This fine tuning segmentation
process defines internal endpoints inside a coarse segment,
which is bounded by the consecutive coarse endpoints | z,,
Zs+1 ) . A new internal endpoint is defined at an z; where
the relative change of value on the first order derivative
between the previously defined endpoint at ¢ and the nearest
subsequent point z; ¥V z; < z,41 exceeds a given + threshold.
The next expression synthesizes the previous description.
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Fig. 2: (a) Coarse segmentation on f(z) = sin(z) at the points
(square marks) of local maximum, inflection point, and local
minimum. (b) Fine segmentation (asterisk marks) within the
main segments; it is controlled through first order derivative
threshold (y) parameter.

g(zs) — g(zs)
Q(Is)
If the condition in (3) is satisfied, #; defines a new segment
endpoint in the set & and the search for the next internal
endpoint starts over from z; = z; to Te4q.

R €)

B. Chordal segment length tuning

In addition to the shape analysis based on the - threshold,
the proposed algorithm also implements a minimum chordal
length control that serves as a design knob for the optimization
process through the s threshold, where & > 0.

The w threshold serves two purposes; the first one is to
achieve a better balance in the density of segments allocated
when dealing with functions that present both regions of
pronounced curvature as well as regions of subtle curvature. In
this sense, it is possible to avoid having an excessive amount
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Fig. 3: Chordal segment length approximation through the
accumulation of small triangle’s hypotenuse length that fit
within the interval [z,, ). zn is the N R ghgcissa value

from the quantized interval X into N elements.

of tightly spaced segments around areas with pronounced
curvature when + is too small as a result of a poor user’s
selection of the seed value or because the optimization process
itself has taken + towards the design space of small values.

The second purpose of the « threshold is to prevent having
too small segments that would cause the PPA algorithm to
become unstable and fail in finding a suitable set of coef-
ficients. This failure manifests itself when the integer part
of the generated coefficients is too big that its fixed point
representation requires most available bits from the word
length. A consequence of this is a severe loss of accuracy
given that only a few bits remain for the fractional part of the
coefficients.

The minimum chordal segment length threshold s, is de-
fined as a percentage of the total chordal length of the function
within the evaluation interval. Consequently, to define a new
segment endpoint at a given x;, it is required to meet both «y
and & threshold.

The chordal length of a function within the interval limited
by the points z, and =z, is approximated by summing up
the length of the hypotenuse of the many small triangles
that fit such interval (see Fig. 3). The length of the triangles
hypotenuse is computed using the Pythagoras theorem as:

b
2
length (2o, Tb] = Z\/(AI)E + (f(Ii+1) — f(a:z)) 4)
where the length of the triangles opposite and adjacent sides
is defined as |z;41 — ;| and | f(zspq1) — f(zs)], respectively.

C. Polynomials coefficient generation

After each iteration of the AFSM splitting the function
interval X into a set of J segments such that X =
U;Zl[zsi,:c§7+l], where zy, <. <@g <L <@gy, @
the endpoints computed according to the + and & thresholds,
the m*® order of polynomial coefficients that best fit each
segment are computed. The polynomials employed to approx-
imate the function segments can be of any order m > 1 for
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m € Z; however, it is advised to use low-even-order polyno-
mials given that in this work, through the coarse segmentation
step, we are ensuring that the curvature of the function evolves
monotornically within each segment.

For the proposed AFSM, two polynomial approximation
methods were tested for the computation of the best fit polyno-
mials coefficients; the Polynomial Least Square Approxima-
tion method (LSPA) [19, p. 28], and the MiniMax Polynomials
Approximation method (MMPA) [19, p. 32], which is based
on the Remez algorithm [20].

Each of the tested methods treats the approximation error
differently, thus, providing different levels of SQNR and
accuracy from the polynomial-based approximation function
Ji(@:)|p, . where j represents the segment number and p; =
[Pi1sPsar s Pimyy | are the polynomial coefficients that cor-
respond to the % segment. The objective of the LSPA is to
find the » + 1 polynomial coefficients for each segment that
minimize the sum of the squared residual between the original
function and the approximating polynomial within the segment
delimited by [z, 2, ). Consequently, the squared residuals
of the j* segment are minimum when the following condition
is satisfied:

IL,) -0, forj—1,..J 5)
op;
where,
8541 R 2
Ry= 3 [fm0— Fi@ls,] o

The error treatment strategy of the LSPA algorithm, pro-
vides direct benefit to the improvement of the SQNR because it
explicitly minimizes the sum of squared residuals expression,
which in fact represent the quantization noise energy, as
follows:

E[R =) R;. %)

On the other hand, the objective of the MMPA algerithm is
to minimize the maximum error or discrepancy between the
approximation response fj (z)|p; and the original function
f(z;). In general, the MiniMax algorithm yields a smaller
error of approximation although the SQNR achieved is not
assured to be lower than that obtained through the LSPA
Method. Thus, the coefficients py, are calculated as follows:

ol :argrgin{l\ej(pj)\\oo}, forj=1,.,0 (8

where,

e;(Ps) =[x, €650 €0, 44 ©)

€; = f(Il) — fj(l‘l)‘p] s for 84 <i< Sji+1 (10)

D. Fixed-point and SQNR analysis

For this work, the SQNR is the metric employed for
measuring the accuracy of the approximation to a reference
function through a set of fixed-point low-degree polynomials.
The SQNR is an intuitive and widely used metric of the ratio
between the power of the signal of interest and the power of
the quantization noise; in other words, how well approximated
is an analog signal through a digital fixed-point representation
given the finite number of bits of the system word length.
Therefore, the SQNR in decibels could be calculated as:

X 2

> f(=z2)

SQNRyp = 10logy, — i=1 A
JZ:M; [f(zi)iQ(fj(zi)‘P;)}E

(11)
where the term () is the operator that quantizes the argument
using a word length of WL bits with QI bits allocated to
the integer part and QF bits assigned to the fractional part,
such WL = QI 4+ QF. In this work, the number of bits for
representing the integer part are calculated as follows:

QI = ’7]Og2(ma}( ( {‘pj| ? ‘Iz‘ i ‘f (zz)‘}) -+ 1)“ +1,¥4,§
12
The proposed AFSM relies on an iterative optimization
algorithm to determine the best segmentation approach. For
each segmentation realization, once the fixed point analysis
has been carried out, the achieved SQNR is computed and fed
back to the optimization algorithm for the objective function to
determine whether the SQNR requirement has been satisfied
or further segmentation refinement is required.

E. Segmentation Opfimization

The proposed AFSM implements an optimization algorithm
that searches in the design space for a suitable set of v
and s threshold values that satisfy the SQNR requirement
while minimizing the required number of segments. The
implemented search algorithm solves the constrained non-
linear optimization problem for a target SQNR requirement,
which is provided by the user according to application-specific
needs. The latter is mathematically expressed as:

dr = arggneiﬁU (R(d))

subject to (13)
dlb < d < dub

where:

o d € B2, d = [y,x]; is the vector of design variables
subject to optimization.

+ d% d™ < R™; are the upper and lower design-feasibility
restrictions for the design variables.

« R(d) € R* — R, is the function that performs the seg-
mentation process according to the input design variables
in d. The function returns the SQNR value.
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« U : R — R; is the objective function that computes the
error between the current design SQNR and the target
SONR requiremernt.

The solution of the constrained non-linear optimization
problem is simplified if the boxed constraints (d”’ <d< d“b)
are incorporated into an unconstrained optimization problem
[21, p. 428], thus:

2" = arg min U (R(z)) 14

where the design variables contained in z come from the
transformation of d using:

di —d
m) : (15
1 1

For this particular work, the solution to the unconstrained
optimization problem for z is done through the Nelder-Mead
algorithm [22]; however, many other local or global search
methods could be employed as well.

Zi = arcsin(

F. Segmentation Technigue Implementation

The pseudocode in Algorithm 1 condenses the verbal
methodology description provided in previous sections to
facilitate the reproducibility of the proposed segmentation
methodology. Given that the proposed segmentation methodol-
ogy was implemented in MATLAB, the pseudocode employs
sub-index notation to address the discrete elements of vectors
and collections of objects.

The Parameter Definitions and the Parameters Initialization
sections of the pseudocode, introduce and initialize the vari-
ables and constants that are used across the code to set up the
algorithm functionality and to store computation results. The
main body of the segmentation algorithm is showed within
the do — while loop (lines 17 through 64) that resembles the
optimization process, which iterates until the SQNR design
requirement is met or the stop conditions of the optimization
algorithm are reached.

Within the first for — loop construct in the pseudo-code
(lines 22 through 30), the coarse segmentation is performed
based on the sign changes of the first and second derivatives;
the segments therein created are stored in the mainSegmis
collection. After this step, within the second for — loop
construct (lines 30 through 46), the segmentation tuning stage
is performed according to the design parameters vy, and srp.
The following steps (lines 48 through 50) in the pseudocode
are to compute the polynomial approximation coefficients
through both LSPA and MMPA methods, the fixed point
analysis, and the respective SQNRrspa and SQNRayrmpa
responses. The ternary conditional construct (line 51) selects
the higher SQNR response, which is provided to the objective
function (line 52) to determine whether the target SQNR has
been satisfied or further search should be carried out. If the
SQNR requirement has not been yet satisfied, the optimization
algorithm iterates until the stop conditions are met (lines 53
through 62). Finally, the optimal set of polynomial coefficients
from the optimized segmentation process are stored in the
hardware LUT. Further detail of the pseudocode variables and
their usage is summarized in Table I .

Page 6 of 16

6

Variable name Usage description
The vector of the evaluation mterval X that is
X quantized from z 1, to zp.
h, g The vector that stores the first and second derivatives.
A The discretization resolution of the vector x, the
- default is Az = [2EZ2Ll
A temporary variable used to store the first derivative
Ag delta between the previous segment and a subsequent
point ;.
zr The lower limit of the evaluation interval X.
zy The upper limit of the evaluation interval X.
Quants The mumber of quantization elements within the
slements evaluation interval X.
. The collection to store the segment objects from the
mainSegmits .
coarse segmentation process.
The collection to store all the segments defined after
allSegmts th .
e fine segmentation process,
The collection of the resulting SQNR responses from
SQONRResps each segmentation realization through the optimiza-
tion process.
The collection of polynomial coefficients for the cur-
Coeffsropa rent segmentation realization through Least Squares
PPA method.
The collection of polynomial coefficients for the
Coeffspsnspa | current segmentation realization through MiniMax
PPA method.
The design parameter for optimization, first deriva-
TR tive threshold.
The design parameter for optimization, minimum
" chordal segment length threshold.
SQNRgpec The target SQNR specification.
Wien The system word length.
m The polynomial degree, the default is 2.
segmt The temporary iteration control segment object.
Accumy,, The temporary variable that holds the accumulated
" chordal length.
Lk The for-loop iteration count variables,
The resulting SQNR for the current segmentation
LSPA_SQNR iteration using the coefficients from Least Squares
PPA method.
The resulting SQNR for the current segmentation
MMPA_SQNR iteration using the coefficients from MiniMax FPA
method.
The error fo the optimization objective per the SQNR
N design requirements.
COntinues oo per, ;li'l;s.conttol flag of optimization process stop condi-

TABLE I: Description of variables and constants of Algorithm
1.

IV. RESULTS

The segmentation performance and approximation accuracy
of the proposed AFSM were evaluated for the set of test
bench functions listed in Table II. These functions are widely
employed to construct hardware blocks with application in the
fields of numerical analysis, digital signal processing, wireless
channel emulation, artificial neural networks, amongst others.

For all the test bench functions, the optimization process
of the segmentation algorithm was set up to maintain the
output SQNR within the specified range, 60dB to 70dB. Table
Il summarizes the approximation results from the proposed
AFSM employing both LS and MiniMax PPA methods. The
columns “ygy, (%) and “sd, (%) present the optimal de-
sign parameters (first derivative and minimum chordal length
thresholds) of the segmentation algorithm that satisfy the
SQRN specification. The column “SQNR*(dB)” presents
the achieved SQNR through the optimized design parameters
in columns “y* (%) and “s%., (%)”. The column “Required
Segments” shows the minimum number of segments needed
to meet the SQNR specification. The columns “QI (bits)”
and “QF (bits)” present the number of bits assigned to the
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Algorithm 1 Adaptive Function Segmentation Technique

1: Parameter definitions: x, g, h, =z, zy, Quant..mentss AZ,
Ag, mainSegmts, allSegmts, SQNRicsponses, CoeffsSrspa,
Coeffsmnpa, 7Th, 57h, SQNRopee, Wren, m, segmt, Accurmr s,
LSPAsQnRr, MMPAgQNR: € €Target, CONENUEO peian 1 J, K

. Parameter initialization:

s zp 4 (User Input) ,default is 0

D zg + {User_Input) ,default is 1

D Quant. i ments + (User_Input) default is 21
o=yl

2
3
4
5
6 AT g
elements
7. x 4 vector(x, : Az xy
8. ym + (User_Input) , default is 50%
9. km +— {User_Input) , default is 5%
10: SQNRge: + (User_Input) , default is [60dB, 70dB]
11: Wi, + (User_Input), default is 32bits
12: m + {User_Input) , default is 2
13 i+ Li+1Lk+ 1
14: etags + 0
15: do
16: To load the initial design parameters ~ypy, and sryinto optimization algorithm.
17: mainSegmts createNewSegment()
18: mainSegmts (mainSegmts .count) . startindex +— 1
19: for loop  +— 1: length(x) do

20: To compute g, <— dff;‘> and h; 4— %;ﬁ

21: Do coarse segmentation by finding sign changes in g and h:

22 it (sign (g.) £ sign (g.+1)) | (sign (he) 2 sign (ki 41)) then
23: mainSegmts(mainSegmts.count).endIndex 4— (£ — 1)

24: mainSegmts.createNe wSegment()

25: mainSegmts(mainSegmts.count). startindex +— %

26: end if

27:  end for

28:

29: mainSegmts(mainSegmts.count).endIndex+— MazIndezOf(x)
30: j+1
31: for loop j 4+ 1 : mainSegmts.count do

32: segmt +— mainSegmts(F)

33: for loop ¢ +— segmt.startIndex : segmt.endIndex de

34: Accumpy, +—Compute length from segmt.startindex to

35: To compute first derivative delta, Ag + Eﬁ% x 100.
36: if (Ag > ~ri) and (Accumre, > Arn) then

37: To split current main segment at .,

38: allSegmts.createNewSegment()

39: allSegmts.startindex 4— segmt.startlndex

40: allSegmts(allSegmts.count ). endIndex +— (1 — 1)

41: segmt.startindex +— ¢

42: end if

43: end for

44:  end for

45: allSegmts(allSegmts.count) endindex +— mainSegmts{mainSegmt.count).endindex
46: To compute the segments coefficients: (Coeffsrspa, Coeflsmmpa)

47: To compute Fixed-Point analysis

48: Compute SQNR for the k** optimization iteration: (SQNRz g4, SQNEazarpa)
491 SQNFrepeqny ¢ SQNFLspa 2 SQNRunpa i SQN Rospa 1 SQNFamrpa
50: To compute error () to optimization objective

51: if Stop conditions have been meet? then

52: Continueg qron +— FALSE

53;  else

54: if thenz > etupathen

55: To search for alternative design parameters (v, and w7r)

56: Continueg  qroh +— 1 RUE

57: else

58: Continuessqron +— FALSE

59: end if

60: end if

61: Increment optimization iterations counter: Setj <— 7 + 1

62: while continueOptimization
63 To Store the coefficients that deliver best SQNR:
641 Coeffspor « (SQNRLspa > SQNRumpa)  Coeffspspa ? Coef fermpa

integer and fractional parts of the fixed point representation of
the values of the polynomial coefficients, the range, and the
domain of the approximated function. The maximum absolute
error of approximation for each function and PPA method is
presented in the “Max |Error|” column. Finally, the column
“ROM (Bytes)” shows the bytes of memory required by the
look-up table (LUT) with the polynomials coefficients of all
the segments needed to achieve the SQNR specification for

each PPA method; the memory requirements are calculated as
ROMBytes = Wéen X #Seg X (m+ 1)

Although the proposed AFSM can be employed to ap-
proximate transcendental functions using polynomials of any
degree, to reduce the number of coefficients required for each
segment, second-degree polynomials were used for both Least
Squares and MiniMax methods. In this sense, the polynomial
approximation tests were carried out with a uniform word
length of Wye, = 32 bits. This decision is supported by the
fact that most modern field programmable gate arrays (FPGA)
or systems on a chip (SoC) have these or even greater bus
width capabilities; therefore, no additional resources expendi-
ture is required.

It is possible to observe in Table II that when the polynomial
approximation is carried out through the MiniMax method for
the functions fi (), fo(x), falz), and fs(x) one less segment
is needed to reach the target SQNR than when the segmen-
tation is performed through the LSPA method. Furthermore,
given that MiniMax finds the polynomial coefficients that
minimize the maximum error of approximation, for most of
the test bench functions, the maximum absolute value achieved
through the MiniMax method was smaller in comparison
to that obtained through the LSPA method. However, it is
possible to observe that for the functions f3(z), fs(z), f7(z),
fs(2), and fo(z) the achieved SQNR though the MinMax
method was slightly lower in comparison to that obtained
through LSPA method. The reason of this is that the objective
of the LSPA method is to find a set of polynomial coefficients
for each segment that minimize the sum of the squared residual
between the original function and the approximating polyno-
mial. Consequently, the denominator of the SQNR expression
in (11) that accounts for the quantization noise is minimized.

For the functions fs(z), fg(z), folz), and fip(z), Table
IIT shows the segmentation performance comparison between
the proposed AFSM versus the uniform and non-uniform by
the power of two methodologies for an SQNR specification
between 60 dB and 70 dB. These functions were selected
for comparison because these present curvature features that
are challenging to approximate trough a basic segmentation
methodology alone. For example, given the specified SQNR,
fs(z) can be approximated using only eight segments through
both the proposed AFSM, plotted in Fig. 4a and the non-
uniform by the power of two methodology, plotted in Fig. 4b.
On the other hand, the uniform segmentation methodology that
is plotted in Fig. 4c, does not perform satisfactorily because an
excessive number of 128 segments are required in an attempt
to reduce the approximation error shown in Fig. 4d, which
increases as the curvature of f5(z) increases. Similarly, for
the functions f5(z) and fg(z), which are plotted in Fig. 5¢
and Fig. 6c, the uniform segmentation methodology requires a
significantly greater amount of segments compared to the pro-
posed AFSM; for fz(z) and fg(z) the uniform segmentation
methodology requires 128 and 64 segments while the proposed
AFSM requires only 12 and 30 segments, respectively.

The advantages of the proposed AFSM, over the previously
discussed basic segmentation methodologies, are demonstrated
through the more elaborated curvature shapes of the functions
fs(z), folz), and fio(z), which are plotted in Fig. 5a, Fig.
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PPA v &* SQNR*# QI QF Max ROM
Meth. % % dB $eg. bits bits | Error| Bytes

filz) == L 28510 6525 7 13 19 00099 84
fz(lf):ﬁ LS 30 30 6685 14 16 16 0.0075 168

MM 93410 6312 10 16 16 0.009 120

LS 60 25 6678 12 53 27 00013 144
MM 918 25 o461 12 5 27 00007 144

LS 72 20 e&71 9 6 26 00019 108
MM 95720 6436 & 7 25 00005 96

Fs(z) = cos{z) LS 4 10 6452 9 11 21 00338 108
MM 10 10 o466 8§ 14 18 0.0078 96

s | IS 37 15 6218 12 15 17 00146 144
Fole) (=) ‘ MM 20 15 6024 12 15 17 0007 144

‘MM 41 10 6248 6 12 20 00055 72
fa(z) = sin(z) ‘

fafz) = — 3 loga(z)

fr(@)=In(1+2) | LS 9 40 6449 2 2 30 00008 24
MM 40 40 6322 2 2 30 00005 24

felz) = 1 L L5 100 30 6216 2 2 30 00019 24
te MM 100 30 6086 2 2 30 00011 24

folz) = 00004 40.000%x
) = T 106w +1.848+% —0.378# +0.0873

LS 143 8 6052 30 11 21 00031 360
MM 113 8 6032 30 11 21 00020 360

LS 50 25 6202 8 3 29 00025 9
MM 50 25 608 8 3 29 00014 96

fro(z) = tansig(z)

TABLE II: Segmentation and approximation accuracy results
from the proposed AFSM for both LS and MiniMax (MM)
PPA methods. To obtain these results it was used a WL = 32
bits and polynomials of degree, m = 2.

6a, and Fig. Ta. For these test functions, the proposed AFSM
meets the SQNR specification with the minimum number of
segments amongst the comparing segmentation methodolo-
gies. Also, and most importantly, through the AFSM, the
segmentation and approximation procedure was automatically
performed and optimized according to the evolution of the
curvature shape without intervention from the user.

In contrast, to apply the non-uniform methodology on these
functions, the user should intervene in the definition of a
segmentation hierarchy within the sub-intervals in X where

Fla Segmentation  # QI QF SQNR
Technique Segments bits bits dB
- AFSM 8 14 18 6466
fs(@) = cos™H &) | Uniform 128 13 19 5864
Non-Uniform 8 13 19 6653
AFSM 12 15 17 62.28
fo(@) = v/=In(z) | Uniform 128 18 14 6095
Non-Uniform 16 15 17 6574
_ 0.000440.000%
fol@®) = Sr1zss F1.34822—0.278510.0578
AFSM 30 11 21 60.52
Uniform 64 11 21 61.96
Non-Uniform 32 11 21  50.51
) AFSM 8 3 28 62.02
fio{w) = tansig(z)| Unitorm 8 320 5062
Non-Uniform 16 3 29 61.19

TABLE III: Segmentation performance comparison between
the proposed AFSM versus the uniform and the non-uniform
by power of two methodologies
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V. CONCLUSIONS

The efficient and accurate evaluation of transcendental func-
tions in digital signal processors is a factor of utmost impor-
tance that drives the performance of the developed algorithms.
In this sense, this paper presented a novel adaptive function
segmentation methodology for the accurate approximation of
transcendental functions through piecewise-polynomials for
the efficient implementation of hardware-based functions eval-
uators. The proposed adaptive segmentation method is based
on the analysis of the first and second order derivatives to per-
form the shape-aware segmentation of any continuous function
and determine the size and location of the segments in such
a way that the accuracy of the polynomial approximation is
maximized. In this sense, the segmentation algorithm employs
an automatic optimization algorithm that searches for the
proper values of the segmentation design parameters to obtain
the best balance between the number of segments and the
accuracy requirements.

The introduced segmentation method offers significant ad-
vantages over state-of-art segmentation methodologies such as
the uniform and the non-uniform by power of two because it
can be flexibly employed for any arbitrarily-shaped continuous
function, and the amourt of memory required to store the
coefficients of the polynomials is optimized in accord with the
applications SQNR requirements. Furthermore, the segment
addressing and evaluation logic of the proposed segmentation
methodology is simpler to implement than that required by the
hierarchical segmentation method because it does not require
de definition of addressing and evaluation hierarchies.

The presented approximation results emphasize the flexi-
bility and accuracy offered by the proposed methodology for
performing the approximation and evaluation of transcendental
functions of diverse shapes. Additionally, the small hardware
resources required make the proposed segmentation method
an efficient and cost-effective option for implementing low
area computing arithmetic blocks using piecewise-polynomial
approximation methodologies.
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