
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS

SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial
15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

 ARQUITECTURA ESCALABLE DE DESARROLLO EN LINUX

PARA PLATAFORMA EMBEBIDA DE ROBÓTICA EN TIEMPO

REAL

Trabajo final que para obtener el diploma de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: Omar Jorge Avelar Suárez

Asesor: Dr. Luis Enrique González Jiménez

Tlaquepaque, Jalisco, marzo de 2017.

2

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS

SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial
15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

 A SCALABLE EMBEDDED ROBOTICS REAL TIME PLATFORM

DEVELOPMENT ARCHITECTURE IN LINUX

Final report to earn the diploma of

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presented by: Omar Jorge Avelar Suárez

Advisor: Dr. Luis Enrique González Jiménez

Tlaquepaque, Jalisco, marzo de 2017.

3

ACKNOWLEDGEMENTS

I would like to thank my family members Claudia, Jorge, Elizabeth, Cinthia,

Marcela, Ricardo, Sofia & André who has supported me throughout my

academic journey since very young and their encouragement about

engineering, science and mathematics.

I also thank my supervisor Dr. Luis Enrique González Jiménez for introducing

me to the world of robotics.

And I also give my gratitude to the Consejo Nacional de Ciencia y Tecnología

(CONACYT) for its financial support throughout the specialization program.

4

RESUMEN

La manipulación de objetos por medio de robots es elemento crucial de las

herramientas avanzadas de automatización. Sin embargo, los mecanismos

para controlarlos típicamente son muy específicos y requieren diseños que

están profundamente atados al hardware del robot – este tipo de

implementaciones resultan en código no re-utilizable y optimizaciones de

algoritmos que solo funcionan en familias de robots particulares. Aquí

presentaremos una propuesta de arquitectura de software para brazos

robóticos que corren en el entorno ya ampliamente utilizado de GNU/Linux y

hablaremos de sus beneficios y desventajas de dicha implementación.

El trabajo aquí habla de la necesidad de una arquitectura de software que sea

fácil de implementar y escalable en cuanto a su utilización de recursos para

prototipos de robots y sistemas completos funcionales. Aquí vamos a hablar

de diferentes configuraciones y conceptos relacionados a la manipulación y el

control de sistemas robóticos. Una configuración de robot ejemplo es

propuesta y se utiliza como caso de estudio para mostrar las dificultades y

ventajas de dicha implementación, así como sus parámetros de desempeño en

cuanto a tiempos de respuesta y aplicaciones.

5

SUMMARY (ENGLISH)

Robotic manipulation is crucial element of advanced automation tools,

however the methods for controlling it are usually crafted for specific and

custom designs that are deeply tied to the hardware of the robotics. These type

of implementations results in non-re-usable code and optimization algorithms

that only work for specific robotic families. In here we will discuss a software

architecture for robotic arms running under the freely and widely available

GNU/Linux environment along with its benefits and drawbacks of such.

The work here expresses the need for a software architecture that results in an

easy to implement and scalable framework for robotics prototyping and real

functioning systems. In here we will be discussing different robotic

configurations and the concepts associated with manipulating and controlling

robotic systems. A robot configuration is used as a case of study where the

challenges and benefits of the implementation are discussed along with

performance data and applications developed with the framework.

6

CONTENTS

CHAPTER 1: INTRODUCTION 9

1.1 INTRODUCTION 9

1.2 FUNDAMENTALS OF ROBOTICS 9

1.2.1 Degrees of Freedom 10

1.2.2 Robot Kinematics 12

1.3 ROBOT HARDWARE COMPONENTS 13

1.4 TECHNOLOGIES COMING TOGETHER 14

CHAPTER 2: SOFTWARE ARCHITECTURE 15

2.1 OUR ROBOT DESCRIBED 15

2.2 SOFTWARE ARCHITECTURE 17

2.2.1 User Space vs Kernel Space 17

2.2.2 Configurability 18

2.2.3 Modules 19

2.2.3.1 Robotic Arm Class 20

2.2.3.2 Robotic Joint Class 20

2.2.3.3 Position Class 21

2.2.3.4 Movement Class 22

2.2.3.5 Custom Defined Drivers 23

2.2.3.6 User Space Drivers 23

CHAPTER 3: EXPERIMENTAL RESULTS 25

3.1 CLOSED LOOP REAL TIME CONTROL 25

3.1.1 Architecture & Implementation 26

3.1.2 Real Time Scheduler 27

3.1.3 Scheduler Configuration 28

3.1.4 Multithread Characteristics 28

3.1.5 Results & Analysis 29

CHAPTER 4: CONCLUSIONS 33

4.1 CONCLUSIONS 33

4.2 FUTURE WORK 34

REFERENCES 36

7

LIST OF FIGURES

Figure 1. An articulated robot consisting of two joints. 10

Figure 2. 6 DOF Model of a robot arm courtesy of TurboSquid [4]. 11

Figure 3. Schematic representation of forward and inverse kinematics. 12

Figure 4. Picture of the 2 DOF robotic arm system built.............................. 15

Figure 5. Component view of the controller. .. 16

Figure 6. User space vs kernel space. ... 17

Figure 7. Layered software architecture. .. 19

Figure 8. Arm and joint container representation visualized. 21

Figure 9. Position & Movement user space custom driver class examples. . 24

Figure 10. High-level sequence of events when the API changes position. . 25

Figure 11. Automatic control with reference angles as inputs...................... 26

Figure 12. Automatic control per joint. .. 27

Figure 13. Recorder tool waiting for input to stop. 31

Figure 14. Recorded trajectory being replayed. .. 32

Figure 15. Playback tool console output. .. 32

8

LIST OF TABLES

Table 1. Movement parameters of a six degrees of freedom body. 11

Table 2. Performance characteristics scaling vs. scheduler configurations in

the arm. ... 30

9

CHAPTER 1:

INTRODUCTION

1.1 Introduction

We have seen the rise of robots and automation since the introduction of the

term in 1921 [1]. Robot manipulation is a core technology that allows robotics

to make use of motion and position of robots to perform useful work in our

world.

The goal of robotics has been for a while to automate and perform repetitive

tasks, or complex actions automatically. Currently there is a direct application

to the industry on assemblies and factories – we can see robot manipulators

being used to spray paint cars, assemble complex microchip products and

even do automated performance testing on smartphones [2].

1.2 Fundamentals of Robotics

Robots can be classified in various ways, depending on the components,

configuration/topology, and use.

During this document we will be focusing primarily on articulated robots, or

also referred to jointed arm. These robots are defined as anthropomorphic

because their movement and operation resembles that of the human forearm

and upper arm. A robot manipulator is a specific category of robot, they are

created from a sequence of link and joint combinations. A link is a rigid

member that connects two joints or axes. In analogy to the human body an

example of a joint would be our shoulder, or our elbows, whereas a link would

be the forearm in our arm or calf in our legs.

The axes are the movable component of a robotic manipulator that cause

relative motion between adjoining links.

10

Figure 1. An articulated robot consisting of two joints.

By analyzing Figure 1 closely we can see there are important elements on

robotics such as the angles that each joint is at. During next sections we will

see how we can figure out the position of the robot by knowing both angles

and the link length of the constituents. It is important to understand these

concepts as they will later will be re-used as basic concepts of the software

architecture.

1.2.1 Degrees of Freedom

This is a widely used term to describe a robot’s freedom of motion in a three

dimensional space. It can be seen as the ability to move forward, backward,

up, down, left and right.

11

For each degree of freedom a joint is required. It is proven that a robot requires

six degrees of freedom to be completely versatile this means a body can move

on the X, Y, and Z axes as well as change orientation between those axes,

considering a dextrorotary coordinate system. The orientation is defined

through three rotations: pitch, yaw, and roll as seen in

Table 1.

 Translation Rotation

Movemen

t

Along

X

Along

Y

Along

Z

Betwee

n X and

Y

Betwee

n X and

Z

Betwee

n Z and

Y

Also

Called

Heavin

g

Surgin

g

Swayin

g
Pitch Yaw Roll

Table 1. Movement parameters of a six degrees of freedom body.

However, it is still important to note that a robot with just six degrees of

freedom is in comparison still clumsier than a human hand with 22 to 27

degrees of freedom [3].

Figure 2. 6 DOF Model of a robot arm courtesy of Zortrax [4].

12

1.2.2 Robot Kinematics

Kinematics studies the motion of bodies without consideration of the forces

or moments that cause the motion. Robot kinematics refers to the analytical

study of the motion of a robot manipulator.

There are two important spaces used in kinematics, the Cartesian space and

the configuration space.

Robot kinematics is what will be mainly discussed here and is used for

modeling the analytical solutions to our robot. Forward kinematics refers to

the use of the kinematic equations of a robot to compute the position of the

end-effector from specified values for the joint parameters. For example we

could figure out the Cartesian point in space of our fist by understanding the

angle at which our elbow and shoulder are at.

Kinematics

θ0

θ1

θN

x

y

z

Inverse Kinematics

Forward Kinematics

Figure 3. Schematic representation of forward and inverse kinematics.

Inverse kinematics, as the name implies, is going the opposite way, as we

can see in Figure 3. This will output the angular information from the joint

space based on Cartesian coordinates of the end effector as input. This is a

very important principle as this will serve as the basis of positioning a robot

arm end-effector in a three-dimensional Cartesian space by starting to move

and change its joint configuration angles.

It is important to know that inverse kinematics is much more difficult as there

can be many solutions on different DOF systems, because for complex

configurations there can exist different joint configurations that achieve the

same end-effector Cartesian position. There are two main solution techniques

for the inverse kinematics problem, analytical and numerical methods. For the

13

analytical technique one must know the robot configuration and have data in

order to obtain such solution. Ultimately, the method to which we implement

for performing the kinematic transformations can have huge impact on real

time computational requirements and limitations.

1.3 Robot Hardware Components

People that are newly entering the robotics domain are presented with a

myriad of possibilities of what tools they want to make use for designing a

robotic prototype or test a new robotic motion planning algorithm, etc. There

are various ways of categorizing the robotic system but when you are

prototyping and implementing a robot manipulator it usually comes down into

two big factors that impact choosing the hardware components:

1. The controller being usually a computing and programmable

module which will be handling the actions for the robot to be

performed and which corresponds to the brain and smarts of our

decisions.

2. The electro-mechanical properties of the robot, being the

manipulator and effector which in turn is formed by actuators and

sensors which will define the robot configuration or topology as well

as the information of the sensors that will be used as inputs and

feedback to the complete system.

For the controller developers and scientists can be using vast different

hardware that ranges from small microcontrollers, to FPGA’s, to

commercially available Personal Computers, Programmable Logic

Controllers (PLCs), etc. It is important to note that effectively changing the

underlying hardware usually means re-writing programs as these different

hardware systems target unique requirements and architectures.

Second, the electro-mechanical properties of the robot usually dictate the

operation and constraints of it, different robot configurations usually come

with different software modeling methods and different sources to obtain

inputs for the feedback, one example is that someone could use a camera for

obtaining the position of the robot or instead opt for cheaper alternatives such

as rotary encoders.

14

1.4 Technologies Coming Together

The GNU/Linux Operating System has grown with deep support since its

introduction in 1991. It has provided the basis of a now widely used operating

system that is freely to be modified to suit various necessities.

Having a full OS for a robotic arm manipulator allows various services of the

OS to be used and leveraged and hence decreasing the development time of a

robotic manipulator prototyping or development [5].

There are a few things that are already provided by the GNU/Linux OS which

are of tremendous benefit for robotic applications, examples such as:

 Task scheduler with priority, preemption, and slice configurability

allowing a true multi-thread and multi-task system to exist on

different target platforms be it multi-core or single-core.

 Memory management for dynamic memory allocation and

scalability for different applications to be running as resources

permit, such as different processes monitoring temperature, or

gathering data metrics.

 Tasks and threads creation support and infrastructure in place that

allow a robust operation together with the task scheduler.

 Networking support and driver stack for easy internet integration and

security.

 Remote administration services such as SSH or Telnet for

maintenance, analysis and remote execution.

 Broad set of computing architectures support such as x86,

AMD64, ARM, Atmel AVR32, MIPS, OpenRISC, Power and

various others.

All of these services come into play and are important when building a more

robust application on top of a robotic manipulator or appliance.

Another huge strength of using GNU/Linux is that it can be tailored and

streamlined to use less or more resources depending on the target platform to

be using for your robotics application, you can remove a lot of elements that

are not needed for your application instead of adding them and building them

from scratch.

15

CHAPTER 2: SOFTWARE

ARCHITECTURE

2.1 Our Robot Described

We would like to begin by showing you clearly the robot that will be discussed

during the testing and implementation of the framework. This will let you as

the reader to understand and grasp all of the details of the implementation.

We have chosen to build an articulated robot arm, which will contain two links

and two joints as seen in Figure 4. This, in turn, will give us two degrees of

freedom in a two-dimensional field.

Figure 4. Picture of the 2 DOF robotic arm system built.

16

The controller of the robotic manipulator that will be implemented consists of

the following hardware components and requirements:

 An Intel Edison Embedded System Kit running Debian Linux

distribution [6].

 Two quadrature encoders hooked up to a DC motor.

 Four GPIO inputs that support level interrupt generation.

 Four PWM channels.

 An H-Bridge IC kit for the power and drive of the DC motors.

Figure 5 shows how the mentioned list is used and interconnected.

Intel Edison
Embedded

System

GPIO

Quadrature
Encoder A

Quadrature
Encoder B

PWM

DC Motor A

DC Motor B

H-Bridge

RoboticArm Controller

Figure 5. Component view of the controller.

Let’s take a look as to why the components are put there. There are two

quadrature encoders & two DC motors, named A and B respectively.

First the DC motors will provide a way for us to rotate the links of our robot.

By hooking up our pulse-width modulation outputs to a four-input H-Bridge

we can specifically rotate each of the DC motors independently to the right,

or left.

And second the robot sensors. We have chosen to use quadrature encoders as

a cheap way to tell us the position of a DC motor relative to where we calibrate

them. They provide pulses as they rotate which in turn are captured to our

Intel Edison Embedded System via GPIO. Since each quadrature encoder

requires two inputs, usually referred as Channel A and Channel B, a total of 4

GPIO pins are needed to hook our two quadrature encoders. Quadrature

encoders permit us to know if the rotation is going clock-wise (CW) or

counter-clockwise (CCW) as well as how much it has moved depending on

its pulses per revolution (PPR).

17

With both the motors and the sensors in place we can now exert movement

and know our relative angle of the motor as exemplified next.

2.2 Software Architecture

There are different elements that are required in order to have a fully

functioning robot. These different ingredients will play a role in our complete

software architecture intended to be running on GNU/Linux Operating

System.

2.2.1 User Space vs Kernel Space

The first thing we can think when talking about the software architecture of

the framework is which portions will be user space and where are our kernel

space dependencies.

While all applications rely on the underlying kernel, the kernel provides an

API to user space applications via system calls as seen in

Figure 6. While the kernel is the only layer of abstraction between programs

and the resources they require access to [7].

Hardware

System Calls

System Interface

Generic Services

Device Drivers

C Library

Application Code

Kernel
Space

User
Space

Figure 6. User space vs kernel space.

Primarily, user space was chosen since, by definition, the role of a module is

to extend the Kernel functionality. Some examples of Kernel modules are

USB drivers, Ethernet modules, PWM drivers, Thermal Sensors, etc.

18

One may falsely think that, in order to make use of a device such as a PWM

module in a hardware board to control DC motors that will in turn end up

performing the translation movement of our robot, we would require to be

doing calls within the kernel to the drivers directly. However, this is where we

will be making use of device drivers exposed to user space [8]. So as a

requirement one will need to have a way or method of accessing a driver. In

the actual implementation, you will find out quickly that we make use of the

PWM API and GPIO API exposed as a sysfs interface [9] [10].

Another immediate benefit of using user space Linux is that this allows us to

separate a low-level driver and permits robotic applications to be run in the

system without the need of having to recompile the Linux kernel.

2.2.2 Configurability

The implementation of the framework provides configuration that can be

modified in the RoboticArm_Config.h [11] file. This file contains

information of the underlying hardware where you will be implementing the

robot in.

This file needs to be tailored and adjusted when creating your own robot

executables. It contains information such as the GPIO pins to be used, the link

length in meters, and the PWM channels and can be easily extended to include

USB ports to be used, or camera Linux devices.

Here is an example of how it looks like to give an idea of what things might

need to be adjusted for different applications:

/* The physical length of each of the links in meters */

static constexpr double link_lengths[] = { 0.012, 0.012 };

/* Pair of pins used for these elements */

static constexpr int quad_encoder_pins[][2] = {{ 49, 48}, { 41, 43}};

static constexpr int dc_motor_pins[][2] = {{ 0, 1}, { 2, 3}};

/* Calculate number of joints based of motors */

static constexpr int joints_nr =

sizeof(dc_motor_pins)/sizeof(dc_motor_pins[0]);

19

As mentioned in page 15, this corresponds to a robot that is going to have two

joints. Using 2 channels of PWM per joint to control the DC motors and 2

channels for the quadrature encoder pulses.

2.2.3 Modules

Separating between different modules layers and showcasing how they

connect between them is usually the best way of understanding the full

system. Figure 7 depicts the representation of the full software architecture

components in a hierarchical manner.

QuadratureEncoder / VisualEncoder
(Position)

ImagePosition QuadratureEncoder

Motor/Actuator

(Movement)

OpenCV GPIO

RoboticArm Software

PWM

RoboticArm Joint #0

QuadratureEncoder / VisualEncoder
(Position)

ImagePosition QuadratureEncoder

Motor/Actuator

(Movement)

OpenCV GPIO PWM

RoboticArm Joint #N

RoboticArm Arm

Linux

Figure 7. Layered software architecture.

The layers will be discussed into more detail later, but it is important to state

with a few words why each of the components exists in the first place by

looking at the following table.

Layer Type Components Description

Application

Arm

Consists of a collection of joints.

The unison of joints and links

create a working articulated robot.

Joint

An independent joint of an

articulated robot, it is able to know

its position and control their own

movement.

User Space

Custom

Defined

Drivers

Position

Movement

QuadratureEncoder

Motor

VisualEncoder

Joints from the top layer are able

to figure out position and

movement by gluing these two

layers together.

By allowing to create these

custom defined drivers we can
User Space

Drivers

SysFS GPIO

SysFS PWM

20

OpenCV create simpler objects such as

motors, servos, or rotary encoders.

Objects that simply do not exist in

the Linux realm at user space.

Operating

System

Services

Linux

Provides a safe and robust

environment to be running POSIX

applications as well as resource

accesses.

2.2.3.1 Robotic Arm Class

A robotic arm is comprised of joints and links as described in chapter 1. A

robotic arm is a C++ class that contains various joints, it can be seen as a

container that makes use of the various joints.

The robotic arm is responsible of being able to set and get a three-dimensional

coordinate of the actuator. A robotic arm object is what will be instated and

used when creating a robot, and as such is the object that has robot functions.

The public API exposed to the programmer is as simple as:

Function Description

void Init(void);

Executes the initialization routines

for each of the N-joints that conform

the robot.

void GetPosition(Point &pos);

Returns by reference a Point (x,z,y)

Cartesian coordinate system of the

end-effector.

void SetPosition(const Point

&pos);

Sets the end-effector of the robot to

the desired (x,y,z) Cartesian

coordinate system.

An example of the above API is seen in the file Robot_Keyboard.cpp [11]

where a robot’s coordinates are moved by using a console Linux application

with the up, down, left and right keys in a keyboard.

2.2.3.2 Robotic Joint Class

The next level down comes as joints, joints in the implementation

Function Description

void Init(void);

Starts its movement component of

it, be it servos, DC motors, etc. This

initiates the joint to be in the home

position and in turn start the control

based feedback-loops that run on

separate threads so that the joint is

aware of its angular position every

time and correct itself.

21

Home position for the joint means

that pos.x = 0, pos.y = 0 & pos.z =

0.

double GetAngle(void);

Returns the actual theta degrees as a

floating point number that the joint

is positioned at.

void SetAngle(const double

&theta);

Sets the joint to be at the specified

theta degrees as a floating point

number.

void SetZero(void);

Used to define our new reference

angle of 0 for the control based

feedback-loop and the sensors

underneath to be thinking that they

are positioned at angle of 0 for

calibration purposes and proper

initialization.

One can clearly see that the term arm and joint is closely connected and Figure

8 is a representation from of the classes which have a particular resemblance

to containers.

RoboticJoint

RoboticArm
RoboticArm_Config

Movement

Position

RoboticJoint(0)

RoboticJoint(1)

RoboticJoint(N)

RoboticJoint(N-1)

.

.

.

EncoderPins

WebCam Port

MotorPins

JointsNumber

Figure 8. Arm and joint container representation visualized.

And hence the RoboticArm object exists because of a collection of

RoboticJoint objects that each uniquely have movement control and position

information from its sensors.

2.2.3.3 Position Class

This class must be generic so that different sensors can be connected

underneath to understand where the joint is being positioned. Examples of

sensors can be quadrature encoders, or a visual camera, magnetometers, etc.

Function Description

22

double GetAngle(void);

Returns the actual theta degrees as

a floating-point number that the

underlying sensor is reading.

void SetAngle(const double &theta);

Sets the joint to be at the specified

theta degrees as a floating-point

number.

void SetZero(void);

Used to tell our underlying

sensors that its internal states need

to be reset and start measuring

from relative to here.

2.2.3.4 Movement Class

The following implementation proved to be simple and yet generic such that

we could glue different actuators underneath such as servos, motors, coils, etc.

Its main functionality is to provide a joint with a method of getting itself to

move.

Function Description

void Stop(void);

Abruptly stops the actuator from

driving. Used when shutting

down the system if an error

occurred or when exiting.

void Start(void);
To be used initially by the joint,

this starts up the actuators.

double GetSpeed(void); Used to control the desired speed

that you want the actuator to have,

it is a positive numerical floating-

point value that ranges from 0.0 to

100.0.

void SetSpeed(const double &pcnt);

Direction GetDirection(void);
Used to indicate if the actuator is

going CW or CCW.
void SetDirection(const Direction

&dir);

State GetState(void);

Indicator if the actuator is in a

stopped or running state in order

to be used for decisions at the

joint level for control.

void ApplyRangeLimits(const

double &pcnt_low, const double

&pcnt_high);

This is a calibration function to be

used higher in the hierarchy in the

joint level. The joint has routines

that can set the minimum value

that provides real movement in

the joint (pcnt_low) and can set

the maximum speed (pcnt_high)

and sets them as limits.

After this is set, the new 0.0 will
behave as zero-real movement

and just increasing to next values

23

of 0.01 for example will produce

real movement at the joint level.

This in turn provides finer

calculations at the controller level

for the robot.

2.2.3.5 Custom Defined Drivers

As part of the user space custom defined drivers we have created the following

drivers that satisfy gluing together the Position class to sensors, and

respectively the Movement classes to an actuator. These drivers export an API

in C++ to be able to talk to PWM and GPIO modules.

a) HighLatencyGPIO

This is a C++ class which abstracts the Linux sysfs interface to

GPIO’s. It was developed on and intended for use on the BeagleBone

Black (BBB) [12]. This provides interrupt registration and

configuration aspects provided by the sysfs interface. This serves as

the bridge between the quadrature encoder hardware and C++.

b) HighLatencyPWM

Based on the above, this abstracts the Linux sysfs interface but for

the PWM sysfs interface. This will serve as part of the glue-logic for

the DC-Motor control and exposes the PWM control pins to C++.

2.2.3.6 User Space Drivers

For the current implementation, no driver had to be developed as both PWM

and GPIO drivers were exposed as user-space in the Linux environment. It is

worth noting that these must exist in order to make proper connection to our

top layer which are custom defined drivers.

Two examples were implemented in this framework, a DC Motor Class and a

Quadrature Encoder Class, the intention of this modules is as follows.

a) Linux-DC-Motor

This user space module uses Kernel user-space PWM controls in

order to have a working infrastructure for DC motors. Using this class

for H-Bridge PWM controlled DC motors.

24

b) Linux-Quadrature-Encoder

This user space module uses Kernel user-space GPIO interrupts in

order to have a working infrastructure for quadrature encoders.

The connection of the classes is exemplified in Figure 9.

Position

GPIO.cc

QuadratureEncoder.cpp QuadratureEncoder.h

GPIO.h

Movement

PWM.cc

Motor.cpp Motor.h

PWM.h

Figure 9. Position & Movement user space custom driver class examples.

These custom drivers represent tangible things that do not exist normally in

Linux, for example a DC Motor that by the help of gluing PWM user space

drivers that are provided by Linux can now be accessed from within C++ and

have methods accessible to its upper layers.

25

CHAPTER 3:

EXPERIMENTAL RESULTS

3.1 Closed Loop Real Time Control

It is a key factor in robots to have methods and means of controlling them.

The lack of proper control the robot would make it go haywire and not fully

control trajectories and target position. Figure 10 depicts the high-level

architecture of where the proposed real-time control block fits.

Per Joint
Real Time Control

Kinematics
Tranformations

Position Update
SetPosition()

Cartesian Space
(x, y, z)

Joint Space
(Θ)

Figure 10. High-level sequence of events when the API changes position.

After the kinematic transformations occur and all of the per joint angles are

calculated, those are named reference angle. A reference angle is the joint

angle at which the joint should be in to target the robotic configuration and

end up with the end-effector in the desired state.

It is important to note that some of the blocks in the processing chain are

subject to real time constraints, controlling too late can result in erratic robot

positioning, or bad jitter while taking too long on computing the kinematics

26

control results in the robot having a huge lag or latency on changing its end-

effector.

In the following section, we will be discussing the individual per joint real-

time control block details.

3.1.1 Architecture & Implementation

The implementation is scalable from 1 up to N joints. There exists a reference

angle theta for each of the joints in the robotic configuration.

We will be implementing an automatic control loop where by definition the

controller compares a measured value of a process with a desired set value.

As shown in Figure 11 the robot can be seen as controlled by uniquely

independent AutomaticControlThread objects where the reference angles

are feed directly. Once that each of these unique theta angle being input

directly to the automatic control blocks, they will start moving themselves to

reach the reference angle and eventually reaching the desired robot end-

effector position.

Robotic Control

θ0

θ1

θN

AutomaticControlThread0

AutomaticControlThread1

AutomaticControlThreadN

Figure 11. Automatic control with reference angles as inputs.

Where each of the individual control loops can be represented by Figure

12.The actual implementation is that of a simple proportional control.

27

&RoboticJoint::AngularControl

AutomaticControlThread

Rotary
Direction

+ error
Speed

Control

Position
Sensor

Reference
Angle (θ)

Figure 12. Automatic control per joint.

Depending on if the error is a positive number or negative that the direction

of the rotation movement can change, and also the speed to which the DC

motor is rotating at will depend directly on the magnitude of the error. While

that is changing the position, sensor will feedback its angular data and

compare it to our reference angle – as we eventually reach to a zero difference

between reference angle and the actual sensor data which implies that that the

control criteria has been met and thus the joint is at the desired angle.

3.1.2 Real Time Scheduler

Some robotic applications require low jitter and latency, so one may think that

because we are using a general-purpose OS such as Linux that controlling the

robot with it is going to be slow in terms of real time control.

The normal Linux kernel is preemptive not real time, a preemptive kernel

allows the thread with higher priority to receive more CPU utilization time

than a low priority thread. However, in the normal kernel no particular thread

can monopolize the CPU utilization all the time.

Nonetheless, the Linux Kernel does support a RTOS mode where an

important thing to note is that the thread can run if it is not pre-empted by

threads which may have equal or higher priority According to Le Trung Thang

the typical RTOS scheduler is just the real time Linux scheduler running with

the Round Robin Policy [13].

Because each AutomaticControlThread object spawns as a processor thread

in Linux with independent variables and address spaces the control portion of

the robot can be set to a real time Round Robin priority and this is done in the

C++ implementation.

28

3.1.3 Scheduler Configuration

There are two possible Linux RT scheduling options as mentioned in the

Linux man pages or the Linux Programmers Reference [14].

a) SCHED_FIFO

When a thread becomes runnable, it will always immediately preempt

any current running non-RT thread. The thread will run until either it

is blocked by an I/O request, it is preempted by a higher priority

thread, or it calls sched_yield(2).

b) SCHED_RR

A simple enhancement of (a). Everything described above also

applies, except that each thread is allowed to run only for a maximum

time quantum.

For both of these scheduling real time policies we can select between ranges

1 (low) up to 99 (high). For reference, normal Linux processes will only run

when there are no real-time threads running or ready to run, so the theory says

that if there is work that needs to be done by the robotic application it will be

performed and not starved by other processes such as hosting an HTTP server,

or scanning and finding files, writing to disk and various others. We have

opted on using a medium-low (19-39) priority values with SCHED_RR and

have seen that it offers good performance. It is expected that different robotic

configurations explore the possibility of switching between the two policies

and decide on what priority works best for their application. Going on high

priorities (50+) can starve the drivers and could potentially cause deadlocks

on single threaded systems.

In the case of using really high real-time policies such as 80/90/99 we have

seen reduced and degraded network throughput and performance such that I

could not control my robot remotely through SSH properly. A clear benefit of

using the Edison kit is the in-built IEEE 802.11 Wireless connectivity support

that allowed me to connect my robot to the Internet and become a part of the

Internet of Things (IoT).

3.1.4 Multithread Characteristics

As with multi-core scenarios exist, we must be splitting work without much

of resource sharing as of to efficiently increase the performance. If we were

to have a shared resource that required a semaphore or synchronization

primitives this would almost immediately decrease our performance and

increase jitter in most architectures [15] in most of RTOS implementations.

29

The current approach has been to simplify the control loop so that there are

absolutely no semaphores dependencies and such that each unique spawned

process has its own copy of independent variables. This allows the control

loop to efficiently not because hardware stalls while fighting to achieve the

lock and greatly reduce the jitter and have a more deterministic system

behavior.

3.1.5 Results & Analysis

First, we will be analyzing the approach of using the two jointed robot arm on

a system that does not use multi-threading for joint configurations.

A file in the repository [11] named Robot_Diagnostics.cpp has a diagnostics

function that takes the time measurements and performs random samples of

1000 different random positions. The random positions where chosen to be in

such a way that they do not reflect much of the robot mass and inertia so the

criteria for the angle configurations were chosen to be of small 0 to 10 degrees.

The Robot_Diagnostics.cpp file was compiled with –DDIAGNOSTICS flag

in order to execute 1000 samples on startup. This mode results in the

application compiled to output the following raw data and logs as seen on the

video [16].

As we also wanted to perform the experiment on the same hardware platform

to have comparable results against single-core and dual-core we set to limit

the running process to only use a single processor. We have chosen to us the

taskset utility in the form of taskset <COREMASK> <EXECUTABLE>.

This corresponds to the experiments that have the leftmost column of Table 2

set to a single processor. This methodology can also extend to bigger

processor count target platforms in the future.

The CPU utilization time means that a system that has a single CPU and using

100% CPU utilization is taxing the single processor, while for a dual CPU

system having a 200% utilization means that two processors are being taxed

fully.

30

Table 2 shows that even for a simpler proportional control system we can

achieve close to 43.26% of average latency reduction by going from one core

to two cores.

System Configuration Measurements

Number

of

CPU

Cores

RT Scheduler

Policy

Number

of

Joints

Average

CPU

Utilization

Time (%)

Average

Latency

to

Target

Position

(us)

Median

Latency

to

Target

Position

(us)

Standard

Deviation

(us)

1
SCHED_FIFO 2 98.81 847.32 139.00 21,457.99

SCHED_RR 2 98.37 243.63 139.00 590.03

2
SCHED_FIFO 2 178.05 177.85 141 224.14

SCHED_RR 2 173.75 177.07 143 189.18

Table 2. Performance characteristics scaling vs. scheduler configurations in the arm.

The median latency is a very meaningful data point as this is the 50th percentile

latency of the requests, our robot performs the typical positioning action

somewhere between 139 to 143 us. As you can see here there is no much

difference here of using either a single core or dual core setup.

The standard deviation as seen in the rightmost column of Table 2 corresponds

to the jitter the system has. Using a single-core system provides the worst jitter

as the Linux scheduler will share the processor by other critical services such

as networking and I/O subsystem and device drivers, by mixing the

SCHED_FIFO scheduler with a single core provides the worst standard

deviation of two orders of magnitude than that of the others – and there is a

reason for this. The testing was performed through the network, network

devices issue interrupts as their transmit and receive queues get full, and many

device drivers behave quite similar, the nature of this huge jitter is that with

this type of policy the task is allowed to run until work has been completed or

a voluntary scheduler yield, but with all of the robotic specific interrupt

handling being done with SCHED_FIFO and interrupts being asynchronous

of nature this results in an extremely jitter situation that starve and block other

processes for a huge amount of time.

This jitter behavior is fixed by looking at the second row shows that

SCHED_RR even with single core configurations provided quite a decent

response for a robot with not that much jitter now. Showing that the Linux

scheduler can function as a decent robotics solution for prototyping with

latency responses under 1 millisecond.

31

But what is most important is that with the recent rise of multi-core embedded

systems that the robot performance shines when utilizing all of the Edison

platform capabilities of dual core. The SCHED_FIFO dual-core configuration

is allowed to finish things faster by 2us due to less context switching but the

ideal and most scalable solution seems to be multi-core SCHED_RR

configurations, this reduced the jitter to almost nonexistent while keeping an

even greater than the typical 50th percentile of the transactions under 143 us.

Multi-core SCHED_RR shines as the ideal experience on robotics where

achieving reproducible and constant behavior is key while keeping other

services such as network transmission or logging working. This allows

making proper use of all of the Linux services and infrastructure without much

interference on the robot performance.

Another demo that was developed using the same set of source code and

framework is called Robot_Record.cpp and Robot_Playback.cpp [11]

which consist of two more interactive applications using the software

framework.

The recorder will start the robot without the automatic control loop thread

running so that it can record and sense where the robot is being moved to. This

lets you move the robot manually to start monitoring and record the trajectory

and then dump it into a text file with coordinates and timestamps.

Figure 13. Recorder tool waiting for input to stop.

This output file that was recorder can then be input of the playback application

where it will replicate the recorder trajectory.

The sequence of pictures displayed in Figure 14 showcases the top row with

the robot being manipulated manually and trained to perform the trajectory,

while the bottom row has snapshots of the trajectory that was recorder being

32

replayed. A full-length video of the robot utilities used for playback and

recording was uploaded and can be viewed online [17].

Figure 14. Recorded trajectory being replayed.

Figure 15. Playback tool console output.

33

CHAPTER 4:

CONCLUSIONS

4.1 Conclusions

Creating a robotics framework under Linux was a somewhat easy task for

anyone familiar with developing UNIX based C++ applications. The use of

the C++ language favored a lot at separating and creating objects that

resemble real life things such as, robotic arms, joints, rotors, motors, sensors,

and some others, this kept the code to be easily maintained and easy to read.

There was some inspiration on Arduino’s Servo Library [18] where we can

have objects and various methods such as start and read states, but this was

heavily enhanced because in my opinion using Arduino is good for hobby

prototyping and not so good for academics and engineers as there is a lot of

non-determinism and improper bug handling.

Having a robust OS such as GNU/Linux proved to be beneficial as a lot of the

OS services have been well tested throughout the years and multiple hardware

architectural support. The soft real-time mode of the Linux kernel also was

found to be a nice addition for robotics as a lot of the hardware out there

usually supports Linux. Boards such as the Raspberry Pi 1/2/3, the ODROID

or the Intel’s Edison and Galileo Boards are easily accessible to a lot of

consumers and are found at schools throughout the world and obviously

Personal Computers controlling robots are not left out since the framework

supports everything that can run Linux.

While optimizations such as real time automatic control was proven to be used

properly from within a GNU/Linux OS by properly compiling a RT Kernel

for your board and modifying the scheduler to use one of the already

mentioned real time policies. It was important to leverage a lot of the OS

services already provided to get the implementation time down while keeping

the return of investment on the end application high as possible.

I migrated from the Intel Galileo board which was a single core system with

modest GPIO performance to use the Intel Edison in approximately 4 hours

of work, so transitioning the project to a different platform proved to be almost

no hassle. It was a matter of finding the documentation of the right GPIO pins

to use, hook up the DC motors and sensors to it, compile the

Robot_Keyboard.cpp and it was working.

34

There are a couple of crucial things to always keep in mind when planning to

modify or enhance the control algorithm, avoiding any multi-core

performance reducing events to be executed in the tight control loop, such

things to avoid are having shared resources accesses in here, those would

imply having semaphores and cause bus locks and would increase heavily the

jitter. Also putting heavy I/O events such as writing to disk or the console is

not recommended although somewhat useful only while debugging.

4.2 Future Work

The current framework has software support from 1 up to N joints. But there

still work to be done in the kinematics transformation portion. Right now, only

1 DOF and 2 DOF manipulators have the solutions to the inverse kinematics

problems. So, there is room to implement conformal geometric algebra [19]

models and code them in C++ within the framework in order to test and

improve the performance of higher DOF manipulators.

As we move into higher DOF robots it would be important to make use of the

scalable threaded implementation and jump in to use a four-core or eight-core

board so that we can utilize resources better. As higher core count systems

become more popular and Moore’s law allows us to have more complex

cheaper chips this would be an excellent use as a 6 DOF system will allow us

to have any position within a three-dimensional space. We could have 6 real

time threads assigned to 6 out of the 8 available cores controlling each joint,

and still have one more for the application such as an ink drawing or printing

program and another hosting web services via HTTP.

It would also be important to extend and create a visual encoder that reports

the angle of a joint by using computer vision. This would allow to reflect the

modularity of the software architecture by layers and objects such that

different sensors can be used in the framework. This would also allow to use

a single camera to report the multiple joint angles, instead of having separate

quadrature encoder sensors. The framework allows using two or more sensors

for feedback per joint so it would also be possible to have more accurate robot

tracking by using both the visual encoder and the quadrature encoder at the

same time.

And lastly, it might also be of useful experimentation to play with CPU

isolation on multi-core systems, this allows keeping specific processors out of

the CPU scheduler and Kernel and assign the robot application and interrupt

processing to reside on a CPU and use all of the time. This sounds like a

feasible approach on embedded systems that have more than two cores, on a

35

quad-core system we could use two cores for the OS, services, Kernel and

drivers while using the remaining two cores for the two joints fully.

36

REFERENCES

[1] Z. L. S. S. S. Richard M. Murray, "A Mathematical Introduction to Robotic

Manipulation," CRC Press, California, 1994.

[2] P. A. A. L. H. M. J. L. M. S. Teemu Kanstren, "Robot-Assisted Smartphone

Performance Testing," IEEE, 2015.

[3] S. W. (. F. J. M. a. R. T. Larry T. (Tim) Ross, "Fundamentals of Robotics," in

Robotics: Theory and Industrial Application, The Goodheart-Willcox Co., 2011,

pp. 30-34.

[4] Zortrax, "Zortrax Robotic Arm," [Online]. Available:

http://library.zortrax.com/project/zortrax-robotic-arm/.

[5] R. G. a. R. R. Marc Brown, "Leveraing Linux to reduce software

development costs," IBM Software Group, 2006.

[6] S. Hymel, "Loading Debian (Ubilinux) on the Edison," SparkFun, [Online].

Available: https://learn.sparkfun.com/tutorials/loading-debian-ubilinux-

on-the-edison.

[7] S. M. (fatherlinux), "Architecting Containers Part 1: Why Understanding

User Space vs. Kernel Space Matters," Red Hat, 29 July 2015. [Online].

Available: http://rhelblog.redhat.com/2015/07/29/architecting-

containers-part-1-user-space-vs-kernel-space/. [Accessed 22 February

2017].

[8] H. A. a. R. Malhotra, "Embedded," Network Processing Division, Freescale,

19 November 2012. [Online]. Available:

http://www.embedded.com/design/operating-

systems/4401769/1/Device-drivers-in-user-space. [Accessed 20 February

2017].

[9] "Pulse Width Modulation (PWM) interface," The Linux Kernel

Organization, [Online]. Available:

https://www.kernel.org/doc/Documentation/pwm.txt.

37

[10] "GPIO Sysfs Interface for Userspace," The Linux Kernel Organization,

[Online]. Available:

https://www.kernel.org/doc/Documentation/gpio/sysfs.txt.

[11] O. X. Avelar, "oxavelar/Linux-Robotic-Arm," [Online]. Available:

https://github.com/oxavelar/Linux-Robotic-Arm.

[12] T. Mercier, "tweej/HighLatencyGPIO," [Online]. Available:

https://github.com/tweej/HighLatencyGPIO.

[13] L. T. Thang, "Comparing real-time scheduling on the Linux kernel and an

RTOS," 25 April 2012. [Online]. Available:

http://www.embedded.com/design/operating-

systems/4371651/Comparing-the-real-time-scheduling-policies-of-the-

Linux-kernel-and-an-RTOS-.

[14] R. Petersen, The Linux Programmer's Reference, 2 ed., Osborne Publishing,

1999.

[15] I. C. B. a. G. G. Z. Kashani, "On the Performance of Open-Source RTOS,"

IEEE, Italy, 2015.

[16] O. X. Avelar, "Linux Robotic Arm on Intel Edison," 2016. [Online].

Available: https://youtu.be/_ChBTMJYMkw.

[17] O. X. Avelar, "Intel Edison Linux Robot Arm : Recorder & Playback," 2017.

[Online]. Available: https://youtu.be/boDd7_U0PQs.

[18] Arduino, "Arduino - Servo," [Online]. Available:

https://www.arduino.cc/en/reference/servo.

[19] O. E. C.-E. a. E. B.-C. Luis Enrique González-Jiménez, "Geometric

Techniques for the Kinematic Modeling and Control of," IEEE, 2011.

