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RESUMEN 

La manipulación de objetos por medio de robots es elemento crucial de las 

herramientas avanzadas de automatización. Sin embargo, los mecanismos 

para controlarlos típicamente son muy específicos y requieren diseños que 

están profundamente atados al hardware del robot – este tipo de 

implementaciones resultan en código no re-utilizable y optimizaciones de 

algoritmos que solo funcionan en familias de robots particulares. Aquí 

presentaremos una propuesta de arquitectura de software para brazos 

robóticos que corren en el entorno ya ampliamente utilizado de GNU/Linux y 

hablaremos de sus beneficios y desventajas de dicha implementación. 

El trabajo aquí habla de la necesidad de una arquitectura de software que sea 

fácil de implementar y escalable en cuanto a su utilización de recursos para 

prototipos de robots y sistemas completos funcionales. Aquí vamos a hablar 

de diferentes configuraciones y conceptos relacionados a la manipulación y el 

control de sistemas robóticos. Una configuración de robot ejemplo es 

propuesta y se utiliza como caso de estudio para mostrar las dificultades y 

ventajas de dicha implementación, así como sus parámetros de desempeño en 

cuanto a tiempos de respuesta y aplicaciones. 
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SUMMARY (ENGLISH) 

Robotic manipulation is crucial element of advanced automation tools, 

however the methods for controlling it are usually crafted for specific and 

custom designs that are deeply tied to the hardware of the robotics. These type 

of implementations results in non-re-usable code and optimization algorithms 

that only work for specific robotic families. In here we will discuss a software 

architecture for robotic arms running under the freely and widely available 

GNU/Linux environment along with its benefits and drawbacks of such. 

The work here expresses the need for a software architecture that results in an 

easy to implement and scalable framework for robotics prototyping and real 

functioning systems. In here we will be discussing different robotic 

configurations and the concepts associated with manipulating and controlling 

robotic systems. A robot configuration is used as a case of study where the 

challenges and benefits of the implementation are discussed along with 

performance data and applications developed with the framework.  
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CHAPTER 1: 

INTRODUCTION 

 

1.1 Introduction 

We have seen the rise of robots and automation since the introduction of the 

term in 1921 [1]. Robot manipulation is a core technology that allows robotics 

to make use of motion and position of robots to perform useful work in our 

world. 

The goal of robotics has been for a while to automate and perform repetitive 

tasks, or complex actions automatically. Currently there is a direct application 

to the industry on assemblies and factories – we can see robot manipulators 

being used to spray paint cars, assemble complex microchip products and 

even do automated performance testing on smartphones [2]. 

 

1.2 Fundamentals of Robotics 

Robots can be classified in various ways, depending on the components, 

configuration/topology, and use. 

During this document we will be focusing primarily on articulated robots, or 

also referred to jointed arm. These robots are defined as anthropomorphic 

because their movement and operation resembles that of the human forearm 

and upper arm. A robot manipulator is a specific category of robot, they are 

created from a sequence of link and joint combinations. A link is a rigid 

member that connects two joints or axes. In analogy to the human body an 

example of a joint would be our shoulder, or our elbows, whereas a link would 

be the forearm in our arm or calf in our legs. 

The axes are the movable component of a robotic manipulator that cause 

relative motion between adjoining links. 
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Figure 1. An articulated robot consisting of two joints. 

 

By analyzing Figure 1 closely we can see there are important elements on 

robotics such as the angles that each joint is at. During next sections we will 

see how we can figure out the position of the robot by knowing both angles 

and the link length of the constituents. It is important to understand these 

concepts as they will later will be re-used as basic concepts of the software 

architecture. 

 

1.2.1  Degrees of Freedom 

This is a widely used term to describe a robot’s freedom of motion in a three 

dimensional space. It can be seen as the ability to move forward, backward, 

up, down, left and right.  
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For each degree of freedom a joint is required. It is proven that a robot requires 

six degrees of freedom to be completely versatile this means a body can move 

on the X, Y, and Z axes as well as change orientation between those axes, 

considering a dextrorotary coordinate system. The orientation is defined 

through three rotations: pitch, yaw, and roll as seen in  

Table 1. 

 Translation Rotation 

Movemen

t 

Along 

X 

Along 

Y 

Along 

Z 

Betwee

n X and 

Y 

Betwee

n X and 

Z 

Betwee

n Z and 

Y 

Also 

Called 

Heavin

g 

Surgin

g 

Swayin

g 
Pitch Yaw Roll 

 

Table 1. Movement parameters of a six degrees of freedom body. 

 

However, it is still important to note that a robot with just six degrees of 

freedom is in comparison still clumsier than a human hand with 22 to 27 

degrees of freedom [3]. 

 

Figure 2. 6 DOF Model of a robot arm courtesy of Zortrax [4]. 
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1.2.2  Robot Kinematics 

Kinematics studies the motion of bodies without consideration of the forces 

or moments that cause the motion. Robot kinematics refers to the analytical 

study of the motion of a robot manipulator. 

There are two important spaces used in kinematics, the Cartesian space and 

the configuration space. 

Robot kinematics is what will be mainly discussed here and is used for 

modeling the analytical solutions to our robot. Forward kinematics refers to 

the use of the kinematic equations of a robot to compute the position of the 

end-effector from specified values for the joint parameters. For example we 

could figure out the Cartesian point in space of our fist by understanding the 

angle at which our elbow and shoulder are at. 

 

Kinematics

θ0

θ1

θN

x

y

z

Inverse Kinematics

Forward Kinematics

 

Figure 3. Schematic representation of forward and inverse kinematics. 

 

Inverse kinematics, as the name implies, is going the opposite way, as we 

can see in Figure 3. This will output the angular information from the joint 

space based on Cartesian coordinates of the end effector as input. This is a 

very important principle as this will serve as the basis of positioning a robot 

arm end-effector in a three-dimensional Cartesian space by starting to move 

and change its joint configuration angles. 

It is important to know that inverse kinematics is much more difficult as there 

can be many solutions on different DOF systems, because for complex 

configurations there can exist different joint configurations that achieve the 

same end-effector Cartesian position. There are two main solution techniques 

for the inverse kinematics problem, analytical and numerical methods. For the 
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analytical technique one must know the robot configuration and have data in 

order to obtain such solution. Ultimately, the method to which we implement 

for performing the kinematic transformations can have huge impact on real 

time computational requirements and limitations. 

 

1.3 Robot Hardware Components 

People that are newly entering the robotics domain are presented with a 

myriad of possibilities of what tools they want to make use for designing a 

robotic prototype or test a new robotic motion planning algorithm, etc. There 

are various ways of categorizing the robotic system but when you are 

prototyping and implementing a robot manipulator it usually comes down into 

two big factors that impact choosing the hardware components: 

1. The controller being usually a computing and programmable 

module which will be handling the actions for the robot to be 

performed and which corresponds to the brain and smarts of our 

decisions. 

2. The electro-mechanical properties of the robot, being the 

manipulator and effector which in turn is formed by actuators and 

sensors which will define the robot configuration or topology as well 

as the information of the sensors that will be used as inputs and 

feedback to the complete system. 

For the controller developers and scientists can be using vast different 

hardware that ranges from small microcontrollers, to FPGA’s, to 

commercially available Personal Computers, Programmable Logic 

Controllers (PLCs), etc. It is important to note that effectively changing the 

underlying hardware usually means re-writing programs as these different 

hardware systems target unique requirements and architectures. 

Second, the electro-mechanical properties of the robot usually dictate the 

operation and constraints of it, different robot configurations usually come 

with different software modeling methods and different sources to obtain 

inputs for the feedback, one example is that someone could use a camera for 

obtaining the position of the robot or instead opt for cheaper alternatives such 

as rotary encoders. 
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1.4 Technologies Coming Together 

The GNU/Linux Operating System has grown with deep support since its 

introduction in 1991. It has provided the basis of a now widely used operating 

system that is freely to be modified to suit various necessities. 

Having a full OS for a robotic arm manipulator allows various services of the 

OS to be used and leveraged and hence decreasing the development time of a 

robotic manipulator prototyping or development [5]. 

There are a few things that are already provided by the GNU/Linux OS which 

are of tremendous benefit for robotic applications, examples such as: 

 Task scheduler with priority, preemption, and slice configurability 

allowing a true multi-thread and multi-task system to exist on 

different target platforms be it multi-core or single-core. 

 Memory management for dynamic memory allocation and 

scalability for different applications to be running as resources 

permit, such as different processes monitoring temperature, or 

gathering data metrics. 

 Tasks and threads creation support and infrastructure in place that 

allow a robust operation together with the task scheduler. 

 Networking support and driver stack for easy internet integration and 

security. 

 Remote administration services such as SSH or Telnet for 

maintenance, analysis and remote execution. 

 Broad set of computing architectures support such as x86, 

AMD64, ARM, Atmel AVR32, MIPS, OpenRISC, Power and 

various others. 

All of these services come into play and are important when building a more 

robust application on top of a robotic manipulator or appliance. 

Another huge strength of using GNU/Linux is that it can be tailored and 

streamlined to use less or more resources depending on the target platform to 

be using for your robotics application, you can remove a lot of elements that 

are not needed for your application instead of adding them and building them 

from scratch. 
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CHAPTER 2: SOFTWARE 

ARCHITECTURE 

 

2.1 Our Robot Described 

We would like to begin by showing you clearly the robot that will be discussed 

during the testing and implementation of the framework. This will let you as 

the reader to understand and grasp all of the details of the implementation. 

We have chosen to build an articulated robot arm, which will contain two links 

and two joints as seen in Figure 4. This, in turn, will give us two degrees of 

freedom in a two-dimensional field. 

 

 

Figure 4. Picture of the 2 DOF robotic arm system built. 
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The controller of the robotic manipulator that will be implemented consists of 

the following hardware components and requirements: 

 An Intel Edison Embedded System Kit running Debian Linux 

distribution [6]. 

 Two quadrature encoders hooked up to a DC motor. 

 Four GPIO inputs that support level interrupt generation. 

 Four PWM channels. 

 An H-Bridge IC kit for the power and drive of the DC motors. 

Figure 5 shows how the mentioned list is used and interconnected. 

 

Intel Edison 
Embedded 

System

GPIO

Quadrature
Encoder A

Quadrature
Encoder B

PWM

DC Motor A

DC Motor B

H-Bridge

RoboticArm Controller

 

Figure 5. Component view of the controller. 

 

Let’s take a look as to why the components are put there. There are two 

quadrature encoders & two DC motors, named A and B respectively.  

First the DC motors will provide a way for us to rotate the links of our robot. 

By hooking up our pulse-width modulation outputs to a four-input H-Bridge 

we can specifically rotate each of the DC motors independently to the right, 

or left. 

And second the robot sensors. We have chosen to use quadrature encoders as 

a cheap way to tell us the position of a DC motor relative to where we calibrate 

them. They provide pulses as they rotate which in turn are captured to our 

Intel Edison Embedded System via GPIO. Since each quadrature encoder 

requires two inputs, usually referred as Channel A and Channel B, a total of 4 

GPIO pins are needed to hook our two quadrature encoders. Quadrature 

encoders permit us to know if the rotation is going clock-wise (CW) or 

counter-clockwise (CCW) as well as how much it has moved depending on 

its pulses per revolution (PPR). 
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With both the motors and the sensors in place we can now exert movement 

and know our relative angle of the motor as exemplified next. 

 

2.2 Software Architecture 

There are different elements that are required in order to have a fully 

functioning robot. These different ingredients will play a role in our complete 

software architecture intended to be running on GNU/Linux Operating 

System. 

 

2.2.1  User Space vs Kernel Space 

The first thing we can think when talking about the software architecture of 

the framework is which portions will be user space and where are our kernel 

space dependencies. 

While all applications rely on the underlying kernel, the kernel provides an 

API to user space applications via system calls as seen in  

Figure 6. While the kernel is the only layer of abstraction between programs 

and the resources they require access to [7]. 

 

Hardware

System Calls

System Interface

Generic Services

Device Drivers

C Library

Application Code

Kernel
Space

User
Space

 

 

Figure 6. User space vs kernel space. 

 

Primarily, user space was chosen since, by definition, the role of a module is 

to extend the Kernel functionality. Some examples of Kernel modules are 

USB drivers, Ethernet modules, PWM drivers, Thermal Sensors, etc. 
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One may falsely think that, in order to make use of a device such as a PWM 

module in a hardware board to control DC motors that will in turn end up 

performing the translation movement of our robot, we would require to be 

doing calls within the kernel to the drivers directly. However, this is where we 

will be making use of device drivers exposed to user space [8]. So as a 

requirement one will need to have a way or method of accessing a driver. In 

the actual implementation, you will find out quickly that we make use of the 

PWM API and GPIO API exposed as a sysfs interface [9] [10]. 

Another immediate benefit of using user space Linux is that this allows us to 

separate a low-level driver and permits robotic applications to be run in the 

system without the need of having to recompile the Linux kernel. 

 

2.2.2  Configurability 

The implementation of the framework provides configuration that can be 

modified in the RoboticArm_Config.h [11] file. This file contains 

information of the underlying hardware where you will be implementing the 

robot in. 

This file needs to be tailored and adjusted when creating your own robot 

executables. It contains information such as the GPIO pins to be used, the link 

length in meters, and the PWM channels and can be easily extended to include 

USB ports to be used, or camera Linux devices. 

Here is an example of how it looks like to give an idea of what things might 

need to be adjusted for different applications: 

 

/* The physical length of each of the links in meters */ 

static constexpr double link_lengths[] = { 0.012, 0.012 }; 

 

/* Pair of pins used for these elements */ 

static constexpr int quad_encoder_pins[][2]  = {{ 49,  48}, { 41,  43}}; 

static constexpr int dc_motor_pins[][2]      = {{  0,   1}, {  2,   3}}; 

 

/* Calculate number of joints based of motors */ 

static constexpr int joints_nr = 

sizeof(dc_motor_pins)/sizeof(dc_motor_pins[0]); 
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As mentioned in page 15, this corresponds to a robot that is going to have two 

joints. Using 2 channels of PWM per joint to control the DC motors and 2 

channels for the quadrature encoder pulses. 

 

2.2.3  Modules 

Separating between different modules layers and showcasing how they 

connect between them is usually the best way of understanding the full 

system. Figure 7 depicts the representation of the full software architecture 

components in a hierarchical manner. 

 

QuadratureEncoder / VisualEncoder
(Position)

ImagePosition QuadratureEncoder

Motor/Actuator

(Movement)

OpenCV GPIO

RoboticArm Software

PWM

RoboticArm Joint #0

QuadratureEncoder / VisualEncoder
(Position)

ImagePosition QuadratureEncoder

Motor/Actuator

(Movement)

OpenCV GPIO PWM

RoboticArm Joint #N

RoboticArm Arm

Linux

 

Figure 7. Layered software architecture. 

 

The layers will be discussed into more detail later, but it is important to state 

with a few words why each of the components exists in the first place by 

looking at the following table. 

Layer Type Components Description 

Application 

Arm 

Consists of a collection of joints. 

The unison of joints and links 

create a working articulated robot. 

Joint 

An independent joint of an 

articulated robot, it is able to know 

its position and control their own 

movement. 

User Space 

Custom 

Defined 

Drivers 

Position 

Movement 

QuadratureEncoder 

Motor 

VisualEncoder 

Joints from the top layer are able 

to figure out position and 

movement by gluing these two 

layers together. 

 

By allowing to create these 

custom defined drivers we can 
User Space 

Drivers 

SysFS GPIO 

SysFS PWM 
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OpenCV create simpler objects such as 

motors, servos, or rotary encoders. 

Objects that simply do not exist in 

the Linux realm at user space. 

Operating 

System 

Services 

Linux 

Provides a safe and robust 

environment to be running POSIX 

applications as well as resource 

accesses.  

 

2.2.3.1 Robotic Arm Class 

A robotic arm is comprised of joints and links as described in chapter 1. A 

robotic arm is a C++ class that contains various joints, it can be seen as a 

container that makes use of the various joints. 

The robotic arm is responsible of being able to set and get a three-dimensional 

coordinate of the actuator. A robotic arm object is what will be instated and 

used when creating a robot, and as such is the object that has robot functions. 

The public API exposed to the programmer is as simple as: 

Function Description 

void Init(void); 

Executes the initialization routines 

for each of the N-joints that conform 

the robot. 

void GetPosition(Point &pos); 

Returns by reference a Point (x,z,y) 

Cartesian coordinate system of the 

end-effector. 

void SetPosition(const Point 

&pos); 

Sets the end-effector of the robot to 

the desired (x,y,z) Cartesian 

coordinate system. 

 

An example of the above API is seen in the file Robot_Keyboard.cpp [11] 

where a robot’s coordinates are moved by using a console Linux application 

with the up, down, left and right keys in a keyboard. 

2.2.3.2 Robotic Joint Class 

The next level down comes as joints, joints in the implementation  

Function Description 

void Init(void); 

Starts its movement component of 

it, be it servos, DC motors, etc. This 

initiates the joint to be in the home 

position and in turn start the control 

based feedback-loops that run on 

separate threads so that the joint is 

aware of its angular position every 

time and correct itself. 
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Home position for the joint means 

that pos.x = 0, pos.y = 0 & pos.z = 

0. 

double GetAngle(void); 

Returns the actual theta degrees as a 

floating point number that the joint 

is positioned at. 

void SetAngle(const double 

&theta); 

Sets the joint to be at the specified 

theta degrees as a floating point 

number. 

void SetZero(void); 

Used to define our new reference 

angle of 0 for the control based 

feedback-loop and the sensors 

underneath to be thinking that they 

are positioned at angle of 0 for 

calibration purposes and proper 

initialization. 

 

One can clearly see that the term arm and joint is closely connected and Figure 

8 is a representation from of the classes which have a particular resemblance 

to containers. 

 

RoboticJoint

RoboticArm
RoboticArm_Config

Movement

Position

RoboticJoint(0)

RoboticJoint(1)

RoboticJoint(N)

RoboticJoint(N-1)

.

.

.

EncoderPins

WebCam Port

MotorPins

JointsNumber

 

Figure 8. Arm and joint container representation visualized. 

 

And hence the RoboticArm object exists because of a collection of 

RoboticJoint objects that each uniquely have movement control and position 

information from its sensors. 

 

2.2.3.3 Position Class 

This class must be generic so that different sensors can be connected 

underneath to understand where the joint is being positioned. Examples of 

sensors can be quadrature encoders, or a visual camera, magnetometers, etc. 

Function Description 
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double GetAngle(void); 

Returns the actual theta degrees as 

a floating-point number that the 

underlying sensor is reading. 

void SetAngle(const double &theta); 

Sets the joint to be at the specified 

theta degrees as a floating-point 

number. 

void SetZero(void); 

Used to tell our underlying 

sensors that its internal states need 

to be reset and start measuring 

from relative to here. 

 

 

2.2.3.4 Movement Class 

The following implementation proved to be simple and yet generic such that 

we could glue different actuators underneath such as servos, motors, coils, etc. 

Its main functionality is to provide a joint with a method of getting itself to 

move. 

Function Description 

void Stop(void); 

Abruptly stops the actuator from 

driving. Used when shutting 

down the system if an error 

occurred or when exiting. 

void Start(void); 
To be used initially by the joint, 

this starts up the actuators. 

double GetSpeed(void); Used to control the desired speed 

that you want the actuator to have, 

it is a positive numerical floating-

point value that ranges from 0.0 to 

100.0. 

void SetSpeed(const double &pcnt); 

Direction GetDirection(void); 
Used to indicate if the actuator is 

going CW or CCW. 
void SetDirection(const Direction 

&dir); 

State GetState(void); 

Indicator if the actuator is in a 

stopped or running state in order 

to be used for decisions at the 

joint level for control. 

void ApplyRangeLimits(const 

double &pcnt_low, const double 

&pcnt_high); 

This is a calibration function to be 

used higher in the hierarchy in the 

joint level. The joint has routines 

that can set the minimum value 

that provides real movement in 

the joint (pcnt_low) and can set 

the maximum speed (pcnt_high) 

and sets them as limits. 

 

After this is set, the new 0.0 will 
behave as zero-real movement 

and just increasing to next values 



23 

 

of 0.01 for example will produce 

real movement at the joint level. 

This in turn provides finer 

calculations at the controller level 

for the robot. 

 

2.2.3.5 Custom Defined Drivers 

As part of the user space custom defined drivers we have created the following 

drivers that satisfy gluing together the Position class to sensors, and 

respectively the Movement classes to an actuator. These drivers export an API 

in C++ to be able to talk to PWM and GPIO modules. 

a) HighLatencyGPIO 

This is a C++ class which abstracts the Linux sysfs interface to 

GPIO’s. It was developed on and intended for use on the BeagleBone 

Black (BBB) [12]. This provides interrupt registration and 

configuration aspects provided by the sysfs interface. This serves as 

the bridge between the quadrature encoder hardware and C++. 

 

b) HighLatencyPWM 

Based on the above, this abstracts the Linux sysfs interface but for 

the PWM sysfs interface. This will serve as part of the glue-logic for 

the DC-Motor control and exposes the PWM control pins to C++. 

 

2.2.3.6 User Space Drivers 

For the current implementation, no driver had to be developed as both PWM 

and GPIO drivers were exposed as user-space in the Linux environment. It is 

worth noting that these must exist in order to make proper connection to our 

top layer which are custom defined drivers. 

Two examples were implemented in this framework, a DC Motor Class and a 

Quadrature Encoder Class, the intention of this modules is as follows. 

a) Linux-DC-Motor 

This user space module uses Kernel user-space PWM controls in 

order to have a working infrastructure for DC motors. Using this class 

for H-Bridge PWM controlled DC motors. 
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b) Linux-Quadrature-Encoder 

This user space module uses Kernel user-space GPIO interrupts in 

order to have a working infrastructure for quadrature encoders. 

The connection of the classes is exemplified in Figure 9. 

Position

GPIO.cc

QuadratureEncoder.cpp QuadratureEncoder.h

GPIO.h

 

Movement

PWM.cc

Motor.cpp Motor.h

PWM.h

 

Figure 9. Position & Movement user space custom driver class examples. 

 

These custom drivers represent tangible things that do not exist normally in 

Linux, for example a DC Motor that by the help of gluing PWM user space 

drivers that are provided by Linux can now be accessed from within C++ and 

have methods accessible to its upper layers. 
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CHAPTER 3: 

EXPERIMENTAL RESULTS 

 

3.1 Closed Loop Real Time Control 

It is a key factor in robots to have methods and means of controlling them. 

The lack of proper control the robot would make it go haywire and not fully 

control trajectories and target position. Figure 10 depicts the high-level 

architecture of where the proposed real-time control block fits. 

 

Per Joint
Real Time Control

Kinematics 
Tranformations

Position Update
SetPosition()

Cartesian Space
(x, y, z)

Joint Space
(Θ)

 

Figure 10. High-level sequence of events when the API changes position. 

 

After the kinematic transformations occur and all of the per joint angles are 

calculated, those are named reference angle. A reference angle is the joint 

angle at which the joint should be in to target the robotic configuration and 

end up with the end-effector in the desired state.  

It is important to note that some of the blocks in the processing chain are 

subject to real time constraints, controlling too late can result in erratic robot 

positioning, or bad jitter while taking too long on computing the kinematics 
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control results in the robot having a huge lag or latency on changing its end-

effector. 

In the following section, we will be discussing the individual per joint real-

time control block details. 

 

3.1.1  Architecture & Implementation 

The implementation is scalable from 1 up to N joints. There exists a reference 

angle theta for each of the joints in the robotic configuration. 

We will be implementing an automatic control loop where by definition the 

controller compares a measured value of a process with a desired set value. 

As shown in Figure 11 the robot can be seen as controlled by uniquely 

independent AutomaticControlThread objects where the reference angles 

are feed directly. Once that each of these unique theta angle being input 

directly to the automatic control blocks, they will start moving themselves to 

reach the reference angle and eventually reaching the desired robot end-

effector position.  

 

Robotic Control

θ0

θ1

θN

AutomaticControlThread0

AutomaticControlThread1

AutomaticControlThreadN

 

Figure 11. Automatic control with reference angles as inputs. 

 

Where each of the individual control loops can be represented by Figure 

12.The actual implementation is that of a simple proportional control. 
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&RoboticJoint::AngularControl

AutomaticControlThread

Rotary
Direction

+ error
Speed

Control

Position
Sensor

Reference
Angle (θ)

 

Figure 12. Automatic control per joint. 

 

Depending on if the error is a positive number or negative that the direction 

of the rotation movement can change, and also the speed to which the DC 

motor is rotating at will depend directly on the magnitude of the error. While 

that is changing the position, sensor will feedback its angular data and 

compare it to our reference angle – as we eventually reach to a zero difference 

between reference angle and the actual sensor data which implies that that the 

control criteria has been met and thus the joint is at the desired angle. 

 

3.1.2  Real Time Scheduler 

Some robotic applications require low jitter and latency, so one may think that 

because we are using a general-purpose OS such as Linux that controlling the 

robot with it is going to be slow in terms of real time control.  

The normal Linux kernel is preemptive not real time, a preemptive kernel 

allows the thread with higher priority to receive more CPU utilization time 

than a low priority thread. However, in the normal kernel no particular thread 

can monopolize the CPU utilization all the time. 

Nonetheless, the Linux Kernel does support a RTOS mode where an 

important thing to note is that the thread can run if it is not pre-empted by 

threads which may have equal or higher priority According to Le Trung Thang 

the typical RTOS scheduler is just the real time Linux scheduler running with 

the Round Robin Policy [13]. 

Because each AutomaticControlThread object spawns as a processor thread 

in Linux with independent variables and address spaces the control portion of 

the robot can be set to a real time Round Robin priority and this is done in the 

C++ implementation. 
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3.1.3  Scheduler Configuration 

There are two possible Linux RT scheduling options as mentioned in the 

Linux man pages or the Linux Programmers Reference [14]. 

a) SCHED_FIFO 

When a thread becomes runnable, it will always immediately preempt 

any current running non-RT thread. The thread will run until either it 

is blocked by an I/O request, it is preempted by a higher priority 

thread, or it calls sched_yield(2). 

 

b) SCHED_RR 

A simple enhancement of (a). Everything described above also 

applies, except that each thread is allowed to run only for a maximum 

time quantum. 

For both of these scheduling real time policies we can select between ranges 

1 (low) up to 99 (high). For reference, normal Linux processes will only run 

when there are no real-time threads running or ready to run, so the theory says 

that if there is work that needs to be done by the robotic application it will be 

performed and not starved by other processes such as hosting an HTTP server, 

or scanning and finding files, writing to disk and various others. We have 

opted on using a medium-low (19-39) priority values with SCHED_RR and 

have seen that it offers good performance. It is expected that different robotic 

configurations explore the possibility of switching between the two policies 

and decide on what priority works best for their application. Going on high 

priorities (50+) can starve the drivers and could potentially cause deadlocks 

on single threaded systems. 

In the case of using really high real-time policies such as 80/90/99 we have 

seen reduced and degraded network throughput and performance such that I 

could not control my robot remotely through SSH properly. A clear benefit of 

using the Edison kit is the in-built IEEE 802.11 Wireless connectivity support 

that allowed me to connect my robot to the Internet and become a part of the 

Internet of Things (IoT). 

 

3.1.4  Multithread Characteristics 

As with multi-core scenarios exist, we must be splitting work without much 

of resource sharing as of to efficiently increase the performance. If we were 

to have a shared resource that required a semaphore or synchronization 

primitives this would almost immediately decrease our performance and 

increase jitter in most architectures [15] in most of RTOS implementations. 
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The current approach has been to simplify the control loop so that there are 

absolutely no semaphores dependencies and such that each unique spawned 

process has its own copy of independent variables. This allows the control 

loop to efficiently not because hardware stalls while fighting to achieve the 

lock and greatly reduce the jitter and have a more deterministic system 

behavior. 

 

3.1.5  Results & Analysis 

First, we will be analyzing the approach of using the two jointed robot arm on 

a system that does not use multi-threading for joint configurations. 

A file in the repository [11] named Robot_Diagnostics.cpp has a diagnostics 

function that takes the time measurements and performs random samples of 

1000 different random positions. The random positions where chosen to be in 

such a way that they do not reflect much of the robot mass and inertia so the 

criteria for the angle configurations were chosen to be of small 0 to 10 degrees. 

The Robot_Diagnostics.cpp file was compiled with –DDIAGNOSTICS flag 

in order to execute 1000 samples on startup. This mode results in the 

application compiled to output the following raw data and logs as seen on the 

video [16]. 

As we also wanted to perform the experiment on the same hardware platform 

to have comparable results against single-core and dual-core we set to limit 

the running process to only use a single processor. We have chosen to us the 

taskset utility in the form of taskset <COREMASK> <EXECUTABLE>. 

This corresponds to the experiments that have the leftmost column of Table 2 

set to a single processor. This methodology can also extend to bigger 

processor count target platforms in the future. 

The CPU utilization time means that a system that has a single CPU and using 

100% CPU utilization is taxing the single processor, while for a dual CPU 

system having a 200% utilization means that two processors are being taxed 

fully. 
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Table 2 shows that even for a simpler proportional control system we can 

achieve close to 43.26% of average latency reduction by going from one core 

to two cores. 

 

System Configuration Measurements 

Number 

of 

CPU 

Cores  

RT Scheduler 

Policy 

Number 

of 

Joints 

Average 

CPU 

Utilization 

Time (%) 

Average 

Latency 

to 

Target 

Position 

(us) 

Median 

Latency 

to 

Target 

Position 

(us) 

Standard 

Deviation 

(us) 

1 
SCHED_FIFO 2 98.81 847.32 139.00 21,457.99 

SCHED_RR 2 98.37 243.63 139.00 590.03 

2 
SCHED_FIFO 2 178.05 177.85 141 224.14 

SCHED_RR 2 173.75 177.07 143 189.18 
 

Table 2. Performance characteristics scaling vs. scheduler configurations in the arm. 

 

The median latency is a very meaningful data point as this is the 50th percentile 

latency of the requests, our robot performs the typical positioning action 

somewhere between 139 to 143 us. As you can see here there is no much 

difference here of using either a single core or dual core setup. 

The standard deviation as seen in the rightmost column of Table 2 corresponds 

to the jitter the system has. Using a single-core system provides the worst jitter 

as the Linux scheduler will share the processor by other critical services such 

as networking and I/O subsystem and device drivers, by mixing the 

SCHED_FIFO scheduler with a single core provides the worst standard 

deviation of two orders of magnitude than that of the others – and there is a 

reason for this. The testing was performed through the network, network 

devices issue interrupts as their transmit and receive queues get full, and many 

device drivers behave quite similar, the nature of this huge jitter is that with 

this type of policy the task is allowed to run until work has been completed or 

a voluntary scheduler yield, but with all of the robotic specific interrupt 

handling being done with SCHED_FIFO and interrupts being asynchronous 

of nature this results in an extremely jitter situation that starve and block other 

processes for a huge amount of time. 

This jitter behavior is fixed by looking at the second row shows that 

SCHED_RR even with single core configurations provided quite a decent 

response for a robot with not that much jitter now. Showing that the Linux 

scheduler can function as a decent robotics solution for prototyping with 

latency responses under 1 millisecond. 
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But what is most important is that with the recent rise of multi-core embedded 

systems that the robot performance shines when utilizing all of the Edison 

platform capabilities of dual core. The SCHED_FIFO dual-core configuration 

is allowed to finish things faster by 2us due to less context switching but the 

ideal and most scalable solution seems to be multi-core SCHED_RR 

configurations, this reduced the jitter to almost nonexistent while keeping an 

even greater than the typical 50th percentile of the transactions under 143 us. 

Multi-core SCHED_RR shines as the ideal experience on robotics where 

achieving reproducible and constant behavior is key while keeping other 

services such as network transmission or logging working. This allows 

making proper use of all of the Linux services and infrastructure without much 

interference on the robot performance. 

Another demo that was developed using the same set of source code and 

framework is called Robot_Record.cpp and Robot_Playback.cpp [11] 

which consist of two more interactive applications using the software 

framework. 

The recorder will start the robot without the automatic control loop thread 

running so that it can record and sense where the robot is being moved to. This 

lets you move the robot manually to start monitoring and record the trajectory 

and then dump it into a text file with coordinates and timestamps. 

 

Figure 13. Recorder tool waiting for input to stop. 

 

This output file that was recorder can then be input of the playback application 

where it will replicate the recorder trajectory. 

The sequence of pictures displayed in Figure 14 showcases the top row with 

the robot being manipulated manually and trained to perform the trajectory, 

while the bottom row has snapshots of the trajectory that was recorder being 
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replayed. A full-length video of the robot utilities used for playback and 

recording was uploaded and can be viewed online [17]. 

 

 

 

Figure 14. Recorded trajectory being replayed. 

 

 

Figure 15. Playback tool console output. 
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CHAPTER 4: 

CONCLUSIONS 

 

4.1 Conclusions 

Creating a robotics framework under Linux was a somewhat easy task for 

anyone familiar with developing UNIX based C++ applications. The use of 

the C++ language favored a lot at separating and creating objects that 

resemble real life things such as, robotic arms, joints, rotors, motors, sensors, 

and some others, this kept the code to be easily maintained and easy to read. 

There was some inspiration on Arduino’s Servo Library [18] where we can 

have objects and various methods such as start and read states, but this was 

heavily enhanced because in my opinion using Arduino is good for hobby 

prototyping and not so good for academics and engineers as there is a lot of 

non-determinism and improper bug handling. 

Having a robust OS such as GNU/Linux proved to be beneficial as a lot of the 

OS services have been well tested throughout the years and multiple hardware 

architectural support. The soft real-time mode of the Linux kernel also was 

found to be a nice addition for robotics as a lot of the hardware out there 

usually supports Linux. Boards such as the Raspberry Pi 1/2/3, the ODROID 

or the Intel’s Edison and Galileo Boards are easily accessible to a lot of 

consumers and are found at schools throughout the world and obviously 

Personal Computers controlling robots are not left out since the framework 

supports everything that can run Linux. 

While optimizations such as real time automatic control was proven to be used 

properly from within a GNU/Linux OS by properly compiling a RT Kernel 

for your board and modifying the scheduler to use one of the already 

mentioned real time policies. It was important to leverage a lot of the OS 

services already provided to get the implementation time down while keeping 

the return of investment on the end application high as possible. 

I migrated from the Intel Galileo board which was a single core system with 

modest GPIO performance to use the Intel Edison in approximately 4 hours 

of work, so transitioning the project to a different platform proved to be almost 

no hassle. It was a matter of finding the documentation of the right GPIO pins 

to use, hook up the DC motors and sensors to it, compile the 

Robot_Keyboard.cpp and it was working. 
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There are a couple of crucial things to always keep in mind when planning to 

modify or enhance the control algorithm, avoiding any multi-core 

performance reducing events to be executed in the tight control loop, such 

things to avoid are having shared resources accesses in here, those would 

imply having semaphores and cause bus locks and would increase heavily the 

jitter. Also putting heavy I/O events such as writing to disk or the console is 

not recommended although somewhat useful only while debugging. 

 

4.2 Future Work 

The current framework has software support from 1 up to N joints. But there 

still work to be done in the kinematics transformation portion. Right now, only 

1 DOF and 2 DOF manipulators have the solutions to the inverse kinematics 

problems. So, there is room to implement conformal geometric algebra [19] 

models and code them in C++ within the framework in order to test and 

improve the performance of higher DOF manipulators. 

As we move into higher DOF robots it would be important to make use of the 

scalable threaded implementation and jump in to use a four-core or eight-core 

board so that we can utilize resources better. As higher core count systems 

become more popular and Moore’s law allows us to have more complex 

cheaper chips this would be an excellent use as a 6 DOF system will allow us 

to have any position within a three-dimensional space. We could have 6 real 

time threads assigned to 6 out of the 8 available cores controlling each joint, 

and still have one more for the application such as an ink drawing or printing 

program and another hosting web services via HTTP. 

It would also be important to extend and create a visual encoder that reports 

the angle of a joint by using computer vision. This would allow to reflect the 

modularity of the software architecture by layers and objects such that 

different sensors can be used in the framework. This would also allow to use 

a single camera to report the multiple joint angles, instead of having separate 

quadrature encoder sensors. The framework allows using two or more sensors 

for feedback per joint so it would also be possible to have more accurate robot 

tracking by using both the visual encoder and the quadrature encoder at the 

same time. 

And lastly, it might also be of useful experimentation to play with CPU 

isolation on multi-core systems, this allows keeping specific processors out of 

the CPU scheduler and Kernel and assign the robot application and interrupt 

processing to reside on a CPU and use all of the time. This sounds like a 

feasible approach on embedded systems that have more than two cores, on a 
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quad-core system we could use two cores for the OS, services, Kernel and 

drivers while using the remaining two cores for the two joints fully. 
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