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ABSTRACT 
 
The analysis of dynamical models for urban knowledge 
analysis using the information extracted from a geographical 
region processed from the data provided by multispectral 
remote sensing systems provides useful information for 
urban planning and resource management. However, several 
topics of interest on this particular matter are still to be 
properly studied. Using the remote sensing data that has 
been extracted from multispectral images from a particular 
geographic region in discrete time, its dynamic study is 
performed in both, spatial resolution and time evolution, in 
order to obtain the dynamical model of the physical 
variables and the evolutionary information about the data. 
This provides a background for understanding the future 
trends in development of the dynamics inherent in the 
multispectral and high-resolution images. This proposition 
is performed via an intelligent computational paradigm 
based on the use of dynamical filtering techniques modified 
to enhance the quality of reconstruction of the data extracted 
from multispectral remote sensing images and using high-
performance computational techniques to unify the available 
data scheme with its dynamic analysis and, therefore, 
provide a behavioral model of the sensed data.  
 

Index Terms–– urban knowledge, dynamical analysis, 
remote sensing, image processing, multispectral analysis. 
 

1. INTRODUCTION 
 

Dynamic is a term that refers to a phenomenon that 
produces time changing patterns, the characteristics of that 
pattern at a particular time is related with those at other 
times. The term is nearly synonymous with time evolution 
or pattern of change [1].  

Nearly all the observed phenomena every day, or in a 
scientific research, have important dynamic aspects. Many 
dynamic systems can be understood and analyzed intuitively 
without resort to mathematics and without development of a 
general theory of dynamics. However, in order to approach 
unfamiliar complex situations efficiently, it is necessary to 
proceed systematically. Mathematics can provide the 
required economy of language and conceptual framework; 
therefore, the term dynamics takes a dual meaning. It is a 
term for the time evolution phenomenon in the real world, 

and a term for that part of mathematical science that is used 
for its representation and analysis [1].  

Dynamic systems are represented mathematically in terms 
of either differential or difference equations. These 
equations provide the structure for representing time 
linkages among variables.  

 
2. PROBLEM MODEL 

 
An innovative paradigm that has been developed is 
presented, its objective is the mathematical analysis of the 
dynamical model in both, spatial resolution and time 
evolution, of a particular geographical region obtained from 
multispectral remote sensing data (MRSD) in discrete time. 
This is performed via the Multispectral Dynamic Forecasting 
(MDF) method, which unifies the MRSD mapping scheme 
with its dynamic analysis to provide a high-resolution 
mapping of the MRSD in discrete time. If the attributes of 
interest of a system are changing in time, then it is referred to 
as a dynamic system. A MDF process provides the 
mathematical model of change in space resolution and time 
evolution of such a dynamic system [2]. 

Consider the measurement data wavefield u(y)=s(y)+n(y) 
modeled as a superposition of the echo signals s and additive 
noise n that assumed to be available for observations and 
recordings within the prescribed time-space observation 
domain Y'y. The model of observation wavefield u is 
specified by the linear stochastic equation of observation 
(EO) of operator form [1] as u=Se+n (eÎE; u,n ÎU; S:E®U) 
in the L2 Hilbert signal spaces E and U [1] with the metric 
structures induced by: 
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respectively (where * stands for complex conjugate). The 
operator model of the stochastic EO in the conventional 
integral form may be rewritten as [1] 
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where );( xte  represents the stochastic backscattered 
wavefield fluctuating in time t, and the functional kernel 
S(y,x) of the signal formation operator (SFO) S in (2) is 
specified by the particular employed MRSD signal wavefield 
formation model [2]. The phasor e(f,x) in (2) represents the 
backscattered wavefield e(f) over the frequency-space 
observation domain F´P´Q [1], in the slant range rÎP and 
azimuth angle qÎQ domains, x=(r,q)T, X=P´Q, 
respectively. The MRSD imaging problem is to find an 
estimate  of the power spatial spectrum pattern (SSP) 
B(x) [3] in the X'x environment via processing whatever 
values of measurements of the data wavefield u(y), yÎY are 
available. Following the MRSD methodology, any particular 
MRSD of interest is to be extracted from the reconstructed 
MRS image  applying the so-called signature 
extraction operator L [3].  

The particular MRSD is mapped applying L to the 
reconstructed image as 

ˆ ˆ( ) ( ( ))BLL =x x . (3) 

The signature reconstruction problem is formulated as 
follows: to map the reconstructed particular MRSD of 
interest ˆ ˆ( ) ( ( ))BLL =x x  over the observation scene X'x via 
post-processing whatever values of the reconstructed scene 
image ˆ( ),B x  xÎX are available. 
 

3. MULTISPECTRAL DYNAMIC FORECASTING 
 

3.1 Lineal Dynamic Model 
 
The crucial issue in application of the modern dynamic filter 
theory to the problem of reconstruction of the desired MRSD 
in time is related to modeling of the data as a random field 
(spatial map developing in time t) that satisfies a dynamical 
state equation. Following the typical linear assumptions for 
the development of the MRSD in time [4] its dynamical 
model can be represented in a vectorized space-time form 
defined by a stochastic differential state equation of the first 
order  
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where z(t) is the so-called model state vector, C defines a 
linear operator that introduces the relationship between the 
MRSD and the state vector z(t), and ξ (t) represents the white 
model generation noise vector characterized by the statistics 

0ξ =)(t  and )'()()'()( ttttt T -= dξPξξ  [4]. Here, Px(t) is 

referred to as state model disperse matrix [4] that 
characterizes the dynamics of the state variances developing 
in a continuous time t ( tt ®0 ) starting from the initial 
instant t0. The dynamic model equation that states the 

relationship between the time-dependent B(t) and the desired 
MRSD map L(t) represented as 

ˆ ( ) ( ) ( ) ( )t t t t= +B H z ν ,  ( )tt LCH =)( , (5) 

where L is the linear approximation to the inverse of the 
MRSD operator ˆ( ( )).BL r  The stochastic differential model 
(4) and (5) allows the application of dynamical filter theory 
[3] to reconstruct the desired MRSD in time incorporating 
the a priori model of dynamical information about the 
MRSD.  

The aim of the dynamic filtration is to find an optimal 
estimate of the desired MRSD )(ˆ)(ˆ tt zCΛ =  developing in 
time t (t0® t) via processing the reconstructed image vector 
)(ˆ tB  and taking into considerations the a priori dynamic 

model of the desired MRSD specified through the state 
equation (4). In other words, the design of an optimal 
dynamic filter that, when applied to the reconstructed image 
ˆ ( ),tB  provides the optimal estimation of the desired MRSD 

map ˆ ( ),tΛ  in which the state vector estimate )(ˆ tz  satisfies 
the a priori dynamic behavior modeled by the stochastic 
dynamic state equation (4). The canonical discrete time 
solution to (4) in state variables [5] is described as follows 

( 1) ( ) ( ) ( ) ( )i i i i i+ = +z Φ z Γ x ,  ( ) ( ) ( )i i i=Λ C z , (6) 

where ( ) ( ) ,ii t t= D +Φ F I  ( ) ( ) ,ii t t= DΓ G  and tD  represents 
the time sampling interval for dynamical modeling of the 
MRSD in discrete time.  

The statistical characteristics of the a priori information 
in discrete-time [5] are specified as 

1) Generating noise: 0ξ =)(i ; ( ) ( ) ( , );Ti j i j= ξξ ξ P  

2) Data noise: 0ν =)(k ; ( ) ( ) ( , );Ti j i j= νν ν P   

3) State vector: )0()0( zmz = ; (0) (0) (0).T = zz z P  
The 0 argument implies the initial state for initial time 

instant (i=0). For such model conventions, the disperse 
matrix Pz(0) satisfies the following disperse dynamic 
equation 

( 1) ( ) ( ) ( ) ( ) ( ) ( )T Ti i i i i i i+ = +z z ξP Φ P Φ Γ P Γ . (7) 

 
3.2 Dynamic Reconstruction 

 
The problem is to design an optimal decision procedure that, 
when applied to all images ˆ{ ( )}iB  in discrete time i (i0® i), 
provides an optimal solution to the desired MRSD 
represented via the estimate of the state vector state vector 
z(i) subject to the numerical dynamic model (6). To proceed 
with the derivation of such a filter, the state equation (4) in 
discrete time i (i0® i) is represented as 

)(ˆ xB

)(ˆ xB



)()()()()1( iiiii ξΓzΦz +=+  (8) 

According to this dynamical model, the anticipated mean 
value for the state vector can be expressed as 

ˆ( 1) ( 1) ( 1) ( )i i i i+ = + = +zm z z z
, (9) 

where the mz(i+1) is considered as the a priori conditional 
mean-value of the state vector for the (i+1) estimation step 

)()(ˆ),...,1(ˆ),0(ˆ)()1( iiii ξΓBBBzΦmz +=+

)(ˆ izΦ=  
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and the prognosis of the mean-value becomes 
ˆ( 1) ( )i i+ =zm Φz . From (8) thru (10) is possible to deduce 

that given the fact that the particular reconstructed image 
)(ˆ iB  is treated at discrete time i, it makes the previous 

reconstructions ˆ ˆ ˆ{ (0), (1),..., ( 1)}i-B B B  irrelevant. Thus, the 
dynamical estimation strategy is modified to 

ˆ ˆˆ ˆ( 1) ( 1) ( ); ( 1) ( 1) ( 1); ( 1)i i i i i i i+ = + + = + + +zz z z B z B m
 (11) 

For the evolution (i+1)-st discrete time prediction/estimation 
step, the dynamical MRSD estimate (5) becomes 

ˆ ( 1) ( 1) ( 1) ( 1)i i i i+ = + + + +B H z ν  (12) 

with the a priori predicted mean (9) for the desired state 
vector. Applying the Wiener minimum risk strategy [5] to 
solve (12) with respect to the state vector z(t) and taking into 
account the a priori information, the dynamic solution for the 
MRSD state vector becomes 

ˆˆ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)i i i i i ié ù+ = + + + + - + +ë ûz zz m Σ B H m  (13) 

where the desired dynamic filter operator )1( +iΣ  is  
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Using the derived filter equations (13) and (14) and the 
initial MRSD state model given by (6), the optimal filtering 
procedure for dynamic reconstruction becomes 

ˆ ˆˆ ˆ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( )i i i i i i i ié ù+ = + + + - +ë ûΛ Φ z Σ B H Φ z
 

(15) 

Here, the initial condition ˆ ˆ(0) { (0)}.=LΛ B  The crucial issue 
to note here is related to model uncertainties regarding the 
particular employed dynamical MRSD model (6).  
 
 

4. SIMULATIONS 
 
In the simulation results, a set of 40 MRSD maps were 
extracted from multispectral remote sensing images with 
high-resolution values for of spectral and spatial resolution 
and for a particular geographical scene. The MDF 
methodology is applied to the collection of MRSD maps [6].  

First, the collection of MRSD maps [4] extracted in 
different times (discrete) for the same scene is set for the 
simulation. Therefore, the discrete evolution time k equals 
to 40. Second, the pixel evolution vector 𝚺"# is defined for 
this simulation as  

 
𝚺"# = 𝚺"#,& 𝚺"#,' 				… 𝚺"#,*+ , (16) 

 
where 𝚺 represents the threshold values of the same (i, j)-th 
pixel from the MRSD maps. This is the observation signal 
to be post-processed with the dynamic post-processing 
method. Third, the measurement matrix H and the state 
transition matrix F are simplified to I because the equation 
of observation and the stochastic dynamic state equation are 
supposed to be ideal (noiseless, because the observation 
vector is directly extracted from the MRSD maps). The 
dynamic filter operator (gain matrix) Q determines the 
variance evolution of the observation values (16) of the 
dynamically reconstructed MRSD. The initial conditions are 
the initial observation value 𝚺(0) and its initial estimation. 

The MDF method specified by equation (15) is applied 
to estimate the ultimate value 𝚲 that is the next 𝜅 + 1 -st 
continuous time step of the observation vector 𝚺"#. This 
process is performed through all the {(i, j)} pixels of the 
MRSD maps to obtain a single aggregated MRSD map 
𝚲345. The simulation results of application of the 
developed MDF method are presented in Figures 1 and 2. 
Figure shows the first MRSD map (1024x1024-pixels) 
extracted from the first remote sensing scenes that 
corresponds to the metropolitan area of the city of 
Guadalajara, in Mexico. This is performed in different time 
(𝜅 = 1,2,3,4, …) for the time evolution analysis, 
respectively.  

Figure 2 shows the dynamic MRSD map reconstructed 
with the application of the MDF method for the (𝜅 +
1) time step (𝜅 = 41) specified by model (15). The 
MRSD map were reconstructed in a discrete time k, 
therefore, the MDF method produces the desired dynamic 
MRSD prediction for the next discrete time step (𝜅 + 1), 
which represents the prediction of changes. 

 
5. CONCLUDING REMARKS 

 
From the presented simulations results, it is possible to 

deduce that the developed MDF method provides a 
possibility to perform the intelligent analysis of the dynamic 
behavior or the desired environmental map in both, spatial 
resolution and time evolution. 



  

  
Figure 1. MRSD map from the RS scene for k = 1 discrete time. Figure 2. Dynamic prediction obtained with the MDF method for    

k = 41 discrete time. 
 
 

This is achieved because the MDF algorithm aggregates 
the information of the MRSD collection of remote sensing 
images for a particular geographical region in discrete time, 
and employs more detailed robust a priori information from 
the original reconstructed remote sensing scene. The 
resulting dynamic MRSD prediction map ensures a high 
accuracy in the estimation process and in the classification 
achieved.  
A real-time process (RTP) can be defined as the study of 
software systems which are subject to a real-time constraint. 
By contrast, a non-real-time system is one for which there is 
no deadline, even if fast response or high performance is 
desired or even preferred. The needs of RTP software are 
often addressed in the context of real-time operating 
systems, and synchronous programming languages, which 
provide frameworks on which to build RTP application 
software. A RTP may be one where its application can be 
considered (within context) to be mission critical. Moreover, 
RTP can be said to have failed if they are not completed 
before their deadline, where their deadline is relative to an 
event. A deadline must be met, regardless of system load. 
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