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Abstract—Using recurrent high order neural networks for
identification, a new scheme for pinning control of complex
networks with changing unknown coupling strengths is proposed
for achieving synchronization. The robust behavior of the control
system is investigated via simulations.

I. INTRODUCTION

Complex dynamical networks have received a great deal of
attention since the publication of the seminal articles ([1],[2]
and [3]). Complex systems and networks are used to model
and analyze processes and phenomena consisting of interacting
elements named nodes, and to control their global and/or indi-
vidual behaviors ([4], [5] and [6]). Their possible applications
are in diverse fields, from biological and chemical systems to
electronic circuits and social networks [5]. The models used
to describe complex networks in the continuous-time settings
are derived from graph theory and other frameworks such as
the Kuramoto model of linear coupling oscillators [7]. Models
have been developed with different structures and coupling
characteristics like the small-world model [1], the E-R random
graph model [8] and the scale-free model [9].
Synchronization is a process wherein many identical or differ-
ent systems adjust a given property of their motions throughout
to a suitable coupling strength configuration, or forced by an
external input [10], [11]. The emergence of collective and
synchronized dynamics in a large network of coupled units has
been investigated since the beginning of the 1990 in different
contexts and in various fields, ranging from biology and ecol-
ogy to semiconductor lasers to electronic circuits [5]. There
are many events where synchronization is a desirable feature;
examples include identical oscillators in cardiac peacemaker
cells or waves propagation in the brain [2]. Results have
demonstrated that synchronization takes place only if some
structural and coupling conditions are fulfilled. One example
is the master stability function [12]; another is the Wu-Chua
conjecture, which correlates the coupling strength with the
structural Laplacian matrix [13]. To guarantee synchronization,
efficient control techniques may be applied [6].
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The basic idea of pinning control is to utilize the network
structure to contribute to its regulation; to this end a local
control action is applied to a small number of nodes [14],
[15]. How many and which nodes to select is still the key
problem. Comparations between random and specific pinning
have been investigated, for different topologies ([16], [12] and
[13]). Measures like degree distribution, clustering coefficient,
average shortest path length, efficiency, betweness, coreness
and asorativity have been used to characterize the importance
of nodes and their neighborhoods. In order to find the best
selection of pinned nodes to guarantee a desired behavior for
the whole network [5], in this work we focus on the degrees
of the nodes.
Most studies focus on stabilization control, where weights
or coupling strengths between nodes are considered as an
equal and fixed value for all links; other studies consider the
coupling strengths as adaptive variables [13], [17]. On the
other hand, the coupling strengths for a real network could
be unknown, and might change over time. The change of
the coupling strengths has been rarely studied. Consequently,
the problem presented in this paper is the design of a robust
control law which guarantees stability for nonlinear systems
coupled by a complex network in the presence of non-modeled
dynamics of the nodes with changes in coupling strengths.
Adaptive neural control schemes could offer a solution for
the problem described above. Artificial neural networks have
become an useful tool for control engineering thanks to their
applicability on modeling, state estimation and control of
nonlinear systems ([18] and [19]). Using neural networks,
control algorithms can be developed to be robust against
uncertainties, modeling errors and parameter changes. Neural
networks consist of a number of interconnected processing
elements (neurons). The way in which the neurons are inter-
connected determines its structure [19].
Since the publication of [20], there has been continuously
increasing interest in applying neural networks to identification
and control of nonlinear systems. Lately, the use of recurrent
neural networks is being developed, which allows more effi-
cient modeling [18], [21]. Three representative books ([22],
[19] and [23]) have reviewed the applications of recurrent
neural networks to nonlinear system identification and control.
In particular, while [22] uses off-line learning, [19] analyzes
adaptive identification and control by means of on-line learn-
ing, where stability of the closed-loop system is established
based on the Lyapunov methodology. In [19], trajectory track-
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ing is reduced to a linear model-following problem, with
application to DC electric motors. In [23], analysis of recurrent
neural networks for identification, estimation and control is
developed, with applications to chaos, robotics and chemical
processes control.
Chaotic attractors have been used to demonstrate the ef-
fectiveness of pinning control schemes in simulations and
implementations due to their special characteristics [24]. Dif-
ferent techniques have been proposed to achieve chaos control
[25]; including for instance, linear state space feedback [26],
Lyapunov methods [27], adaptive control [28], linear matrix
inequalities [29] and bang-bang control [30], among others.
Most of the chaos control methods have the disadvantage of
requiring the system parameters to be known; artificial neural
networks provide as a solution to this problem. In this paper,
we propose an identification and control scheme based on
recurrent high order neural networks (RHONN) for pinning
control of weighted complex networks with unknown node
dynamics. The paper is organized as follows: in section II,
preliminaries are given; sections III presents a neural network
identification scheme for pinned nodes in a complex network
and a control scheme for stabilizing control of the complex
network, followed by a simulation study in section IV. Finally,
conclusions are drawn in section V. A preliminary version of
this paper was presented earlier in a conference [31].

II. FUNDAMENTALS

A. Preliminaries

Throughout this paper, R, Rn, RN×N stand for spaces of
real numbers, n-dimensional vectors and N ×N -dimensional
matrices; ‖ · ‖ denotes the Euclidean norm; In stands for the
n× n identity matrix.

Definition 1: [12] The Kronecker product of two matrices
A and B is

A⊗B =

 a11B · · · a1mB
...

. . .
...

an1B · · · anmB



where if A is an n×m matrix and B is a p× q matrix, then
A⊗B is an np×mq matrix.

Definition 2: [12] The product A⊗ f(xi, t) is defined by

A⊗ f(xi, t) = a11f(x1, t) + a12f(x2, t) + · · ·+ a1mf(xm, t)
...

an1f(x1, t) + an2f(x2, t) + · · ·+ anmf(xm, t)


where if A is an n×m matrix and f is a p× 1 function, then
A⊗ f(xi, t) is a np× 1 vector.

Definition 3: [12] Matrix A is reducible if there exists a
permutation matrix P such that PAPT is of the form (B C

0 D ),
where B and D are square matrices. Matrix A is irreducible
if it is not reducible.
[12] If Q is a real symmetric matrix the set Υ consisting of
all matrices with zero row sums, which have only nonpositive
off-diagonal elements, then Q is positive semi-definite and has

a zero eigenvalue associated with the eigenvector (1, 1, . . . , 1).
Furthermore, Q can be decomposed as Q = MTM , where M
is a matrix in a class of matrices such that its row i consists
of all zeros except one entry βi and one entry −βi for some
nonzero βi. Furthermore, if Q is irreducible, then the zero
eigenvalue has multiplicity 1.

Definition 4: [12] A function ξ: Rn×R→ Rn is uniformly
increasing if there exists θ > 0 such that for all x, y, t,

(x− y)TP (ξ(x, t)− ξ(y, t)) ≥ θ‖x− y‖2 (1)

Definition 5: [12] Given a square matrix V , a function ξ:
Rn × R → Rn is V -uniformly increasing if V ξ is uniformly
increasing.

Definition 6: [12] A function ξ: Rn × R → Rn is (V -
uniformly) decreasing if −ξ is (V -uniformly) increasing.

Corollary 1: [32] Let x = 0 be an equilibrium point for a
nonlinear system of the form ẋ = f(x, t). Let V : Rn → R
be a continuously differentiable, radially unbounded, positive
definite function, such that V̇ (x) ≤ 0 for all x ∈ Rn. Let
S = {x ∈ Rn | V̇ (x) = 0} and suppose that no solution can
stay permanently in S, except the trivial solution. Then, the
origin is globally asymptotically stable.

B. Complex Networks
This subsection is taken from ([12] and [13]).

In general, a complex network with N identical linearly
and diffusively coupled nodes, with each node being an n-
dimensional dynamical system can be described as follows:

ẋi = f(xi) +

N∑
j=1,j 6=i

cijaijΓ(xj − xi) i = 1, 2, . . . , N (2)

where xi = (x1, x2, ..., xn)T ∈ Rn is the state vector of
node i, the constant cij > 0 represents the coupling strength
between node i and node j, Γ = (γpq) ∈ Rn×n is a
matrix linking coupled variables, and if some pairs (p, q),
1 ≤ p, q ≤ n, has γpq 6= 0, it means two coupled nodes are
linked through their pth and qth state variables, respectively.
In network (2), the coupling matrix A = (aij) ∈ RN×N
represents the structural configuration of the network, which
is assumed in this paper to be a scale-free network described
by the BâA model [12]. If there is a connection between
node i and node j (i 6= j), then aij = aji = 1; otherwise,
aij = aji = 0 (i 6= j). The degree ki of node i is
defined to be the number of its outreaching connections, and∑N
j=1,j 6=i aij =

∑N
j=1,j 6=i aji = ki for i = 1, 2, ..., N . Let the

diagonal elements of A be aii = −ki, i = 1, 2, . . . , N . Then,
the coupling matrix A is symmetric and the matrix −A is in
Υ. Let Υi be the subset consisting of all irreducible matrices
in Υ.
Assume the network is connected in the sense of having no
isolated clusters. Then, the symmetric coupling matrix A is
irreducible. From Lemma 1, zero is an eigenvalue of −A
with multiplicity 1, and other eigenvalues of −A are strictly
positive.
Let xs(t) be a solution of an isolated node of the network,
which is assumed to exist and to be unique, satisfying

ẋs = f(xs) (3)
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where xs is an homogeneous equilibrium point.
The objective is to obtain a pinning control scheme which
synchronize the entire network (2) to xs on the manifold

x1 = x2 = . . . = xN = xs f(xs) = 0 (4)

To achieve (4), the pinning control strategy is applied on a
small fraction δ(0 < δ � 1) of the nodes in network (2).
Suppose that nodes i1, i2, . . . , il are selected, where l = [δN ]
stands for the smaller but nearest integer to the real number
δN . This controlled network is described as

ẋi = f(xi, t)−
N∑
j=1

gijΓxj + ui

i = 1, 2, . . . l (5)

ẋi = f(xi, t)−
N∑
j=1

gijΓxj

i = l + 1, . . . , N (6)

where gij = −cijaij , and the coupling strength cii satisfies

ciiaii +

N∑
j=1,j 6=i

cijaij = 0 (7)

Without loss of generality, we rearrange the order of nodes in
the network such that the pinned nodes i = 1, 2, ...l, are the
first l nodes in the rearranged network.
The following local linear negative feedback control law is
used:

ui = −ciidiΓ(xi − xs) (8)

where the feedback gain di > 0, i = 1, 2, . . . , l.
Define the following matrices:

D′ = diag(c11d1, c22d2, ...clldl, 0, ..., 0) ∈ RN×N (9)
D = diag(d1, d2, ...dl, 0, ..., 0) ∈ RN×N (10)

Substituting (8) into ((5) and (6)), one can re-arrange the
controlled network and write it by using the Kronecker product
as

Ẋ = IN ⊗ [f(xi, t)]− [(G+D′)⊗ Γ]X + (D′ ⊗ Γ)X̄ (11)

where X̄ = (xTs , x
T
s , . . . , x

T
s )T , and the elements gij of the

symmetric irreducible matrix G = (gij) ∈ RN×N are defined
as gij = −cijaij .
It is easy to see that G is positive semi-definite, and G+D′

is positive definite with the minimal eigenvalue σmin(G +
D′) > 0. [12]. Assume that f(xi) is Lipschitz continuous
in x with a Lipschitz constant Lfc > 0. If Γ is symmetric
and positive definite, then the controlled network (5 and 6) is
globally stable about the homogenous state xs, provided that

(Lfc )
σmin(Γ) > 0 such that

σmin(G+D′) >
(Lfc )

σmin(Γ)
(12)

where σmin(Γ) and σmin(G+D′) are the minimal eigenvalues
of matrices Γ and G+D′, respectively. [12]. Assume that the
node ẋi = f(xi) is chaotic for all i = 1, 2, . . . , N , with the

maximum positive Lyapunov exponent hmax > 0. If cij =
c, di = cd and Γ = Im, then the controlled network (11)
is locally asymptotically stable on the homogenous state xs,
provided that

c >
hmax

σmin(−A+ diag(d, . . . , d, 0, . . . , 0)
(13)

where σmin stands for the minimal eigenvalue of the matrix.

C. Recurrent Higher-Order Neural Networks

In a recurrent neural network, the outputs of a neuron are
feedback to the same neuron or some neurons in the preceding
layers. Signals flow in forward and backward directions [33].
Artificial recurrent neural networks are mostly based on the
Hopfield model [34].
In [35], Recurrent Higher-Order Neural Networks (RHONN)
are defined as

χ̇i = −λiχi +

L∑
j=1

wij

∏
j∈Ik

y
δj(κ)
j i = 1, 2, ..., n (14)

where χi is the ith neuron state, L is the number of higher-
order connections, {I1, I2, ..., IL} is a collection of non-
ordered subsets of {1, 2, ...,m + n}, λi > 0, wij are the
adjustable weights of the neural network, δj(κ) are nonnegative
integers, and y is a vector defined by

y = [y1, ..., yn, yn+1, ..., yn+m]T

= [S(χi1), ..., S(χin), S(ui1), ..., S(uim)] (15)

with ui = [ui1, ui2, ..., uim] being the input to the neural net-
work and with a smooth sigmoid function S(χi) = 1

1+e−βχ
+ε,

in which β is a positive constant and ε is a small positive real
number, so, S(χi) ∈ [ε, ε+ 1]. As can be seen, (15) includes
higher-order terms.
By defining a vector

z(χi, ui) = [z1(χi, ui), ..., zL(χi, ui)]
T

= [Πj∈I1y
δj(1)
j ,Πj∈I2y

δj(2)
j , ...,Πj∈ILy

δj(L)
j ]T

(16)

(14) ROHNN can be written as

χ̇i = −λiχi + wTi z(χi, ui) i = 1, ..., n (17)

where wi = [wi,1, wi,2...wi,L]T . In this paper, consider

y = [y1, ..., yn]T = [S(χi1), ..., S(χin)] (18)

If the RHONN is affine in the control, then reformulating (17)
in a matrix form yields

χ̇i = Λχi +Wiz(χi) +Wigui (19)

where χi ∈ Rn, Wi ∈ Rn×L, Wig ∈ Rn×n, z(χi) ∈ RL,
ui ∈ Rn, and Λ = −λIn with λ > 0.
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Fig. 1. Control diagram

III. THE IDENTIFICATION AND CONTROL SCHEME

In this section, an adaptive control scheme (Fig. 1) is
proposed. It is composed by a recurrent neural identifier and a
controller for the pinned nodes in the complex network, where
the former is used to build an on-line model for the unknown
plant and the later to force the unknown node dynamics to
converge to an equilibrium point.

A. Neural Identifier
In this subsection, a neural network identifier for unknown

pinned nodes is designed. Without losts of generality, proceed
with only one pinned node according to [36]. The weight
adaptation law is taken from ([19] and [35]). Under the
assumption that all the states are available for measurement
and use, a recurrent neural network is designed for on-line
identification of the unknown ith node system (i = 1, 2, ..., l).
Consider the unknown nonlinear plant for the ith pinned node
as

ẋi = Fi(xi, ui) = f(xi, t)−
N∑
j=1

gijΓxj(t) + ui

f̂(xi, t) + ĝ1(xi, t)d+ ĝ2(xi, t)ui (20)

in accordance with [33].
Taking into account that f(xi) is unknown, with xi available
for measurement, one can model (20) by a recurrent neural
network as in (19).

Assumption 1: [12]. For the given nonlinear f(x), there is a
matrix T such that f(x) + Tx is V -uniformly decreasing for
some symmetric and positive definite matrix V .
Now, we propose the following recurrent neural network in a
Series-Parallel structure:

χ̇i = Λχi +Wiz(xi) + ωier + ui (21)

where Wi are the values of the on-line estimated network
weights, which minimize the modeling error ωier.

Assumption 2: [33] For every bounded state xi and for every
bounded wij ∈Wi, the system (21) is bounded.

Assumption 3: [33]. The given node dynamics can be
completely described, without any modelling error, by the
neural network of the form

ẋi = Λxi +W ∗i z(xi) + ui (22)

where W ∗i are the constant weights to be determined and all
other elements are as defined above.
Then, we define the identification error as ei = χi−xi, whose
dynamics satisfy

ėi = χ̇i − ẋi
ėi = Λei + W̃iz(xi) + ωier (23)
W̃i = Wi −W ∗i

Select the weight adaptation law as in [19], namely,

tr
{

˙̃WT
i W̃i

}
= −γeTi W̃iz(xi) (24)

which has elements as

ẇi,j = −γeTii W̃iz(xi) (25)
i = 1, 2, ..., n j = 1, 2, ..., L

With this adaptation law, the modeling error ω̇er = −ρωer
with ρ > 0 will converge to zero. For the respective stability
analysis on (23), we refer the reader to [33].

B. Stabilization

In this subsection, an adaptive neural control law is designed
for pinned nodes to stabilize its trajectory onto the homoge-
neous state xs as defined in (4). The problem of regulation
by pinning control for a complex network can be solved even
by pinning only one node [36], which is also applied here, by
pinning just the node with the greatest degree. The structure
of the control law is derived from the one presented in [12],
so that a local robust feedback controller is obtained.
Dynamics of the pinned nodes so selected is identificated by
a RHONN. A robust controller is used on such identifier
implementation, which guarantees stabilization of the error
between the plant and the desired equilibrium point xs.
The unknown pinned network ((5) and (6)), whose changing
coupling strengths c remain above the limit given by (13), can
become locally asymptotically stable at the homogeneous state
xs under the control law

ui = −cdΓ(χi − xs) i = 1, 2, . . . , l (26)

where χi are the identificated states of the pinned node by
a RHONN in the form of (21), and d > 0 are the feedback
gains.
Proof. It is required to stabilize the errors between the
ROHNN states and the desired equilibrium point (3). To apply
the Lyapunov methodology [32] define the stabilization error
for pinned nodes as xei = xi − xs, i = 1, 2, ..., l, and obtain
its derivative from (21) and (5) as follows:

ẋei = ẋi − ẋsχ̇i + ωier − ẋs
= Λχi +Wiz(xi) + ωier + ui − f(xs) (27)

This can be rewritten as

ẋei(t) = Λxei +Wiz(xi) + α(xs) + ωier + ui

= f̂(xei, ei,Wi) + ωier + ĝ2(xei, ei,Wi)ui

(28)
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where f̂(xei, ei,Wi) = Λxei + Wiz(xi) + α(xs),
ĝ2(xei, ei,Wi) = In and α(xs) = Λxs − f(xs) .
Note that (xei, W̃i, ei) = (0, 0, 0) is an equilibrium point for
(28) without disturbances. Now, consider the next Lyapunov
function candidate

V =
1

2
‖ ei ‖2 +

1

2
‖ xei ‖2 +

1

2γ
tr

{
W̃T
i W̃i

}
γ > 0

(29)
where ei and W̃i are defined in (23). Its time derivative along
the trajectories of (28), with the control law (26), is

V̇ = −λ ‖ ei ‖2 +eTi W̃iz(xi) +
1

γ
tr

{
˙̃WT
i W̃i

}
−λ ‖ xei ‖2 +xTeiWiz(xi) + xTei(α(xs) + ωier)

−cdxTeiΓ(χi − xs) (30)

Replacing the weight adaptation law (24) in (30), and taking
into account the property of −xTΓx ≤ −σmin(Γ)‖x‖2 where
σmin(Γ) is the minimum eigenvalue of matrix Γ, and then
reordering terms, one obtains

V̇ ≤ −λ ‖ ei ‖2 +eTi W̃iz(xi)− eTi W̃iz(xi)

−(λ+ cdσmin(Γ)) ‖ xei ‖2 +xTeiWiz(xi) (31)
+xTei(α(xs, ei) + ωier)

After eliminating the term eTi W̃iz(xi), one has

V̇ ≤ −λ ‖ ei ‖2

−(λ+ cdσmin(Γ)) ‖ xei ‖2

+xTeiWiz(xi)

+xTei(αs(xs) + ωier) (32)

In the fourth term of (32), xs is a constant; consequently,
αs(xs) is bounded. It follows that the part of this term, which
includes the uncertain term ωier, is also bounded from above
and is vanishing because ω̇er = −ρωer. Therefore, the last two
terms in (32) are bounded. Finally, by selecting d adequately
in the second term, V̇ is negative definite, even when c change
but remain above the threshold define in (13). It follows from
the Barbalat’s Lemma [32] and Corollary 1 that the pinned
nodes are asymptotically stables at xs.
Next, the stability of non-pinned nodes dynamics (6) is ana-
lyzed.
First, write ((5) and (6)) as in (11). Since cij = c and
D′ = diag[cd, cd, . . . , cd, 0, . . . , 0], one has σmin(G+D′) =
cσmin[(−A + D)] > 0 by definition (recall that −A is a
positive semi-definite matrix in Wi). Then, determine a d > 0
such that (12) and (13) are fulfilled. Finally, by Theorem 2,
the entire controlled dynamical network ((5) and (6)) is locally
stable at the homogeneous state xs.
The neural network absorbs variations of the coupling
strengths, so that a proper adjustment can be accomplished
on the control law.
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Fig. 2. State time evolution under the proportional control scheme.

IV. SIMULATION EXAMPLES

Consider a 50-node scale free network with degree distri-
bution ∆(ki) ≈ k−2

i . Each node is selected as a chaotic Chen
system [12] defined by

ẋ1 = â(x2 − x1)

ẋ2 = (ĉ− â)x1 − x1x3 + ĉx2

ẋ3 = x1x2 − b̂x3 (33)

The parameters in (33) are selected as â = 35, b̂ = 3
and ĉ = 28, so that an unstable equilibrium point exists at
xs = [7.9373, 7.9373, 21]. This equilibrium point is selected
as the homogeneous stationary state, at which the complex
network is going to be synchronized. The maximum positive
Lyapunov exponent is hie ≈ 2.01745 [12]. The Γ matrix
is taken as I3. In the implementation of the RHONN, set
z(xi) ∈ R10 in (17).

Two control algorithms are compared: the proportional
control scheme presented in [12] and the neural network
scheme proposed in this paper. Just one node is pinned,
which selected as the one with the highest degree. For both
control schemes, coupling strengths c at node connections
are set initially higher than the minimum value required by
(13). Then, the control law is incepted. Once the complex
network is stabilized, the coupling strengths are changed to
lower values, but still above their minimum values required
by (13).
For both control algorithms, the simulation is carried out as
follows:

Initially, from t = 0 to t = 5, the systems at the nodes run
without any connection, i.e. c = 0. At t = 5 the coupling
strengths are set to c = 30, so that the complex network is
connected according to a predefined scale-free distribution.
Subsequently, at t = 5.2 the control law is incepted. After
stabilization is achieved, starting at t = 9, the coupling
strengths change from c = 30 to c = 23. For both controllers
d = 1000 and cmin ≈ 21.55.

Fig. 2 and Fig. 3 show that the states of the entire network
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Fig. 3. State time evolution under the proposed control scheme.
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0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

e
i 1

Error

0 1 2 3 4 5 6 7 8 9 10
−40

−20

0

20

40

e
i 2

0 1 2 3 4 5 6 7 8 9 10
−60

−40

−20

0

20

e
i 3
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0 1 2 3 4 5 6 7 8 9 10
−100

0

100

200

W
(1

:1
0

)

Weights

0 1 2 3 4 5 6 7 8 9 10
−200

0

200

400

W
(2

:1
0

)

0 1 2 3 4 5 6 7 8 9 10
−500

0

500

1000

1500

W
(3

:1
0

)

Fig. 6. Weights evolution for Node 1 with identification.

Fig. 7. Control signals for the proportional control scheme.
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have been regulated to xs. In Fig. 2, the network loses its
regulation when the coupling strengths are changed at t = 9;
in Fig. 3, with the robust control law (26), the network
evolution stays at the stabilization state.
In Fig. 4, real state vs identified state of Node 1 are presented,
followed by the identification error for Node 1 in Fig. 5.
Fig. 6 shows the evolution of the neural-network weights in
the identification of Node 1. Fig. 7 and Fig. 8 display the
control signals for both controllers. The network maintains
synchronization with the proposed control scheme.

V. CONCLUSIONS

This paper develops a new pinning control scheme for com-
plex networks, from a recurrent higher-order neural network
approach. It is based on a neural identifier and a proportional
controller. By means of this novel scheme, it is possible to
stabilize a complex network even in the presence of varying
coupling strengths, with a robust property. Simulation results
illustrate the applicability and effectiveness of the proposed
scheme.
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