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I.  INTRODUCTION 

Artificial Neural Networks (ANNs) are inspired in the behavior of rudimentary biological 

neuronal functions.  A biological neural network may be thought of as a sophisticated signal 

processor, in which the strength of each synapse (i.e., the synaptic weight), the bias and threshold 

values of each neuron at steady state constitute the network’s program.  ANNs are conceived as 

information processing systems that aproximate biological neural networks: they emulate the 

ability of the human brain to learn from observation and generalize by abstraction. 

The modern era of artificial neural networks started in the 1940’s and explosively 

developed in the 1980’s, finding applications in many areas of science, engineering, management 

and other disciplines. 

Neural network applications in RF and microwave engineering have been reported since 

the 1990’s.  Description of artificial neural networks and key issues, namely architectures, 

paradigms, training methods, data set formation, learning and generalization errors, learning 
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speed, etc., in the context of RF and microwave CAD, has been extensively reported [1-6].  An 

excellent compilation and review of the main issues and initial applications of artificial neural 

networks in the microwave arena was made by Burrascano and Mongiardo [6].  Patnaik and 

Mishra [7] developed an abbreviated review of ANN techniques to microwave modeling, design, 

and measurement problems (with some emphasis on antenna applications).  Another excellent 

review on ANNs for RF circuits, high-speed interconnects and microwave modeling is the work 

by Zhang et al. [8], which includes a comprehensive foundation to neural model development as 

well as a list of practical microwave neuromodels.  It is clear that neural networks have been 

widely used for modeling microwave devices and high-speed circuits in several innovative ways.  

The training and testing data for these models are typically obtained from full-wave EM 

simulators, from physics-based models, or from measurements.  In the case of massive 

simulation tasks such as those required in RF/microwave subsystems (e.g., front ends for mobile 

and personal communications), the training and testing data can be obtained from standard 

Harmonic Balance simulations using detailed circuit models [9].  The resultant neural models are 

excellent vehicles for fast and accurate simulation.  Examples of neuromodeled microwave 

structures are in Table I. 

In contrast, the use of neural networks for microwave design by optimization is at a less 

developed stage.  This Chapter aims at reviewing the relevant work in electromagnetics-based 

design and optimization of RF and microwave circuits exploiting artificial neural networks 

(ANNs).  Measurement-based design of high-speed circuits using ANNs is also treated.  This 

Chapter is based on the author’s review paper [10], which is here updated and expanded.  

The conventional and most popular microwave neural optimization approach is reviewed 

in Section II.  Advantages and drawbacks of this strategy are emphasized.  Improvements of this 
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“black-box” approach through segmentation, decomposition, hierarchy, design of experiments 

(DoE) and clusterization are considered. 

The main limitations of the conventional neural optimization approach can be alleviated 

by incorporating available knowledge into the neural network training scheme.  Several 

innovative strategies that exploit knowledge are described in Section III, including the 

Difference Method (also called Hybrid EM-ANN), the Prior Knowledge Input (PKI) method, the 

Knowledge-Based ANN approach (KBNN), the Neural Space Mapping (NSM) optimization 

method, the Extended Neural Space Mapping approach, and the Neural Inverse Space Mapping 

(NISM) optimization algorithm.  Practical examples using these techniques are illustrated. 

Another strategy for ANN-based design of high-speed, RF and microwave circuits is 

described in Section IV, which consists of developing synthesis neural networks, also called 

“inverse neural models”.  A synthesis neural network is trained to learn the mapping from the 

responses to the design parameters of the microwave circuit.  Difficulties in developing synthesis 

neural networks are indicated.  Several cases of successful inverse modeling are described. 

Section V deals with several methods for EM-based statistical design using neural 

networks.  An industrially relevant microwave problem is used to illustrate the application of 

neural networks for efficient and accurate yield optimization. 

The key issues on transient EM-based design using neural networks are described in 

Section VI.  Suitable paradigms for approximating nonlinear dynamic behavior are mentioned, 

such us Recurrent Neural Network (RNN) and their corresponding training techniques. 

In Section VII the exploitation of ANNs in the so called “Global Modeling” technique is 

described.  “Global modeling” refers to a technique for unifying the EM analysis of passive 

structures and the semiconductor theory related to the active devices, by coupling the transport 
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equations with Maxwell’s equations.  The use of neural networks to speed up “global modeling” 

for EM-based design of MMICs is briefly described. 

Some future directions of ANN techniques for designing high-speed, RF and microwave 

circuits are proposed in Section VIII.  Finally, in Section IX some conclusions are drawn. 

II.  THE CONVENTIONAL NEURAL OPTIMIZATION APPROACH 

The most common strategy for optimizing high-speed, RF and microwave circuits using 

neural networks consists of generating a neuromodel of the circuit within a certain training 

region of the design parameters, and then applying conventional optimization to the neuromodel 

to find the optimal solution that yields the desired response.  This technique is illustrated in Fig. 

1.  Examples of this neural optimization approach can be found in [11-14]. 

The neuromodel is trained such that it approximates the fine model responses Rf, in a 

region of interest for the design parameters xf and operating conditions ψ, as illustrated in Fig. 

1a.  The fine model responses Rf are typically obtained from an EM simulator; in general, they 

represent the responses of an accurate but computationally expensive model (the term “fine 

model” comes from the space mapping literature [15]).  The operating conditions are in vector ψ, 

which might contain any required combination of independent variables according to the nature 

of the simulation, such as the operating frequencies, bias levels, excitation levels, risetime, 

falltime, initial conditions, temperature, etc.  Vector w contains the internal free parameters of 

the ANN (weighting factors, bias, etc.). 

If N represents the input-output relationship of the ANN, the process of training the 

neuromodel (see Fig. 1a) can be formulated as an optimization problem, where an optimal vector 

of the ANN parameters w* is found by minimizing the difference between the ANN outputs and 

the fine model responses at all the learning samples,  
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where ||⋅|| denotes a suitable norm (typically Euclidean, Manhattan or Huber), L is the total 

number of learning samples and ek is the error vector for each of those samples,  

 ),,(),()( wψxNψxRwe jifjiffk −=  (2) 

with 

 li ,,1K=  (3a) 

 τ,,1K=j  (3b) 

 )1( −+= ijk τ  (3c) 

where l is the number of training base points for the design parameters and τ is the number of 

independent variable points.  It is seen that the total number of learning samples is L = lτ. 

The complexity of the ANN must be properly selected: the number of internal free 

parameters has to be sufficiently large to achieve a small learning error, and sufficiently small to 

avoid poor generalization performance, i.e., ANNs that are too small cannot approximate the 

desired input-output relationship, while those with too many internal parameters perform 

correctly on the learning set, but give large errors at points not seen during training [16].  The 

generalization ability of the neuromodels is controlled during the training process (1) by using 

validation data and testing data, also obtained from fine model evaluations (typically full-wave 

EM simulations or measurements). 

Multilayer feedforward perceptrons are the most common paradigm for implementing the 

neuromodels [6].  In principle, they offer an accurate vehicle to model complex phenomena, 

since it has been shown [17] that standard multilayer feedforward networks can approximate any 

measurable function to any desired level of accuracy, provided a deterministic relationship 
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between input and target exists. 

Once an appropriate ANN is trained with sufficient learning samples and adequate 

generalization performance, i.e., once the optimal free parameters w* are determined, the ANN 

can be used for fast and accurate simulations within the region of interest.  It can also be used for 

inexpensive optimization, to find an approximation of the optimal fine model solution xf
* that 

yields the desired response Rf
* = Rf (xf

*) (see Fig. 1b).  The design problem consists of finding xf
* 

such that 

  (4) )),,((minarg ** wψxNxx f
f

f U=

where U is the objective function (typically minimax) expressed in terms of the design 

specifications. 

When the already trained neuromodel is optimized to find the optimal fine model solution 

xf
*, conventional optimization methods [18,19] are typically used. 

In [20,21], a modified version of the training algorithm used to develop the neuromodel is 

employed for searching the optimal design.  In this case the backpropagation algorithm with a 

modified learning rule where the weights are kept fixed while the input design parameters are 

considered as free parameters, is used to find the optimal design.  In this sense, the neural 

network is considered in [20,21] as a “bi-directional model”, and the process of training the 

ANN with xf as free parameters is considered as a “reverse modeling” process.  This reverse 

modeling approach is illustrated in [20,21] by designing microwave HBT amplifiers. 

In any case, the conventional approach to ANN-based design allows us to search for 

multiple solutions if different starting points for the design parameters are used. 

A.  Segmentation and Decomposition 

The neuromodel to be used for design by optimization can be developed for the 
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microwave circuit as a whole, or in a decomposed manner, where small neuromodels are 

developed for each individual section in the circuit, which are later connected by circuit theory.  

Full wave EM simulations are typically employed to generate the training, validation and testing 

data for each section of the microwave circuit.  Examples of this decomposed approach are found 

in [22,23].  The design of a microstrip corporate feed embedded in the middle of a duroid 

substrate is realized in [23] by characterizing each junction in the corporate feed using neural 

networks. 

A different technique for neuromodeling decomposition can be used when the complete 

set of responses contained in Rf are difficult to approximate with a single ANN.  In those cases, 

the learning task can be distributed among a number of ANNs, which in turn divides the output 

space into a set of subspaces.  The corresponding ANNs are trained individually, to match each 

response (or subset of responses) contained in Rf.  The technique is illustrated in Fig. 2.  

Examples of this approach are found in [24].  For instance, each output current and complex 

admittance parameter of a MESFET transistor is approximated in [24] by an individual neural 

network within a certain region of bias voltages and operating frequencies.  

B.  Exploiting Hierarchy 

Practical CAD tools require abundant libraries of accurate and computationally efficient 

models.  If neuromodels are to be used for efficient microwave design, the development of these 

libraries demands a more intelligent approach than developing individual neuromodels for each 

component of each library, otherwise massive fine model data generation and repetitive model 

training would be necessary.  As a response to this challenge, a Hierarchical Neural Network 

approach is proposed in [25], which basically consists of two stages.  In the first one the 

fundamental performance of a family of components of a library is identified and the 
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corresponding basic (or low-level) neuromodels are developed.  In the second stage a neural 

network based on a suitable combination of the low-level neuromodels is trained to map the low-

level responses to the fine model responses of each component in that family.  Examples of high-

speed interconnect libraries and physics-based MESFET libraries are developed in [25] 

following this approach.  

C.  Final Remarks on the Conventional ANN-based Design Approach 

The conventional approach to ANN-based design described before, which is also known 

as the “black-box” approach [26], has three main disadvantages: the time required to generate 

sufficient training, validation and testing samples, the unreliability of the optimal solution when 

it lies outside the training region (due to the well known poor extrapolation performance of 

ANNs), and the “curse of dimensionality”, which refers to the fact that the number of learning 

samples needed to approximate a function grows exponentially with the ratio between the 

dimensionality and its degree of smoothness [27].  Essentially, the number of fine model 

evaluations needed in this approach grows exponentially with the number of design parameters 

in the circuit. 

An alternative to reduce the size of the learning set in the black-box approach is to 

carefully select the learning points using the Design of Experiments (DoE) methodology, to 

ensure adequate parameter coverage, as in [28,29].  

Another way to speed up the learning process is proposed in [6] by means of preliminary 

neural clusterization of similar responses using the Self Organizing Feature Map (SOM) 

approach.  An interpretation of the general concept is illustrated in Fig. 3.  Vector wb represents 

the internal free parameters of a basic ANN that is taken as a rough approximation of the fine 

model in the region of interest, while vector ws represents the internal free-parameters of the 
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SOM network.  The SOM is developed such that it can automatically identify a number of 

classes of behavior (or groups of similar responses) according to some previously defined 

criteria.  Then individual neural networks (multiple-layer perceptrons) are trained with the data 

associated with each class.  Experiments are reported in [6] showing reduction in the overall 

training time of up to 80% with respect to that required by a single neural network model. 

The conventional neural optimization approach is indeed very suitable when the device’s 

physics is not fully understood (i.e., when there is no empirical model available for the device), 

but the device’s outputs for specified inputs are available, either from measurements or from 

accurate simulations.  On the other hand, an important advantage of the conventional neural 

optimization approach is its adequacy for full automation.  An algorithm for automatic 

development of conventional (black-box) neuromodels of microwave circuits is proposed by 

Zhang et al. [30].  This algorithm can automatically generate a neuromodel for any desired 

accuracy within a user-defined region of interest.  The process of generating fine-model training 

data, as well as the process of regulating the ANN complexity is fully automated.  Once the 

neural model automatically developed is available, the algorithm could be in principle expanded 

to automated design by optimization given a number of user-defined specifications and 

constraints, although this has not been reported yet. 

III.  NEURAL EM-DESIGN EXPLOITING MICROWAVE KNOWLEDGE 

The three main limitations of the conventional neural optimization approach can be 

alleviated by incorporating available microwave knowledge into the neural network training 

scheme.  Several innovative strategies have been proposed to incorporate this knowledge. 

A.  The Difference Method 

Also known as the Hybrid EM-ANN method, the Difference Method makes use of the 

difference in S-parameters between an available coarse model and the fine model to train the 
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corresponding neural network, as illustrated in Fig. 4a.  The coarse model responses Rc are 

typically obtained from an empirical, circuit equivalent model, which is very fast to evaluate but 

is not sufficiently accurate in all the regions of interest for the design parameters and operating 

conditions (the term “coarse model” comes from the space mapping literature [15]).  Training the 

neuromodel in the Difference Method can be formulated as (1-3) but replacing (2) by the error 

vector 

 ),,()],(),([)( wψxNψxRψxRwe jifjifcjiffk −−=  (5) 

Once the ANN is trained to approximate the difference between the fine and coarse 

model responses in the region of interest, it can be combined with the coarse model as in  Fig. 4b 

to yield an inexpensive and accurate approximation of the fine model, which can be used for 

conventional optimization.  The design problem is then formulated as finding xf
* such that 

  (6) )),,(),((minarg ** wψxNψxxx ffc
f

f RU +=

It has been reported [31] that the number of fine model simulations needed to train the 

ANN can be significantly reduced in the Difference Method.  However, it is recognized in [32] 

that this reduction in training samples is achieved only when the mapping from the difference 

between the fine and coarse model responses to the input parameters is simpler than the original 

target relationship, which is not always possible, depending on the coarse model accuracy.  The 

Hybrid EM-ANN approach was used in [33] to design an end-coupled band-pass filter in a 2-

layer configuration. 

To illustrate how the difference between the fine and coarse model responses can be as 

complex as the fine model responses themselves, consider the HTS microstrip filter in [34].  Fig. 

5 shows the coarse model responses at 13 base points, the corresponding fine model responses, 

and the absolute difference between them.  It is seen that the difference between both models 

 10



look like filter responses too, due to the severe misalignment of the coarse model responses.  

Modeling the difference by a neural network would represent almost the same effort as modeling 

the fine model directly.      

B.  The Prior Knowledge Input (PKI) Method 

In the Prior Knowledge Input (PKI) method proposed by Gupta et al. the coarse model 

responses are used as inputs for the ANN in addition to the other inputs, as illustrated in Fig. 6.  

The neural network is trained such that its response is as close as possible to the fine model 

response for all the data in the training set (see Fig. 6a).  Once it is trained, it can be used with 

the coarse model to realize efficient optimization (see Fig. 6b).  It has been reported [32,35] that 

the PKI approach exhibits better accuracy than the Hybrid EM-ANN approach, at the expense of 

a more complex ANN.  The PKI method is used in [36] to optimize a CPW patch/slot antenna on 

Duroid. 

C.  The Knowledge-Based ANN (KBNN) Approach 

In the so called Knowledge-Based ANN approach (KBNN), developed by Zhang et al. 

[37], the available knowledge is inserted in the internal structure of the ANN, as illustrated in 

Fig. 7.  This knowledge takes the form of microwave empirical or semi-analytical information. 

Knowledge-Based ANNs have non fully connected architectures, with one or several 

layers assigned to the microwave knowledge in the form of single or multidimensional vector 

functions, usually obtained from available closed-form expressions based on quasi-static 

approximations. 

By inserting the microwave empirical formulas into the neural network structure, the 

empirical formulas can be refined or adjusted as part of the overall neural network training 

process.  Since these empirical functions are used for some neurons instead of standard 
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activation functions, KBNNs do not follow a typical multilayer perceptron architecture and are 

trained using other methods than the conventional backpropagation [37].  In Fig. 7a, vector w 

contains not only the typical free parameters of an ANN (weights, bias, etc.), but also the 

adjustable parameters of the microwave empirical functions. 

KBNNs have been extensively used for developing models of microwave circuits [37, 

38,39].  In contrast, there are no microwave design examples using KBNNs (as defined here) 

reported in the literature.  Nevertheless, once a KBNN model is appropriately trained, it could be 

used as an accurate and inexpensive model for realizing conventional optimal design (see Fig. 

7b). 

D.  Sensitivity of Knowledge-Based Neural Networks 

Sensitivity information is very important in design by optimization.  The evaluation of 

the output derivatives with respect to the design variables without resorting to finite-difference 

schemes can improve the numerical performance of a large class of optimization methods 

typically employed for design.  When conventional feed-forward neural networks are used, the 

Jacobian of the ANN outputs with respect to its inputs can be obtained in closed form [40].  

When a generic knowledge-based neural network is used, i.e., when microwave functions are 

embedded within the ANN topology, the KBNN sensitivity information can be obtained using 

the formulation proposed by Zhang et al. [41,42].  In this formulation two ANNs are used: the 

original neural network and other called the adjoint neural network.  The adjoint neural network 

is defined such that once the original neural network is trained using the input/output data, the 

outputs of the adjoint neural network automatically becomes the derivatives of the output data 

with respect to the input data.  This formulation is used in [42] to find by optimization the 

solution of feasible regions of VLSI interconnect geometries given a budget on electrical 
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performance.  

E.  Neural Space Mapping (NSM) Optimization 

NSM optimization follows a space mapping (SM) approach to design [43,15], where the 

mapping function P from the fine to the coarse model parameter space is implemented by an 

ANN.  NSM optimization represents the first algorithmic formulation of ANN-based design of 

microwave circuits [44].  A simplified flow diagram for NSM optimization is illustrated in Fig. 

8. 

NSM starts by finding the optimal coarse model solution xc
* that yields the desired 

response R* by applying conventional optimization to the coarse model.  In Fig. 8, U(⋅) 

represents the same objective function used in (4) and (6).  2n additional points centered at xc
* 

are selected as the initial training set to develop an SM-based neuromodel [45], where n is the 

number of design parameters (xc, xf ∈ ℜn).  Training the neuromapping is formulated as (1-3) but 

replacing (2) by the error vector 

 )),,((),()( wψxNRψxRwe jifcjiffk −=  (7) 

Once an SM-based neuromodel is trained (see Fig. 9a), it is used as an improved coarse 

model (also called “surrogate model”), optimizing its parameters to generate the desired 

response.  The solution to the optimization problem 

  (8) ))),,(((minarg *)1( wψxNRxx fc
i

f U
f

=+

becomes the next iterate and is included in the learning set (see Fig. 9b). 

The fine model response at the new point is calculated and compared with the desired 

response.  If they are not close enough, the SM-based neuromodel is re-trained over the extended 

set of learning samples and the algorithm continues, otherwise, the algorithm terminates. 

An interesting feature of NSM optimization is that the independent variable ψ can also be 
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transformed through the neural network in order to improve the alignment between the fine and 

coarse model responses.  Additionally, NSM allows us to map only some of the design 

parameters.  This flexibility yields a number of different techniques to establish the 

neuromapping N, all of them illustrated in [45,34] for linear frequency-domain cases.  An 

extension of the neural space mapping modeling technique [45] applicable for nonlinear device 

modeling and large signal simulation is in [46]. 

NSM optimization is used in [34] to design a high-temperature superconducting (HTS) 

quarter-wave parallel coupled-line microstrip filter, as well as a bandstop microstrip filter with 

quarter-wave resonant open stubs.  NSM optimization has only been reported for frequency 

domain design problems. 

F.  Extended Neural Space Mapping Approach 

Although the original formulation of space mapping optimization considers xc and xf with 

different dimensions [43] and even with different design variables [15], the initial versions of 

SM-based algorithms were implemented and illustrated assuming that the optimization variables 

of the fine and coarse models are the same.  Typically, xc and xf are vectors with the same 

dimension containing corresponding physical parameters (lengths, widths, heights, dielectric 

constants, etc.).  This is true in [43,15,47-52], and NSM optimization is no exception.  This 

constraint was probably motivated by the fact that the mapping between both models can be 

easily initialized with a unit mapping, and that the Broyden updating formula usually considers 

xc and xf with the same dimensionality, i.e., a system of n nonlinear equations with n unknowns 

is assumed [53].  

More recent versions of SM-based optimization algorithms allow different dimensionality 

in xf and xc, but still it is assumed they are of the same nature (xf contains a subset of the design 
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variables contained in xc).  That is the case in [54,55], where the coarse model optimization 

variables include not only the fine model optimization variables but also some pre-assigned 

parameters.  The novel output space mapping [56] relates the mapped coarse model responses to 

the fine model responses, so that the mapped vectors (responses) are also of the same nature and 

dimensionality. 

In the most general case of input space mapping, the optimization variables of the fine 

and coarse models could be of different nature and dimension, hence the term “extended space 

mapping”.  For instance, xc might contain the element values of an equivalent lumped circuit of a 

microwave structure, while xf might contain the physical dimensions and material constants of 

that structure. 

An SM-based optimization algorithm for this general or extended mapping was proposed 

in [57], by using two different mappings, one for the parameters with the same design variables 

(the normal linearized mapping, which is updated using Broyden’s formula), and a second one 

called “knowledge mapping”, which is used to translate from the circuit to the physical variables 

in the coarse model using empirical formulas.  The technique described in [57] realizes the 

coarse model optimization phase and the parameter extraction phase at the circuit parameter 

level and not at the physical parameter level.  Several LTCC filters are designed in [57] 

following this scheme.  Another example of extended space mapping optimization is in [58], 

where xf contains n geometrical parameters of a multiplexer channel, while xc contains the 

corresponding m coupling matrix elements. 

In contrast, an ANN-based design approach for this general case of extended space 

mapping has not been reported in the literature, only a neural modeling strategy was proposed in 

[59,60], where xc contains the element values of a conventional small signal equivalent circuit of 
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an HEMT (whose physical dimensions are fixed), while xf contains the bias voltages.  Rf 

contains the S-parameters measured at various bias settings.  In this manner, once a suitable 

ANN is properly trained, the combination of the ANN and the small signal equivalent circuit 

approximates the large signal behavior of the active device (see Fig. 10) in the region of training. 

G.  Neural Inverse Space Mapping (NISM) Optimization 

NISM optimization is another algorithmic approach to ANN-based design, where the 

inverse of the mapping between the fine and coarse models is implemented with a neural 

network [61].  NISM optimization follows an aggressive approach in the sense of not requiring a 

number of up-front fine model evaluations to start building the inverse mapping.   

As in any other space mapping algorithm, NISM starts by finding the optimal coarse 

model solution xc
* that yields the desired response by optimizing the coarse model, followed by a 

fine model evaluation at xc
*.  Next, parameter extraction is performed, which consists of finding 

the coarse model parameters that make Rc as close as possible to Rf (see Fig. 11a).  The inverse 

of the mapping is trained with all the accumulated points from previous parameter extractions, as 

illustrated in Fig. 11b.  Training the inverse neuromapping at the ith iteration is formulated as 

 TT
l ][minarg* KK eww =  (9) 

with 

 ) ,   l,( )()( wxNxe l
c

l
fl −= i,,1K=  (10a,b) 

The next iterate is calculated by simply evaluating the current inverse neuromapping at 

the optimal coarse model solution (see Fig. 11c), 

 )  (11) ,( **)1( wxNx c
i

f =+

If the relative changes in the fine model parameters are small enough, NISM stops, 

otherwise a new parameter extraction is realized and the algorithm continues.  A simplified 
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algorithm for NISM optimization is illustrated in Fig. 12. 

NISM is used in [62] to design a capacitively-loaded 10:1 two-section impedance 

transformer, a bandstop microstrip filter with open stubs, and an HTS quarter-wave parallel 

coupled-line microstrip filter.  NISM optimization is compared in [63] with NSM optimization as 

well as with the trust region Aggressive Space Mapping algorithm exploiting surrogates [52].  It 

is found in [63] that, in all the examples considered, NISM optimization not only requires fewer 

fine model evaluations, but also arrives at a solution closer to the solution of the original 

optimization problem (the direct optimization of the fine model). 

As in the case of NSM optimization, NISM optimization has only been illustrated for 

frequency domain design problems, where xc and xf are the same optimization variables. 

IV.  SYNTHESIS NEURAL NETWORKS 

Another strategy for ANN-based design of microwave circuits consists of using synthesis 

neural networks, also called “inverse neural models”.  A synthesis neural network is trained to 

learn the mapping from the responses to the design parameters of the microwave circuit.  In this 

sense, a conventional neuromodel becomes an analysis neural network.  The problem of training 

a synthesis neural network is known as the inverse modeling problem, since the input and output 

variables are interchanged.  This idea is illustrated in Fig. 13, where the ANN is trained such that 

it can synthesize the design parameters xf for a given response Rf. 

The analysis problem is characterized by a single-value mapping: given a vector of 

design parameters we have only one possible vector of responses.  However, for inverse 

problems, the mapping can often be multi-valued: a given vector of responses can be generated 

by several different vectors of design parameters.  This might lead the synthesis neural network 

to make poor generalizations.  Another complication of the inverse modeling problem is the 

coverage of the input space by the training data, since the full characterization of the input space 
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(microwave circuit responses) is usually not available. 

A successful case of synthesis ANN development is reported by Selleri et al. [64,65], 

where an inverse neuromodel was obtained for predicting the position x and the radius r of a 

cylindrical post in a rectangular waveguide given a frequency sweep of |S21| obtained from full 

wave finite element EM simulations.  The synthesis neural network is trained with a number of 

vectors xf = [x  r]T and Rf = [|S21(f1)|   |S21(f2)| …]T.  It is reported in [64] that the synthesis ANN 

yields high accuracy for 3 testing points (3 frequency sweeps) not seen during training. 

An interesting approach is employed in [64] to design a profiled corrugated circular horn 

antenna by using synthesis neural networks.  In this problem, the effects of the multi-valued 

design relationship is overcome by taking a subset of the original design parameters (keeping 

constant the rest of them), by considering only some of the original responses (with a posteriori 

validation), and by imposing a selection criterion on the geometries predicted by the neural 

network. 

A dedicated algorithm for the design of multilayer asymmetric coupled transmission 

structures using a combination of analysis neural networks, synthesis neural networks and 

equivalent lumped circuits was successfully developed Gupta et al. [66].  In that work, the input 

space of the synthesis neural network is not the set of S parameters, but a set of lumped circuit 

parameters that are later translated into the conventional responses.  The physical parameters (the 

width of each line and the spacing between their edges) are the outputs of the synthesis ANN and 

the inputs of the analysis ANN.  Similarly, the output space of the analysis ANN is not the set of 

scattering parameters but a set of LC parameters used in an equivalent lumped circuit that 

generates the actual responses. 

Developing synthesis neural networks for general microwave design appears to be far 
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from automation.  The most serious difficulty is the multi-valued relationship in the inverse 

model.  User intervention is most likely needed in terms of choosing suitable design parameters, 

i.e., in determining selection criteria to impose a one-to-one relationship.  It appears that only 

dedicated algorithms for very specific design problems are amenable to automation. 

V.  ANN-BASED STATISTICAL DESIGN 

Accurate statistical analysis and yield optimization of microwave components are crucial 

ingredients for manufacturability-driven designs in a time-to-market development environment.  

Yield optimization requires intensive simulations to cover the entire statistic of possible 

outcomes of a given manufacturing process.  In practice, random variations in the manufacturing 

process of a microwave device may result in a significant percentage of the produced devices not 

meeting the specifications.  When designing, it is essential to account for these inevitable 

uncertainties.  Given the recognized accuracy of EM full-wave field solvers, it is desirable to 

include them in the statistical analysis and yield-driven design of microwave circuits.  

Unfortunately, their high computational cost imposes serious constraints for their direct intensive 

usage. 

Significant contributions have been made to the EM-based statistical analysis and design 

of microwave circuits.  Yield-driven EM optimization using multidimensional quadratic models 

that approximate the EM model responses for efficient and accurate evaluations was proposed in 

[67].  A more integrated CAD system for statistical analysis and design was proposed by Bandler 

et al. [68], where quadratic modeling and interpolation techniques were unified. 

A.  Yield Analysis and Design Using ANNs 

The most basic approach to ANN-based EM statistical design consists of applying 

conventional neuromodeling over a certain region of interest (see Section II) and then applying 

conventional Monte Carlo analysis techniques and conventional yield optimization techniques to 
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the inexpensive but accurate neuromodel.  In [11], the yield for the gain and input VSWR of an 

X-band amplifier is optimized by using conventional neuromodels.  In [13], a conventional 

neuromodeling procedure is followed to develop a fast and accurate model of an E-plane metal-

insert waveguide filter, within a region defined by certain nominal manufacturing tolerances.  

This neuromodel is later used to efficiently predict the yield on a large set of outcomes. 

The exploitation of neuromodels to estimate IC parametric yield is demonstrated by 

Creech and Zurada [108].  Here the neuromodel is developed in a decomposed fashion (see 

Section IIa), using training data obtained from measurements, including doping concentrations, 

layer thicknesses, planar geometries, resistivities, device voltages and currents in MESFET 

devices.  Inverse neuromodels are also developed to perform yield optimization.  Excellent 

agreement between the neuromodel yield prediction and the actual yield is reported. 

The use of SM-based neuromodels to perform accurate and efficient yield analysis and 

optimization of microwave devices is proposed by Bandler et al. [69].  Here it is assumed that 

the SM-based neuromodel is already available, obtained either from a modeling process [45] or 

from an optimization process [34].  It is shown in [69] that if the SM-based neuromodel is 

properly developed, the sensitivities of the fine model responses, Jf, can be approximated using 

 Ncf JJJ ≈  (12) 

where Jc denotes the Jacobian of the coarse model responses with respect to the coarse model 

parameters and mapped independent variable, while JN denotes the Jacobian of the 

neuromapping with respect to the fine model parameters.  Jc can be inexpensively computed 

using the coarse model, while JN can be calculated in exact closed form if conventional 

architectures are used for the ANN (e.g., three-layer perceptrons). 

B.  An Example of Yield Optimization through Neural Space Mapping 
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Consider optimizing the yield of a high-temperature superconducting (HTS) quarter-wave 

parallel coupled-line microstrip filter [69], whose physical structure is illustrated in Fig. 14.  L1, 

L2 and L3 are the lengths of the coupled-line sections and S1, S2 and S3 are the corresponding 

separations.  The width W is the same for all the sections as well as for the input and output lines, 

of length L0.  A lanthanum aluminate substrate with thickness H and dielectric constant εr is 

used.  The design specifications are |S21| ≥ 0.95 in the passband and |S21| ≤ 0.05 in the stopband, 

where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz, and the 

passband lies in the range [4.008GHz, 4.058GHz]. 

OSA90/hope [70] built-in elements for microstrip lines, two-coupled microstrip lines 

and open circuits connected by circuit theory over the same substrate definition are taken as the 

“coarse” model.  Sonnet’s em [71] with a high-resolution grid is used as the fine model. 

The SM-based neuromodel of the HTS filter obtained in [45] is used to perform yield 

analysis and optimization.  This model was obtained assuming that the design parameters are xf = 

[L1 L2 L3 S1 S2 S3] T, and taking L0 = 50 mil, H = 20 mil, W = 7 mil, εr = 23.425, loss tangent = 

3×10−5; the metalization was considered lossless.  The corresponding SM-based neuromodel is 

illustrated in Fig. 15, which implements a frequency partial-space mapped neuromapping with 7 

hidden neurons, mapping only L1, S1 and the frequency (3LP:7-7-3).  L1c and S1c in Fig. 15 

denote the corresponding two physical dimensions as used by the coarse model, i.e., after being 

transformed by the mapping, while ω represents the operating frequency (as used by the fine 

model), and ωc is the frequency used by the coarse model (transformed by the neuromapping). 

To realize yield analysis, it was considered a 0.2% of variation for the dielectric constant 

and for the loss tangent, as well as 75 micron of variation for the physical dimensions, as 

suggested in [72], with uniform statistical distributions.  The SM-based neuromodel was first 
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optimized, and the statistical analysis was realized around this optimal nominal solution with 500 

outcomes using OSA90/hope.  The responses for 50 of those outcomes are shown in Fig. 16.  

The yield calculation is shown in Fig. 17.  A yield of only 18.4% is obtained, which is reasonable 

considering the well known high sensitivity of this filter. 

Yield optimization was then applied to the SM-based neuromodel with 500 outcomes 

using the Yield-Huber optimizer available in OSA90/hope.  The corresponding responses for 

50 of those outcomes are shown in Fig. 18.  The yield is increased from 18.4% to 66%, as shown 

in Fig. 19.  An excellent agreement is observed between the fine model response and the SM-

based neuromodel response at the optimal yield solution (see Fig. 20).  More details on this 

example, as well as a creative technique for considering asymmetric variations due to tolerances, 

can be found in [69]. 

VI.  TRANSIENT EM-DESIGN USING NEURAL NETWORKS 

Although large-signal S-parameters might be employed to characterize the behavior of 

nonlinear microwave circuits [73-75], other techniques are usually preferred to fully describe the 

dynamic performance of such circuits [76].  In the frequency-domain, the two most popular 

techniques for analyzing nonlinear microwave circuits are Harmonic-Balance and Volterra-

Series.  The steady-state time-domain response can be easily obtained from the corresponding 

frequency-domain response by applying inverse Fourier transformation.  This allows us to 

realize steady-state time-domain design by employing frequency-domain simulators.  

If the transient response of the nonlinear circuit is an issue, either measurements or direct 

time-domain simulators with nonlinear models must be employed.  If neural network techniques 

are to be exploited in this case, more suitable paradigms than feed-forward perceptrons should be 

used. 
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A neural network with nonlinear dynamic behavior can be realized by adding feedback 

loops with some unit-delay elements to static multilayer perceptrons with nonlinear activation 

functions, as in a Recurrent Neural Network (RNN).  Fig. 21 conceptually illustrates the process 

of developing a neural dynamic model of a nonlinear microwave circuit.  Vector ψ(t) contains 

the input waveforms evaluated at the current discrete time t, while Rf(t) contains the 

corresponding fine model output waveforms amplitudes.  Banks of unit-delays are denoted by 

z−1.  Vector xf contains the design variables as well as any other time invariant circuit parameter.  

The free-parameters (weights, bias, etc.) of the feed-forward multiple-layer perceptron (MLP) 

are adjusted during training, such that the RNN best approximates the fine model response in the 

region of interest.  An extension of the standard back-propagation algorithm, the back-

propagation through-time (BPTT) algorithm [77], is typically used for training the RNN. 

A macromodeling approach for nonlinear microwave circuits using RNNs is proposed by 

Zhang et al. [78], where macromodels of an RFIC power amplifier and a Gilbert cell mixer are 

successfully developed. 

In addition to the typical issues that have to be considered for training ANNs, there are 

two parameters that must be carefully chosen while training RNNs, namely the sampling cycle 

and the number of unit-delay elements in each bank of delays (see Fig. 21).  The first one can be 

estimated from the highest frequency of the input transient waveforms, while the second one is 

more difficult to predict and it is usually determined heuristically, as in [78]. 

Following the same procedure as in [78], a macromodeling example of a p-MOSFET 

transistor is developed in [79].  This example also illustrates the eventual need of a separate 

RNN to model very fast responses at the beginning of the simulation.  An comparison between 

the performance of standard neural networks (without feedback) and RNNs in transient-regime 
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modeling is described in [79], confirming the RNNs advantages for dynamic systems. 

An interesting ANN formulation for modeling nonlinear microwave circuits is realized in  

[80,81].  Here the neuromodel, called dynamic neural network (DNN) model, is developed as a 

reduced-order representation in state equations form of the original circuit.  The DNN model is 

trained with frequency-domain information or with time-domain information.  The training data 

used for the examples in [80,81] is in the form of input/output harmonic spectra (obtained from 

harmonic balance simulations), and the corresponding time-domain data is obtained by inverse 

Fourier transformation.  Training the DNN is implemented in two stages: an initial training in the 

time-domain, and a refinement step in the frequency-domain.  Examples of dynamic modeling of 

an amplifier, a mixer, and a combination of both to simulate a DBS receiver sub-system are 

reported in [80,81], where the DNNs are compared with the corresponding original circuits (in 

both time and frequency domains), showing excellent agreement, and an important reduction in 

simulation time.  A similar approach is used in [82] to develop time-domain neural models for 

embedded passives.  Since the training data used in [80,81] to develop the neural models is in the 

steady-state regime (obtained from harmonic balance simulations within a finite frequency 

band), the corresponding DNNs can not in general, for any kind of excitation, reproduce the 

transient responses of the microwave circuit, but only the steady-state time domain responses.  

Nevertheless, given their general formulation based on reduced-order state equations, DNNs are 

in principle capable of simulating transient responses if appropriate training data is employed.  A 

more advanced technique is proposed in [83], where an adjoint of the DNN along with a 

Lagrange formulation is used to facilitate the DNN training directly from transient data.  

Transient modeling of nonlinearly terminated high speed interconnects is illustrated in [83]. 

Examples of time-domain optimization of microwave circuits using ANNs (or RNNs) 
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have not been reported in the literature.  More research is also needed on the stability of RNNs 

when used as models for microwave circuits (Lyapunov stability theory, [16,84]).  This is related 

to the problem of choosing the number of delay-unit elements mentioned above, which 

determines the order of the dynamic model.  Especially important is the stability of RNNs if they 

are used as computational models in optimization. 

VII.  GLOBAL MODELING EXPLOITING ANNS 

At sufficiently high frequencies, microwave and millimeter-wave CAD tools require full-

wave EM analysis of MMICs to accurately predict the wave interactions and behavior of not 

only the passive structures but also the active devices.  Usually, only the passive periphery 

around the active device is characterized by a full-wave analysis, while the active device is 

characterized by a lumped equivalent circuit whose element values are provided by parameter 

extractions based on measurements.  When the active device is electrically large (as in the case 

of wide-gate field-effect transistors), a lumped equivalent circuit is no longer reliable, since it 

can not predict the effects of possible standing waves along the device itself [85]. 

On the other hand, simple analytical models based on the drift-diffusion formulation were 

sufficiently accurate to simulate the electrical performance of the earlier semiconductor devices.  

However, as semiconductor devices were scaled into the submicrometer scenario, the 

assumptions underlying the drift-diffusion model lost their validity, leading to the need of full 

hydrodynamic models based on the Boltzmann’s transport equations [86]. 

The so called “Global Modeling” technique [87] aims at unifying both the 

electromagnetic analysis of passive structures and the semiconductor theory related to the active 

devices, by coupling the Boltzman transport equations with Maxwell’s equations using space-

time discretization.  The solution is computed on a non-uniform grid to improve accuracy and 

convergence: a coarse grid is used on the neutral zones far from the depletion region, while a fine 
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grid is used where high carrier-density gradients are found (under the gate and in the active 

layer).  Since the mesh density in the active device region is much higher than the one in the 

passive structures, this approach is computationally very expensive, and so far unpractical for 

direct use into commercial software.  Time-domain diakoptics [88] has been proposed to speed 

up this process. 

The use of neural networks to speed up “global modeling” for full-wave design of 

MMICs was proposed by Goasguen and El-Ghazaly [89].  Here the transistor is implemented in 

an extended FDTD code, where the nonlinearities of the active device are described by the ANN 

that updates the circuit parameter values inside the FDTD mesh according to the calculated 

electromagnetic field.  The extended FDTD method uses current/voltage sources to substitute the 

device in the corresponding cells of the FDTD grid.  Lumped elements are also included in the 

FDTD marching time algorithm (each lumped element is distributed in the cells of the active 

region). 

A MESFET was successfully simulated in [89] using this method.  By using the ANN the 

computation time was dramatically reduced with respect to the simulation time required by a 

hydrodynamic model or complete global modeling approach. 

VIII.  SOME FUTURE DIRECTIONS 

Finally, an attempt to predict general future developments of microwave design 

techniques using neural networks is presented here.  These are suggested in addition to those 

specific issues mentioned throughout the paper that require more research. 

A. More Algorithmic On-Line Approaches to EM-Based Design 

Off-line approaches to ANN-based design consist of developing a neuromodel from 

reliable data and using it as a fast and accurate approximation of the actual microwave device for 

optimization.  We have seen that this can be realized in several ways.  Off-line approaches afford 
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many training, testing and validating data points obtained from fine model evaluations.  In 

contrast, on-line approaches to design should generate as few fine model data points as possible, 

where local neuromodels (which could be considered as “ANN-based surrogates”) are gradually 

improved at each design iteration.  We need more algorithms for on-line ANN EM-based design.  

These algorithms should allow the microwave engineer to design on a feasible interactive 

framework, i.e., computationally efficient software engines must be used.  At the same time, the 

microwave engineer should not be concerned with the typical ANN decisions (neural network 

topology, number of hidden layers, number of hidden neurons, selection of training or testing 

data, etc.).  All of these parameters should be transparent to the user, who should only be 

concerned with the microwave engineering aspects of the problem. 

Zhang et al. [90] proposed an algorithm for Knowledge-based Automatic Model 

Generation (KAMG), which implements in a automated fashion the development of some of the 

neuromodeling techniques mentioned in this paper: the Difference Method, the PKI method, the 

KBNN approach and the SM neuromodeling technique.  KAMG aims at generating very 

accurate microwave neural models using the fewest possible fine model data points.  The KAMG 

algorithm exploits the adaptive sampling technique [30], by which the region where the worst 

training errors are found is further divided into smaller sub-regions for additional training and 

validation data.  KAMG is an algorithm for modeling.  The models generated by KAMG can 

later be used for design.  KAMG is then an off-line approach to ANN EM-based design.  We still 

need an automated on-line design algorithm, as described before.  

B. An Integrated Transient and Frequency Domain ANN-Based Design Approach 

A number of innovative techniques for microwave design have been described in the 

previous sections.  All of them have been developed and/or demonstrated either for the 
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frequency-domain or for the transient domain.  An integrated transient and frequency domain 

ANN-based design approach has not been reported yet.  Although it seems simple, the 

complexity of this task should not be overlooked.   

C.  More ANN EM-Based Design Methods Exploiting Circuit Models 

Microwave engineers have been developing circuit models of microwave structures for 

decades.  These equivalent circuit models have been successfully used as vehicles for design in 

countless practical microwave problems.  They represent a rich collection of knowledge the 

microwave community should not abandon.  The most successful ANN design techniques will be 

those that exploit this knowledge more intelligently.  Section III describes a number of ANN 

design techniques that exploit circuit models to make more efficient use of the EM simulator 

during the design process.  By observing Figs. 4, 6, 7, 9 and 11, it is clear that there might be 

several more ways to efficiently combine the ANN, the fine and the coarse models.  New 

strategies will certainly emerge. 

IX.  CONCLUSIONS 

Significant contributions to the area of electromagnetics-based design and optimization of 

high-speed, RF and microwave circuits exploiting artificial neural networks are described in this 

Chapter.  Measurement-based design of high-speed circuits using ANNs is also reviewed.  The 

conventional microwave neural optimization approach is described.  Advantages and drawbacks 

of this strategy are treated.  Improvements of this approach through segmentation, 

decomposition, hierarchy, design of experiments (DoE) and clusterization are considered.  

Innovative strategies for ANN EM-based design that exploit knowledge are reviewed, including 

the Difference Method, the Prior Knowledge Input (PKI) method, the Knowledge-Based ANN 

approach (KBNN), the Neural Space Mapping (NSM) optimization method, the Extended Neural 

Space Mapping approach, and the Neural Inverse Space Mapping (NISM) optimization 
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algorithm.  ANN-based design of microwave circuits using synthesis neural networks or inverse 

neural models is reviewed.  Difficulties in developing synthesis neural networks are indicated.  

Several cases of successful inverse modeling are described.  Methods for EM-based statistical 

design using neural networks are described.  An industrially relevant microwave problem 

illustrates the use of a neural space mapping technique to efficient and accurate yield 

optimization.  The key issues in transient EM-based design using neural networks are described.  

Suitable paradigms for approximating nonlinear dynamic behavior are mentioned, such us 

Recurrent Neural Network (RNN) and their corresponding training techniques.  The application 

of ANNs to speed up Global Modeling for EM-based design of MMICs is briefly described.  

Finally, some future directions of ANN techniques for high-speed, RF and microwave circuit 

design are predicted.   
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TABLE I 

NEURAL MODELS FOR MICROWAVE COMPONENTS 
 

 

Passive Components Selected References 
  

  

MMIC spiral inductors [28,91,92] 
Capacitors [93,94] 
Embedded resistors [95] 
Microstrip interconnects [31,96] 
Microstrip vias [31,35] 
Microstrip bends [97,98] 
Microstrip lines on PBG [99] 
CPW components [22,100,101] 
Waveguide elements [102-104] 
PBG waveguides [99] 
  
  

Active Devices Selected References 
  
  

Diodes [105,106] 
MESFETs [11,24,37,46,107-110] 
HBTs [2,46,111,112] 
HEMTs [29,39,59,60,113] 
  
  

Circuits and Systems Selected References 
  
  

Filters [2,6,13,33,45,95,98,101] 
Amplifiers [9,11,24,26,46,77,109,114] 
Mixers [78,80] 
VLSI interconnects [10,12,83] 
Antennas [115-122] 
Radar target recognition [123,124] 
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Fig. 1. Conventional neural optimization concept: (a) training the ANN to approximate the fine 

model responses in a region of interest, (b) designing with the already trained 
neuromodel. 
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Fig. 2. Decomposed conventional neural optimization concept: (a) training the M neural 

networks to approximate the individual responses, (b) designing with the already trained 
decomposed neuromodel. 
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Fig. 3. Neuromodeling by preliminary clusterization of similar responses using the Self 
Organizing Feature Maps (SOM): (a) training a small ANN as a first-order  
approximation of the fine model, (b) training a SOM network to detect the classes of 
responses, (c) training small ANNs, each of them specialized on a class of responses.  
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Fig. 4. The Hybrid EM-ANN or Difference Method for neural optimization: (a) training the 

ANN to approximate the difference between the fine and coarse model responses, (b) 
designing with the already trained Hybrid EM-ANN neuromodel. 
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Fig. 5. Illustrating how the difference between the fine and coarse model responses can be as 
complex as the fine model responses themselves.  This example corresponds to the HTS 
microstrip filter reported in [34]: (a) coarse model responses (OSA90/hope) at 13 base 
points, (b) fine model responses (Sonnet’s em) at the same base points, (c) absolute 
difference between fine and coarse model responses.  
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Fig. 6. The PKI Method for neural optimization: (a) training the ANN to approximate the fine 

model responses, considering the coarse model responses as additional inputs to the 
ANN, (b) designing with the already trained PKI neuromodel. 
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Fig. 7. The Knowledge-Based Neural Network (KBNN) approach to neural optimization of 

microwave circuits: (a) training the KBNN model (the empirical functions and formulas 
are embedded in the ANN internal structure), (b) designing with the already trained 
KBNN model. 
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Fig. 8. A simplified flow diagram for Neural Space Mapping (NSM) optimization. 
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Fig. 9. Main conceptual steps in Neural Space Mapping (NSM) optimization: (a) training the 

space mapped based neuromodel on all the accumulated learning points, (b) calculating 
the next iterate by designing with the already trained space mapped based neuromodel. 
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Fig. 10. An extended neural space mapping modeling approach used in [37,38] for modeling an 
HEMT.  The ANN output contains the bias-dependent intrinsic elements, xc = [Cgs  Ri  
Cgd  gm  τ  gds  Cds]T.  Once the ANN is trained, the combination of the ANN and the 
small signal equivalent circuit approximates the large-signal behavior of the active 
device.  Here, the physical structure of the device is fixed, and the design variables are 
the bias levels, xf = [VGS  VDS]T.  Rf contains the S-parameters measured at various bias 
settings. 
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Fig. 11. Main sub-processes in Neural Inverse Space Mapping (NISM) optimization: (a) 

parameter extraction, (b) training the inverse of the mapping using all the accumulated 
points, (c) predicting the next iterate by evaluating the current inverse mapping at the 
optimal coarse model solution. 
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Fig. 12. A simplified flow diagram for Neural Inverse Space Mapping (NISM) optimization. 
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Fig. 13. Synthesis neural networks for microwave design: (a) training the synthesis ANN to 

approximate the design parameters that generate each response, (b) designing with the 
already trained inverse neuromodel in principle consists of simply evaluating the 
synthesis neural network at the desired response. 

 
 

εr

L2

L1L0

L3

L2

L1

L0

S2 S1

S1 S2

S3

HW

 
 

Fig. 14. High-temperature superconducting (HTS) quarter-wave parallel coupled-line microstrip 
filter. 
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Fig. 15.  SM-based neuromodel of the HTS filter for yield analysis and optimization.  L1c and S1c 
correspond to L1 and S1 after transformation by the neuromapping (as used by the coarse 
model). 
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Fig. 16. Monte Carlo yield analysis of the SM-based neuromodel responses around the optimal 
nominal solution with 50 outcomes. 
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Fig. 17. Histogram of the yield analysis of the SM-based neuromodel around the optimal 

nominal solution with 500 outcomes. 
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Fig. 18. Monte Carlo yield analysis of the SM-based neuromodel responses around the optimal 

yield solution with 50 outcomes. 
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Fig. 19. Histogram of the yield analysis of the SM-based neuromodel around the optimal yield 

solution  with 500 outcomes. 
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Fig. 20. Fine model (Sonnet’s em) response (•) and SM-based neuromodel response (−) at the 

optimal yield solution. 
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Fig. 21. Developing a neurodynamic model of a nonlinear microwave circuit.  A recurrent 
neural network (RNN) is used to model the transient response of the microwave device.  
Banks of unit-delays are denoted by z−1.  A nonlinear multiple layer perceptron (MLP) 
with feedback forms the basis of the RNN. 
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