
Instituto Tecnológico

y de Estudios Superiores de Occidente
Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

Especialidad en Sistemas Embebidos

Automotive cluster based on Raspberry Pi 3 B+

TRABAJO RECEPCIONAL que para obtener el GRADO de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presentan: MANUEL ALEJANDRO ALAYON SAUCEDA

ADRIAN MOISES COLLAZO VELAZQUEZ

Asesor: M.SC. HÉCTOR ANTONIO RIVAS SILVA

Tlaquepaque, Jalisco. julio de 2019.

 ii

 iii

Acknowledgments

First, we want to thank to our families who supported us not only during this project, but

also during all the program. In general, our families provided us their unconditional trust and

gave us the opportunity to successfully accomplish the goal of finishing this program.

We also want to thank ITESO for the Specialization Program in Embedded Systems,

which provided all the tools and knowledge we needed for the development of this project,

including the infrastructure of its laboratories that were essential to conclude this work. We want

to thank our teachers from the Specialization Program as well, since the knowledge they shared

with us was so important for this success. In particular, we want to mention M.Sc. Hector

Antonio Rivas Silva who gave us his guidance in support for the development of this project.

Finally, we sincerely thank CONACYT for the scholarship granted (930406), since that

was very important to accomplish this work.

 iv

 v

Abstract

The automotive cluster is one of the most important devices in a car and is the interface between

the car and the driver. However, the development of this Electronic Control Unit (ECU) used in

the automotive industry is complex and expensive. The Raspberry Pi 3 is a lower cost board that

can be used as an alternative board due to its versatility and ease of use. Therefore, the aim of

the project is to develop an automotive cluster using the Raspberry Pi 3 as the main board, and

be able to connect it to a CAN network. Buildroot was the main tool used in this project allowing

to generate a customized Linux-based Operating System (OS). Furthermore, the project included

the CAN-utils package and SocketCAN Application Programming Interface (API) to receive

CAN messages, through a PiCAN2 module, and display the animation according to the message.

Also, the interface was created using Qt5 IDE, so it was essential to add those Qt5 packages to

the Raspberry Pi 3 as well. Finally, this project was configured to work with a baudrate of 100

Kbps. In conclusion, the proposed project is a practical choice for low cost hardware and free

software automotive cluster, also it is user-friendly and interactive.

 1

Introduction

One of the most important devices in a car is the instrument cluster, also known as the

dashboard. This electronic control unit (ECU) is the interface between the car and the driver, so

the driver can witness relevant information regarding the vehicle’s components and features like

speed, tire pressure, and engine status, among others. At the beginning of the 20th century, the

automotive cluster was robust and consisted of a group of gauges unified in a single case.

Nowadays, clusters have evolved from analog gauges to digital displays, such as the Liquid

Crystal Display (LCD), providing more accurate information and reducing its size. Since 1986,

to provide control and communication for ECUs, the Controller Area Network (CAN)

communication protocol created by Bosch, started to be used in the automotive industry; thus,

clusters were upgraded to receive information from the other ECUs using this protocol.

Many companies, like Bosch and Continental, and foreign investigators invest on the

design and development of clusters [1]. In particular, the automotive industry has a major impact

in Mexico; however, it is more focused on manufacturing instead of research. Furthermore, the

development of clusters requires infrastructure, an environment where this device can be tested,

and materials, including an embedded system, a screen, connectors, and others that increase the

cost of the ECU.

Consequently, the purpose of this project is to design and develop an automotive

dashboard that uses a low-cost board – Raspberry Pi 3 B+ -- and a free Operating System (OS)

based on Linux. The software was developed using Qt libraries for the user interface, which is

displayed on an LCD. Also, since Raspberry Pi 3 does not have a CAN transceiver installed, it

was necessary to add an external transceiver to be able to receive data frames from other ECUs.

Finally, this project was developed using the network infrastructure provided by the automotive

laboratory from the Instituto Tecnológico de Estudios Superiores de Occidente (ITESO), where

the communication tests were performed..

 2

1. Methodology

This project was developed according to the V-Model, a software development

methodology that begins with design stages, then, the development stage, and finally, test stages

that evaluate each design stage [2]. The defined stages for this project were: system

requirements, software requirements, coding, software test, and system test.

Based on the previous development of an embedded graphic user interface (GUI) from

the Department of Electronics, Systems, and Informatics at ITESO [3], the project started with a

hardware upgrade consisting of a new version of the board -- Raspberry Pi 3 B+ -- that included

the addition of the CAN module (PiCAN 2) and a 7-inch LCD screen as represented in Fig. 1-1.

Fig. 1-1 System architecture of the automotive cluster.

 3

The OS was developed using cross-compiling with Buildroot. a tool used to design Linux

OS for different architectures. The main libraries installed in the file root system were Busybox,

GCC 7.4, Eclipse plugin, Qt5, CAN-utils; the initialization system was performed using

Busybox. Also, CAN-utils package was used to enable the CAN driver, through the PiCAN 2

transceiver.

The CAN driver was accessed using the SocketCAN library, an Application

Programming Interface (API) used in Linux, which enables CAN communication using a socket

port, emulates the functions of a Transmission Control Protocol/Internet Protocol (TCP/IP) [5].

The middleware application used API to receive CAN messages and update GUI within a CAN

bus speed of 100 Kbps as shown in Fig. 1-2. Furthermore, the performance starts after booting,

so the user does not need to perform any task to initialize the program.

Fig. 1-2 Communication between the cluster GUI and the middleware application.

 4

Furthermore, the cluster uses several messages to perform the specific animation of the

indicators, like moving the gauge of the speedometer or turning on the door warning alert. There

are three different IDs defined for this project that enable or disable the corresponding gauge or

alert, as can be seen in TABLE I.

TABLE I

 CAN COMMUNICATION MESSAGES.

 5

2. Results

First, the cluster initializes when turned on, executing the Kernel, and the main libraries

display on the GUI as shown in Fig. 2-1. Then, the program is executed with a dark screen until

the user sends the engine signal to make the cluster visible, as shown in Fig. 2-2. Subsequently,

the indicator cluster reacts with the corresponding signal when connected to an ECU CAN

device that sends CAN messages.

Fig. 2-1 Kernel initialization.

Fig. 2-2 Automotive cluster engine on.

 6

 Fig. 2-3, shows the GUI interactive animation characteristics: 1/8 of fuel level gauge, 100

km on speedometer gauge, 2000 RPMS tachometer gauge, 500 km of odometer, current hour,

hazard light on, high beam light on, and oil warning on, where these animation depend on

corresponding CAN messages. The testing was performed using CANoe to visualize CAN

messages. In Fig. 2-4, the messages received by the cluster are displayed using CANoe software.

Fig. 2-3 Automotive cluster motion animation.

Fig. 2-4 CAN messages between the automotive cluster and CANoe.

 7

Finally, the cluster is included in a hard case, which consists of the LCD, Raspberry Pi 3

with its respective CAN module (PiCAN 2), and several switches and keys that send CAN

messages to the cluster, emulating a CAN network.

\

 8

Conclusion

The embedded system for the automotive cluster proposed in this project included a

Raspberry Pi 3 board, a PiCAN 2 module, and an LCD. These elements were successfully

connected to receive CAN messages with the module and transfer the data to the board using

SocketCAN API. Lastly, the received information was processed according to a defined frame

and displayed on the GUI display. The cluster was designed to work with networks at 100 Kbps.

Furthermore, the project fulfilled the V-Model structure as the tests complied with the defined

requirements.

This project could be basis of future works to create different lists of CAN messages and

interact with other ECUs with CAN communication. In addition, this communication system,

can be commercialized to different final costumers using their own CAN messages; therefore,

the price of the ECUs used this project was lower than current ECUs used in the automotive

industry.

 9

References

[1] J. Pešić, K. Omerović, I. Nikolić, M. Z. Bjelica, “Automotive Cluster Graphics: Current Approaches and

Possibilities”, in International Conference on Consumer Electronics-Berlin, 2016, pp.1.

[2] K. Forsberg, H. Mooz, H. Cotterman, Visualizing Project Management: Models and Frameworks for

Mastering Complex Systems, 3rd edition, New Jersey, 2005.

[3] R. Camacho, “Embedded Graphic User Interface for Automotive Cluster”, Trabajo de obtención de grado

Especialidad en Sistemas Embebidos, Instituto Tecnológico y de Estudios Superiores de Occidente,

Tlaquepaque, JAL, Mexico, 2017.

[4] Buildroot, "The Buildroot user manual", 2019. [Online]. Available:

https://buildroot.org/downloads/manual/manual.html

[5] M. Kleine-Budde, “SocketCAN -The official CAN API of the Linux kernel”, in IEEE International

Conference on Communications, 2012, pp. 05-17, 05-19.

