
T-MTT Manuscript, NEMO-2018 Mini-Special Issue 1 

Abstract— The demand and relevance of efficient analog fault 
diagnosis methods for modern RF and microwave integrated 
circuits increases with the growing need and complexity of analog 
and mixed-signal circuitry. The well-established digital fault 
diagnosis methods are insufficient for analog circuitry due to the 
intrinsic complexity in analog faults and their corresponding 
identification process. In this work, we present an artificial neural 
network (ANN) modeling approach to efficiently emulate the 
injection of analog faults in RF circuits. The resulting meta-model 
is used for fault identification by applying an optimization-based 
process using a constrained parameter extraction formulation. A 
generalized neural modeling formulation to include auxiliary 
measurements in the circuit is proposed. This generalized 
formulation significantly increases the uniqueness of the faults 
identification process. The proposed methodology is illustrated by 
two faulty analog circuits: a CMOS RF voltage amplifier and a 
reconfigurable bandpass microstrip filter. 

Index Terms— Analog faults, artificial neural network, gross 
faults, fault identification, fault injection, parameter extraction. 

I. INTRODUCTION

HE GROWING utilization of analog and mixed signal 
integrated circuits (IC) has increased the demand not 

only of fault tolerant techniques but also of fault detection and 
isolation [1]. While fault diagnosis techniques for digital 
circuits are mature and well established, those for analog 
circuits are still under development, facing significant 
technical challenges. This is mainly due to three key points 
[2]-[4]: a) there are not only two possible signal values, but in 
principle an infinite number of possible values; b) the timing 
characteristics of signals are not discrete, but continuous; and 
3) the failure mode does not necessarily propagate to the
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output pins of the circuit. 
Analog faults can be classified as catastrophic (or gross) 

faults and parametric (or soft) faults [5]. Gross faults are 
typically caused by structural deformities, such as open and 
short circuits, while parametric faults are generally caused by 
variations of component parameter values outside of their 
tolerance range. Prior work has used these two types of basic 
fault models and pursued a fault injection methodology to 
capture the circuit behavior under faulty conditions [5], [6]. 

Among machine learning techniques for knowledge-based 
fault diagnosis, those that exploit artificial neural networks 
(ANN) have become the most extensively used approaches for 
fault diagnosis of many types of systems, including analog 
circuits [7]-[12]. Machine learning-based techniques in current 
literature are mostly centered in trying to generate a fault 
dictionary to detect a predetermined k-number of faults [13], 
[14], extracting features from circuital measurements, and 
modeling a binary-encoded set of failure modes [15]-[17]. 
Most of this prior work focuses on the utilization of neural 
networks as classifiers, to distinguish between faulty and non-
faulty responses [18]-[21]. Other works have used the wavelet 
transform in pre-processing methods to improve not only the 
detection but also the isolation of faults [22], [23], namely, the 
localization of the specific faulty circuit component. However, 
they require large and complex neural networks as well as 
significant pre-processing procedures to achieve the correct 
identification.  

Optimization algorithms have also been extensively used in 
conjunction with neural networks for fault diagnosis, such as 
genetic algorithms [24]-[26], particle swarm optimization [27], 
[28], simulated annealing [29], and even hybrid methods [30] 
and other novel algorithms [31]. However, most of the prior 
work applies those algorithms to reduce the training time, to 
improve the accuracy of the model, or to efficiently select the 
input features to model, while still employing fault dictionaries 
as means of identifying faults within the circuit. 

This paper proposes using a simple artificial neural network 
(classical 3-layer perceptron) to model the effects of injecting 
gross faults to the circuit under diagnosis. This neural model is 
used to learn the relationship between a faulty circuit set of 
responses (ANN outputs) and the origin of the failure (ANN 
inputs). Once the ANN is trained, it is used for fault 
identification and isolation through a simple yet efficient 
optimization process based on a constrained parameter 
extraction formulation, reproducing the faulty circuit responses 
by extracting by optimization the inputs of the already trained 
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ANN model. Our methodology is illustrated by a classical 
CMOS negative feedback RF voltage amplifier, as well as by a 
reconfigurable microstrip bandpass filter able to switch 
between WiFi and UMTS transmit band standards. 

The present article expands our work in [32] by 
incorporating the following aspects: a) we make a more 
detailed review of the literature on machine learning 
techniques for analog fault identification; b) we present a more 
comprehensive description of analog fault models to further 
clarify the context of our contribution; c) we present a 
generalized formulation for our fault identification neural 
model, by incorporating auxiliary (internal) responses of the 
circuit under diagnosis, in order to improve the uniqueness of 
the predicted fault identification; and d) we include an 
additional RF and microwave circuit example, namely, a 
reconfigurable microstrip bandpass filter, to showcase the 
improved method for fault identification. 

The rest of this paper is organized as follows: Section II 
describes the analog fault models used in this work. Section III 
describes the ANN-based fault modeling approach. Section IV 
presents the parameter extraction formulation for fault 
identification. Sections V and VI present the fault 
identification problem and results for two circuit examples. 
Finally, Section VII concludes our work. 

II. ANALOG FAULT MODELS 
Analog fault models aim at exposing the circuit under 

diagnosis to: a) a catastrophic failure, where the circuit cannot 
operate; b) a performance degradation, where the circuit still 
works but the performance is lower than its specification; and 
c) an acceptable performance, despite having the faults. The 
classification of fault models can be composed of gross fault 
models, which emulate open and short circuits within the main 
circuit topology, and parametric fault models, which emulate a 
variation in a circuit component outside of its tolerable range. 

In this work, we focus on employing gross fault models. 
Opens are modeled by using a high enough value of a serial 
ideal lumped resistance, while shorts are modeled by using a 
small enough value of a parallel ideal lumped resistance. Fig. 1 
shows how fault models are employed within a resistor. A 
similar approach is followed when fault models are injected on 
any given circuit component with two terminals, such as 
capacitors, inductors or diodes. Fig. 2 shows how gross faults 
are injected in a transistor. An open fault is injected on each 
terminal (excepting the gate for the case of a CMOS 
transistor), while a short is injected between each pair of 
terminals. Given that the faults are analog, their values could 

take in theory an infinite number of possible values. However, 
a nominal value is chosen so that we guarantee that the desired 
effect is generated. In this work, the nominal values for the 
faults are in the order of MΩ for opens and mΩ for shorts. 

We inject faults on each component of interest in a 
parametrized manner, in such a way that each fault can be 
individually activated and have a specific resistive value. 
When faults are not active, the value used for opens is in the 
order of mΩ and for shorts is in the order of MΩ. In this way, 
we guarantee that under no-fault conditions, the fault-injected 
circuit behaves as the original circuit. 

III. ANALOG FAULTS NEURAL MODELING 

A. Neural Model Formulation 
We define the vector of ANN inputs, x, as follows: x1 

represents the location of the fault, or in other words, the 
component where the fault is injected during simulation; x2 
represents the possible fault in each component: 1-2 for two-
terminal components corresponding to RS and RP (see Fig. 1), 
or 1-5 for CMOS transistors corresponding to RD, RS, RDS, RDG 
and RSG (see Fig. 2); and x3 represents the amount of deviation 
from the nominal fault value. In this work, we employ a 
reduced range from −5% to +5% for x3, which is a reasonable 
manufacturing tolerance. As an initial approach, we aim to 
neuro-model the behavior of the circuit when injecting a single 
fault at a time. 

The output for the ANN model actually represents the 
deviation of the circuit responses from a no-failure condition. 
In [32], the identification of faults was achieved through 
observing the output responses of the circuit under test related 
to its main specifications (i.e., the responses of interest), and 
comparing them against those of a faultless scenario. However, 
a certain subset of faults can yield similar or even exactly the 
same output responses of the circuit. This directly impacts on 
the decision of our proposal to identify the fault, yielding to 
non-uniqueness issues in the extraction of the failure cause. To 
overcome this issue, in this work we propose the use of 
auxiliary responses other than those used as specified output 
responses. These auxiliary responses may include internal 
responses of the circuit (measured at topologically internal 
nodes, branches, or ports), or other overall performance 
metrics (input impedances, cutoff frequencies, etc.). These 
additional measurements are not directly related to the main 
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Fig. 1. Two possible faults in a resistor R: an open modeled with a 
resistance in series (RS) or a short modeled with a resistance in parallel (RP).  
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Fig. 2. Five possible faults in a transistor, modeled with opens on the drain 
(RD) and source (RS) terminals, and shorts between each pair of terminals 
(RDS, RDG and RSG). Taken from [32]. 
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specifications of the circuit, but are extremely useful to 
uniquely identify the failing component in the circuit and its 
kind of failure. Moreover, obtaining these additional responses 
practically does not increase the overall computational cost, 
since no additional simulations are implied.  

We aim to neuro-model a matrix of response deviations R ∈ 
ℜm×n, where m is the number of simulated responses, including 
the output specification-related measurements, as well as the 
auxiliary internal measurements, and n is the number of 
components for a given response, e. g., the real and imaginary 
parts of the voltage gain of an amplifier, or the magnitude and 
phase of an S-parameter, etc. In this manner, the matrix of 
response deviations to be modeled is represented by 
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where N is the number of frequency points at which the 
response is sampled, and Rnf

mn is the m,nth response when no 
faults are injected. 

B. ANN Characteristics and Training 
As mentioned before, we select a simple 3-layer perceptron 

for the topology of our ANN. The ANN is implemented and 
trained using the Matlab neural network toolbox. We select the 
Bayesian regularization algorithm for training, and use 1,000 
base points generated using the Sobol pseudo-random 
sequence to sample the selected solution space as uniformly as 
possible [33] but limiting the total amount of learning and 
testing data. Out of the total number of base points, 70% are 
selected for learning and 30% are selected for testing. The 
algorithm used for training increases the number of neurons in 
the hidden layer, h, until the generalization performance 
deteriorates (similarly to [34]), or until the learning and testing 
errors are below 1%, 
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where et_old is the testing error at the previous iteration and 
et_new and el_new are the testing and learning errors, respectively, 
at the current iteration. Each error is calculated as the 
Frobenius norm of the difference between the ANN output and 
the circuit output. Once the ANN is trained, we test it using 
100 extra base points not used during training. The output 
from the ANN model is compared against actual circuit 
simulated responses to calculate the model maximum relative 
error. 

IV. FAULT IDENTIFICATION BY PARAMETER EXTRACTION 
Here we exploit parameter extraction (PE) as an 

optimization problem that aims at minimizing the difference 
between a target response and the system response being 
optimized [35]–[38]; in [35] it is explained how PE can be 
problematic and subject to multiple local minima. In our work, 

we aim at finding the input values x of the ANN model that 
minimize the difference between the actual deviated responses 
of a faulty circuit, calculated in (1) and treated as the target, 
and the ANN output. The optimization procedure is 
implemented by solving 
 

1
t* )(minarg RzRz

z
−=  (3) 

where R(z) is the ANN model output and Rt is the target 
output. In our case, (3) is solved by using the Nelder-Mead 
method. The Manhattan norm used in (3) averages all errors 
across the frequency sweep; it can be replaced by the Huber 
formulation [39] in cases where both large and small 
differences between R(z) and Rt appear throughout the 
frequency points, to further improve the PE solution. In order 
to keep x, the ANN inputs, within feasible values during the 
optimization iterations, we use box constraints defined as 
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where x1
lb and  x1

ub are the selected lower and upper values, 
respectively, corresponding to the minimum and maximum 
values of x1 when the ANN was trained. Similarly, x2

lb and x2
ub 

correspond to the upper and lower values for x2. Notice that 
the optimal values of x1 and x2 should be both integer numbers; 
however, we solve (3) by letting the optimization process to 
run on continuous values for z1 and z2, rounding to the nearest 
integer the optimal final values found for x1 and x2. 

Given the typically expected high number of local minima, 
we use a statistical PE algorithm, where the starting point of 
the optimization procedure is slightly perturbed each time the 
normalized difference between the optimal ANN response and 
the target response is larger than a desired value, εPE. In our 
case, the value selected is εPE = 10−5. 

V. EXAMPLE 1: CMOS NEGATIVE FEEDBACK RF VOLTAGE 
AMPLIFIER 

A. Circuit Description 
The first circuit example to illustrate our fault injection and 

identification procedure is the classical CMOS negative 
feedback RF voltage amplifier depicted in Fig. 3, which uses 
an external series-parallel ideal feedback network formed by 
R1 and R2. Its nominal voltage gain is shown in Fig. 4. 

B. Analog Faults Injected 
We inject an open to the drain and source pins of each 

CMOS transistor, and a short between each pair of transistor 
nodes.  When faults are not active, the value used for opens is 
1 mΩ and for shorts is 200 MΩ. In this way, we guarantee that 
under no-fault conditions, the fault-injected circuit behaves as 
the original circuit, as it is confirmed in Fig. 4. 

C. Faults Neural Model and Training 
In this particular example, the matrix of response deviations 

R ∈ ℜ1×2 for the neural model (ANN outputs), is defined as 
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where Avnf is the complex amplifier voltage gain when no 
faults are injected, Av is the complex voltage gain with the 
injected fault, and N is the number of sampled frequency 
points. Following the ANN training algorithm described in 
Section III.B, the final value of the number of neurons in the 
hidden layer is h = 21, as seen in Fig. 5, and the maximum 
relative testing error measured with the 100 extra base points 
is 0.00635%. 

D. Parameter Extraction to Faults Identification 
To validate the effectiveness of our proposal, we select a 

random fault as target, and followed the PE procedure 
described in Section IV, where the values for upper and lower 
bounds for the box constraints in (4) are x1

lb = 1 and x1
ub = 8 

for x1 and x2
lb = 1 and x2

ub = 5 for x2 (see Fig. 3). 
The values of x for the actual faults are [2  3  0.1498%]T. 

The resulting values of x match exactly on x1 and x2, thus the 
fault location within the circuit and the fault type (one out of 
five possible faults) are identified precisely on each case. 
There is, however, a slight variation between the predicted 
(0.02967%) and the actual value in the variable corresponding 
to the deviation from the nominal fault value, x3. Nevertheless, 
the simulated responses from the circuit with the identified 
fault closely resemble the responses with the original injected 
fault, as shown in Fig. 6. 

VI. EXAMPLE 2: RECONFIGURABLE MICROSTRIP BANDPASS 
FILTER 

A. Circuit Description 
The second circuit example is a reconfigurable microstrip 

  
 

Fig. 6. Comparison between the circuit responses of the CMOS RF 
amplifier at a predicted fault and those at the actual fault injected (gain 
magnitude and phase). Taken from [32]. 
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Fig. 3. Original CMOS negative feedback RF voltage amplifier. Taken 
from [32]. 
 

  
Fig. 4. Response (voltage gain) comparison between the original circuit 
and the fault-injected circuit with all faults inactive. Taken from [32]. 

 
Fig. 5. Training the fault diagnosis neural model for the CMOS RF 
amplifier: ANN performance while increasing h, the number of neurons in the 
hidden layer. Taken from [32]. 

 
Fig. 7. Reconfigurable microstrip bandpass filter topology. Taken from [40]. Highlighting (in red) the components where faults are injected. 
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bandpass filter able to switch between WiFi and UMTS 
transmit band standards [40]. When in WiFi mode, the filter 
center frequency is 2.44 GHz with a bandwidth of 80 MHz, 
and in UMTS mode, the center frequency is 1.955 GHz with a 
140 MHz bandwidth. The circuit is implemented in Keysight 
ADS making use of co-simulation. In other words, the EM 
simulation was performed beforehand in Momentum and its 
results are stored and used in ADS. As seen in Fig. 7, the 
circuit uses two PIN diodes to switch between WiFi and 
UMTS states and four RF choke inductors. 

B. Analog Faults Injected 
We inject an open fault model and a short fault model on 

each inductor and diode of the circuit in its UMTS state. In 
this example, each fault is also activated individually in a 
parametrized manner. When inactive, the open fault value is 1 
mΩ and the short fault value is 1 MΩ. When all faults are 
inactive, the circuit behaves as the original circuit, as expected 
(see Fig. 8). The responses of interest of the circuit are the 
return loss (S11) and the insertion loss (S21). 

C. Faults Neural Model and Training 
The inputs selected for the ANN model are the fault location 

(x1) from out of the 6 selected circuit elements, the fault type 
(x2), meaning whether the injected fault is an open or a short, 
and the fault value (x3) which relates to the deviation from the 
nominal value of the fault. The output for the ANN model is 
the deviation of the circuit responses from a no-fault condition. 
In this case, apart from using the return and insertion losses to 
calculate this deviation, we treat each fault location as a port, 
and use each S-parameter as auxiliary information to improve 
the uniqueness in identification process during the parameter 
extraction process. In order to insert a port on each fault 
location, the ADS schematic is modified in such a way that the 
actual inductors and diodes are removed, and the port is 

assigned a complex impedance corresponding to the 
impedance of the replaced circuit element, as shown in Fig. 9.  

In this case, the selected matrix of response deviations, R ∈ 
ℜ64×2, includes the magnitude and phase of the 64 S-
parameters for the complete circuit (S11, S12, …, S88), as 
follows: 

 
Fig. 10. Training the fault diagnosis neural model for the bandpass 
microstrip filter: ANN performance while increasing h, the number of 
neurons on the hidden layer. 

 
Fig. 8. Bandpass filter response in UMTS state. Comparing the original 
circuit and the fault-injected circuit with all faults inactive. 

 
Fig. 9. Section of the circuit schematic in Fig. 7, illustrating the implementation of ports to replace a diode (top), and two inductors (bottom). 
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We also select a 3-layer perceptron for our ANN, and 
increase the number of neurons in the hidden layer, h, until the 
generalization performance deteriorates, or until the learning 
and testing errors are below 0.1%. In this example, the final 
value of h is 11, as seen in Fig. 10. The final performance of 
the ANN shows a maximum relative testing error of 
0.007917%. 

D. Parameter Extraction to Faults Identification 
To validate our proposal, we select two random faults as 

targets (not seen during training). The values of x for the first 
actual fault are [5 1 0.016231%]T and the predicted fault, 
following the PE process, is [5 1 0.0373%]T. As in the 
previous example, the fault type and location are accurately 
identified, with a small error in the actual variable deviation. 
Additionally, the simulated responses of the circuit with the 
predicted fault closely reproduce the responses with the actual 
fault, as confirmed in Fig. 11.a. As an additional validation 
point, we use a second actual fault at x = [3  2  −0.05445%]T, 
for which the corresponding predicted fault, following the PE 

process, is [3  2  −0.02897%]T. Fig. 11.b shows the 
comparison between the circuit responses with the second 
target fault and the predicted fault. A similar performance was 
observed at other random faults testing points. 

VII. CONCLUSIONS 
An analog gross fault diagnosis method based on artificial 

neural networks (ANN) and constrained parameter extraction 
was proposed in this paper. It employs a generalized 
formulation to increase the uniqueness of the predicted faults, 
by incorporating auxiliary information from internal nodes 
within the circuit topology. Our method was illustrated by 
injecting analog gross faults in two circuit examples: a 
classical CMOS RF negative feedback amplifier and a 
reconfigurable bandpass microstrip filter. The gross faults 
were modeled as resistances with a high enough value in series 
to cause an open circuit and with a low enough value in 
parallel to cause a short circuit. The ANN was then used as a 
metamodel, with an extremely low computational cost, to 
automatically identify faults through a constrained statistical 
parameter extraction process. Following this process, we were 
able to properly identify the actual injected faults in both 
circuits. 
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