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Resumen 

La validación y pruebas analógicas post-silicio de enlaces de entrada/salida (HSIO, por sus 

siglas en inglés) en plataformas de computadora de alto rendimiento tienen retos continuamente 

crecientes por varios factores: la ley de Moore sigue avanzando con una constante miniaturización 

de los nodos tecnológicos, la complejidad de los productos continúa creciendo junto con 

funcionalidades más demandantes, y las velocidades de datos continúan aumentando con las 

nuevas generaciones de interfaces HSIO, entre otros. Por otro lado, existe la necesidad de mantener 

calendarios agresivos de lanzamiento de productos para mantener competitividad en el mercado. 

En este escenario, es crucial para las compañías encontrar soluciones innovadoras para acelerar 

los procesos de validación y prueba sin sacrificar la calidad de los resultados. Esta tesis doctoral 

propone una serie de metodologías de aprendizaje automático y de optimización para mejorar 

varios procesos de validación y pruebas analógicas, en su mayoría asociadas a enlaces HSIO en 

plataformas de cómputo modernas. Primero demuestra cómo los márgenes del diagrama de ojo del 

receptor son significativamente mejorados al usar un enfoque de optimización basado en diseño 

de experimentos. Posteriormente, muestra cómo la prueba de tolerancia a fluctuaciones en el 

tiempo es dramáticamente acelerada al ejecutar un algoritmo eficiente de optimización numérica. 

La presente tesis también describe cómo algoritmos de aprendizaje automático se usan para crear 

modelos sustitutos del sistema bajo prueba, para acelerar el proceso de sintonización de una 

plataforma física durante la validación eléctrica post-silicio usando optimización basada en 

sustitutos y mapeo espacial agresivo. Adicionalmente, la tesis elabora sobre la identificación 

automática de fallas analógicas, desarrollando modelos de redes neuronales de inyección de fallas 

y un algoritmo de detección basado en optimización explotando la extracción de parámetros 

restringida. Finalmente, esta tesis doctoral describe cómo se pueden entrenar modelos de redes 

neuronales profundas para clasificar la precisión de la extrapolación de la tasa de errores de bits 

(BER, por sus siglas en inglés) en mediciones de márgenes para estándares industriales de BER. 

Cada metodología propuesta es validada con casos de prueba, demostrando no solo la eficiencia 

de las técnicas propuestas sino también mejoras significativas a los procesos analógicos post-

silicio en general. Algunas oportunidades de investigación futura y desarrollos con potencial 

promisorio asociados a las pruebas y validación analógica post-silicio también son identificados.  
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Summary 

Analog post-silicon validation and testing of high-speed input/output (HSIO) links in high-

performance computer platforms has ever-increasing challenges caused by several factors: 

Moore’s law continues to advance with constant technology node miniaturization, product 

complexity keeps increasing along with more demanding functionalities, and data rates continue 

to escalate with new generations of HSIO interfaces, among others. On the other hand, there is a 

need to maintain aggressive product launch schedules in order to maintain market competitiveness. 

This scenario makes crucial for companies to find innovative solutions to accelerate validation and 

testing processes without sacrificing results quality. This doctoral dissertation proposes a set of 

machine learning and optimization methodologies aimed at improving several analog validation 

and testing industrial processes, most of them associated to HSIO links in modern computer 

platforms. It first demonstrates how receiver eye diagram margins are significantly improved by 

using an optimization approach based on design of experiments. It subsequently shows how the 

jitter tolerance test is dramatically accelerated by employing an efficient numerical optimization 

algorithm during execution. The present Ph.D. thesis also describes how machine learning 

algorithms are exploited to create surrogate models of the system under test to accelerate the 

physical platform tuning process during electrical post-silicon validation by using surrogate-based 

optimization and aggressive space mapping. Additionally, the proposed doctoral dissertation 

elaborates on automated analog fault identification, for which fault injection neural network 

models are developed by an optimization-based detection algorithm that exploits constrained 

parameter extraction. Finally, this Ph.D. thesis describes how deep neural network models can be 

properly trained to classify bit error rate (BER) extrapolation precision in margin measurements 

under specified BER industry standards. Each methodology proposed in this doctoral dissertation 

is properly validated by suitable test cases, demonstrating not only the efficiency of the proposed 

techniques but also the improvements to the overall analog post-silicon processes. Some future 

research opportunities and promising potential developments associated to analog post-silicon 

validation and testing are also envisioned.  
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Introduction 

It is projected that by 2025, there will be 21 billion connected devices [Tankovska-20]. 5G 

technologies are expected to act as a catalyst to increase not only the number of devices, but also 

the type of devices, ranging from simple consumer internet of things (IoT) sensors and actuators, 

to edge computing devices, communications and base stations, and autonomous automotive 

applications, on top of the more traditional personal computing devices (laptops, PCs, tablets, 

cellular phones, and wearables). All of these connected devices will generate and/or consume data 

that will be processed in data centers and other devices within the cloud computing ecosystem.  

Given the diversity, as well as the complexity of these devices, the validation and testing 

performed on them has become crucial and a challenging problem [Mishra-17].  On top of this, it 

is known that up to 70% of the time and resources allocated for chip design is spent on validation 

[Kabisatpathy-05]. Therefore, it is extremely important for companies to find innovative 

methodologies to accelerate validation and enable a fast time to market (TTM) in order to maintain 

competitiveness.  

As technology advances into new technology nodes, higher system complexity, as well as 

increased data rates, the “guaranteed by design” quality paradigm is no longer valid [Fan-11]. 

Extensive validation and testing need to be performed on a product prior to its market release to 

ensure not only correct functionality, but most importantly, customer satisfaction. Despite the 

advances in pre-silicon validation, system-level simulation of computing devices is time-

prohibitive. In contrast, post-silicon validation is performed on reference platforms with real 

system components. Testing is also executed in manufacturing facilities on each unit at die, 

package, and system levels.  

Post-silicon validation involves operating manufactured chips in actual application 

environments to ensure correct behaviors across the specified operating conditions [Park-09]. 

Validation engineers execute a test plan aimed at detecting problems. When a problem is detected, 

triage and debug are performed to localize and root-cause the issue, so that the problem can be 

fixed by patching, tuning, or as a last resort, re-spinning.  

The so-called disciplines of post-silicon validation include functional validation, power and 

performance validation, electrical validation and security validation. Functional validation aims to 
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find logic bugs by running either synthetic content or stressing the system with applications 

running in commercial operating systems. Power and performance validation looks to ensure that 

the product complies with the power consumption targets as well as performance specifications. 

Electrical validation (EV) focuses on the analog performance of the input-output (I/O) links, and 

the electrical interaction with the other components on the board. Finally, security validation aims 

to ensure that the product has no security vulnerabilities that could be exploited in the field. Post-

silicon validation is performed on a limited number of silicon units, prior to launching the product.  

At the manufacturing level, testing is done on every fabricated chip, by applying input 

patterns, or test vectors, to the circuit and comparing its output against desired responses 

[Bushnell-02]. There are different types of tests: characterization tests, which verify that the device 

meets specifications against AC and DC parameters; production tests, which are typically brief to 

reduce cost, while still achieving a high coverage of possible faults; and burn-in tests, in which 

chips are subjected to production tests in a high temperature and over-voltage power supply  to 

screen for infant mortality failures [Abdul-11].  

Among the sub-components of the computing devices, I/O interfaces are of particular 

interest for post-silicon validation and testing. The electronics industry is continuously driving for 

ever-increasing data rates to fulfill the demand of data throughput. PCIe [PCISIG-16], for example, 

has evolved from 2.5 giga-transfers per second (GT/s) and 5 GT/s data rates in its first two 

generations, to 32 GT/s in the recent 5th generation, and 64 GT/s in the upcoming 6th generation. 

This increase poses particular challenges in the analog domain to ensure error-free communication 

as well as correct interoperability [Moreira-10]. Even though these I/O links are actually digital 

(sending and receiving 1’s and 0’s), the behavior is essentially analog when communicating at a 

multi-gigabit rate. Additionally, while on the digital or logical aspect, validation and testing have 

clear pass/fail criteria due to the discreteness of the expected outputs in both time and values, the 

analog side has further complexities not only to determine whether the behavior is correct or not, 

but also to localize and isolate specific faults [Kabisatpathy-05].  

As mentioned before, EV is tasked with validating the analog performance of I/O links. 

Within EV, there are also different disciplines: system marginality validation (SMV) aims to 

provide a release qualification through a statistical analysis of receiver margins at a system level; 

signal integrity validation (SIV) is dedicated to performing tests to verify that the product meets 

all publicly available electrical compliance specifications; and design validation (DV) tests and 
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characterizes the analog performance of individual circuits.  

There are specific activities within EV that are challenging and time-consuming. Tuning, 

which is a common task between all EV disciplines, is performed to find the optimal equalization 

parameters that yield improved analog performance and is known to be one of the most time-

consuming processes [Rangel-Patiño-16]. Jitter tolerance tests in SIV are also extremely slow 

when testing at the bit error rate (BER) specified by the industry standards. Fault detection and 

isolation in analog circuitry is extremely complex in test scenarios. Additionally, while BER 

extrapolation is a common technique to accelerate SMV tests, it can incur incorrect estimations 

which could affect the final qualification decision.  

This doctoral dissertation presents several machine learning techniques, as well as 

numerical optimization approaches, to tackle these challenges. Machine learning algorithms build 

statistical models based on datasets to automatically make predictions. The objective of machine 

learning is to find underlying patterns in the given data [Yigit-17]. On the other hand, optimization 

algorithms aim at helping the task of decision making, by selecting the “best” choice among a 

number of alternatives. The measure of goodness among the alternatives is described by an 

objective function [Chong-96].  We employ these two types of algorithms to improve current 

methods and processes in analog validation and test. This doctoral dissertation is organized as 

follows.  

Chapter 1 presents two optimization approaches to accelerate analog validation, one aimed 

at exploiting design of experiments techniques to optimize an eye diagram, and the other aimed at 

reducing the execution time of the jitter tolerance test.  

Chapter 2 presents optimization techniques used in the context of tuning, employing 

surrogate models built with machine learning algorithms.  

Chapter 3 provides an overview of analog faults concepts, a review of fault diagnosis 

methods, and proposes a methodology to identify analog gross faults using artificial neural 

network (ANN) models and parameter extraction, an optimization-based technique.  

Chapter 4 proposes the use of deep neural models to classify the precision of margins 

extrapolated to a specific BER.  

In the General Conclusions, the most relevant remarks about this doctoral dissertation are 

summarized, discussing the results of the proposed machine learning and optimization techniques. 

It also provides some opportunities for future research.  
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Finally, Appendix A shows the reference list of the thirteen internal research reports 

developed during these doctoral studies, and Appendix B shows the list of papers published during 

this same period of time.



 

5 

1. Optimization Techniques to Accelerate Analog 

Validation 

The continuous increase in data rates for high-speed input/output (HSIO) links demands 

equalization techniques to cancel any type of undesired effect induced in a transmitter-to-receiver 

interconnect [Rangel-Patiño-15]. As equalization complexity increases, so does the number of 

variables, thus incrementing the number of possible combinations of these variables. Design, as 

well as pre- and post-silicon validation, must find the means to find optimal parameter values in 

the fastest manner. 

A proper design of experiments (DoE) is required in order to find the optimal equalization 

parameters executing the least number of tests. Failing to do so, leads to a waste of time and 

resources and may in turn have an impact on the competitiveness of a product [Rangel-Patiño-14]. 

Efficient experimental strategies must then be employed to overcome these challenges and comply 

with the ever-decreasing time to market. In this chapter, fundamental DoE techniques are first 

briefly described. These techniques are then applied to find the optimal equalization parameter 

values that maximize the eye opening of a HSIO link. 

This chapter also describes receiver compliance tests acceleration. Post-silicon validation 

considers testing hundreds of silicon samples in realistic application environments, with the goal 

to check for robustness of the design by performing measurements on both receiver (Rx) and 

transmitter (Tx) circuitry of the HSIO links. These measurements have to comply with electrical 

standards and ensure that the design can operate under worst stressing conditions [Rangel-Patiño-

20]. One of the most common ways to measure the performance of a HSIO link is by measuring 

the bit error rate (BER) through the link [Hong-08]. The fewer the errors measured, the better the 

performance of the link. BER measurement is typically used to characterize the Rx jitter tolerance 

(JTOL) performance in order to determine compliance with the industry standard specifications, 

such as XAUI [10GEA-16], PCIe [PCISIG-16], USB [USBOrg-16a], and SATA [SATAOrg-16]. 

The goal of JTOL is to verify that the Rx under test is capable to operate at a BER under worst 

case signaling conditions. The JTOL is usually measured with a BER tester instrument by 

sweeping the injected periodic jitter (JP) amplitude across a range of frequencies until bit errors 

are detected. The test is considered to be passed when the measured error-free JP amplitude is 
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above the amplitude threshold defined by the protocol specification for each frequency point.  

JTOL tests are very time-consuming when running at specification BER. For example, 

assuming a 95% confidence level and a target BER of 10−12, it is necessary to transmit 3×1012 bits 

for each combination of JP amplitude and frequency [Agilent-05]. This roughly translates to 10, 

8.3, and 6.3 minutes per testing point for USB3.0 [USBOrg-16a], SATA3 [SATAOrg-16], and 

PCIe3 [PCISIG-16], respectively. Therefore, a full JTOL test can take several hours. Even when 

JTOL tests are only executed on a few units, it takes a large amount of time to achieve appropriate 

process, voltage, and temperature (PVT) coverage for a qualification decision. 

Some alternatives for JTOL test time reduction have been previously reported. In 

[USBOrg-16b], a higher BER mask is presented as means to approximate a pass/fail criteria at a 

BER of 10−12 by slightly increasing the injected noise profile and executing the test at a BER of 

10−10. Another approach frequently used is to characterize the tolerated amplitude degradation 

between 10−10 and 10−12 tests. However, for both cases it is still needed to run a test at the specified 

BER to guarantee that the Rx passes the compliance test, mainly due to the lack of correlation 

between the 10−10 and 10−12 results. In [Fan-09a], an extrapolation algorithm for JTOL is proposed. 

The goal of this extrapolation algorithm is to predict the jitter tolerance at low BER based on high 

BER region data with the objective to reduce the JTOL testing time. However, this algorithm failed 

when verified in a post-silicon validation compliance environment, as opposed to being used in 

high volume manufacturing testers. Under the high variation of measurements typically seen in 

system compliance tests, the linear regression of the Q factor [Bergano-93] has a poor fit, which 

translates to poorly predicted values of JP at low BER that do not correlate with real measurements. 

This chapter presents a new approach to accelerate the JTOL testing based on the golden 

section optimization algorithm. The proposed method exploits the fast convergence of the golden 

section search with a high BER. The lack of correlation between different BERs is solved by 

performing a downward linear search at the actual target BER until no errors are seen. Our 

proposed approach is validated by testing it on two different HSIO links in a realistic server 

platform: SATA and USB3, demonstrating that the JTOL testing can be accelerated by 92.7% with 

respect to the current industrial practice. 

This chapter revisits our work in [Viveros-Wacher-16] and [Viveros-Wacher-18a].  
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1.1. Design of Experiments 

In science, the acquisition of knowledge is  carried out using a process known as the 

scientific method. This iterative process involves making conjectures from an initial idea, also 

known as a hypothesis, testing such idea, and making deductions or drawing conclusions based on 

the data retrieved from the tests [Popper-02]. In most cases, there is no way to know beforehand 

whether the hypothesis is correct. The predictions made from the hypothesis must be tested by 

performing experiments [McKillup-03]. In a more formal manner, an experiment is a test or series 

of tests that deliberately change the inputs of a system to observe the reasons of change in the 

outputs of the system [Montgomery-14]. 

In any experiment, the results depend on the manner in which the data is obtained. 

Therefore, a proper planning and execution of experiments, along with the corresponding data 

analysis is of utmost importance to draw significant and valid conclusions. In engineering, DoE is 

a series of tools that allow the improvement of existing processes and products and the 

development of new ones. Based on statistical analysis, a DoE lets an engineer improve the 

performance of a process, select the key design parameters that affect its throughput, reduce 

variability and guarantee the compliance of certain output requirements of the process or system. 

In other words, a proper DoE is capable of characterizing a process (determine the factors that 

produce the greatest effect on the output), optimizing a process (determine the best values of the 

input factors that produce the desired outcome) and guaranteeing the robustness of a new design 

(determine a region of operation of a new product or process where its functionality is optimal 

regardless of disturbing or noisy factors). 

1.1.1 Factorial Design 

In any given system or process with k input variables, or factors, which have an influence 

on some output variables, or responses, there are many possible combinations of experiments to 

consider. With a large number of variables, a limited amount of resources or a reduced time to 

experiment, it might be unfeasible to carry out experimental strategies such as “one factor at a 

time”, where a baseline for all factors is selected and then each factor is successively swept, 

keeping all other factors at their base levels. Furthermore, these types of strategies mask any 



1. OPTIMIZATION TECHNIQUES TO ACCELERATE ANALOG VALIDATION 

8 

possible interaction between factors. A more suitable approach is known as a factorial experiment, 

where all variables are varied altogether. In a factorial design with k factors and n predefined levels 

for each factor, the number of required observations or experimental runs is nk. The most efficient 

and simpler factorial designs include only two levels for each factor, thus reducing the number of 

observations to only 2k. The two levels are chosen depending on the type of factor; for quantitative 

factors, such as temperature or voltage, two numerical values are chosen, whereas with qualitative 

factors, two different states are chosen, for example activating and deactivating a certain 

parameter. By randomizing the order in which the observations are made, a factorial design can be 

analyzed as a completely randomized design (CRD) and the effects can be studied using analysis 

of variance (ANOVA) and linear regression techniques [Lind-15]. 

1.1.2 Fractional Factorial Design 

When the number of factors increase, the execution of a full factorial design can quickly 

surpass the resources allocated for its realization. Furthermore, the degrees of freedom 

corresponding to the main effects and the two-factor interactions are far lower than the total 

degrees of freedom. Assuming that the interactions between three or more factors are relatively 

insignificant, it is possible to obtain the most significant factors (or two-factor interactions) with 

only a fraction of a full factorial design.  

A fractional factorial design with two levels for each factor is expressed as 2k−p, where k is 

the number of factors under study and p describes the size of the fraction, given by 2−p. Fractional 

factorial designs exploit the confounding technique, where the information of certain effects is 

indistinguishable or confounded with other effects. In other words, when analyzing a particular 

factor in a fractional design, such factor is also the alias of another effect. The method to determine 

the alias structure is by using a defining relation, which allows to find the 𝑝 generators required.  

A key characteristic of fractional factorial designs is their resolution: the ability to 

distinguish between the main effects and other interactions. In general, a resolution of III 

corresponds to a design where the main effects are not an alias of other main effects, but they are 

an alias of second order interactions; a resolution of IV corresponds to a design where none of the 

main effects is an alias of another main effect or of a second order interaction; and a resolution of 

V relates to a design where second order interactions are alias of third order interactions. 
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1.1.3 Response Surface Methodology and Central Composite 

Design 

Response surface methodology (RSM) is a collection of techniques to model and analyze 

a response in terms of certain factors, where the main goal is to optimize such response. RSM is a 

sequential process, as depicted in Fig. 1.1. When the optimal point of operation is unknown, the 

first step in RSM is to generate a first order model, usually employing a factorial design. Once a 

first order model (in DoE terminology) is obtained, it can be used to determine the improvement 

trajectory, which points to the optimal region. In order to follow such trajectory, methods such as 

steepest ascent or steepest descent are economical and efficient approaches to find the optimal 

neighborhood. Finally, a more elaborate model, such as a central composite design (CCD), allows 

to find second order effects to determine the optimal point of the system under study. 

 

Fig. 1.1 Sequential nature of RSM. Figure taken from [Montgomery-14]. 
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1.1.4 Steepest Ascent Method 

The steepest ascent method is a procedure to find the maximum response of a system. It 

consists of calculating the gradient of a function ∇f(x, y) starting from a given point [x0, y0]. This 

function can be determined by a first order model (in DoE terminology) of a fractional design. The 

direction of maximum slope is such that in each evaluation, the output of the system increases 

more rapidly. The size of the step to take during each evaluation is proportional to the regression 

coefficients of the first order model. It can be said that a maximum has been found when there is 

no increase on the response. A similar procedure, also known as steepest descent, can be performed 

to find the minimum response of a system. Once a maximum or a minimum has been found, a 

more precise optimum point can be found using a second order model, by employing a CCD. 

1.1.5 Central Composite Design 

CCD is the most popular class of designs to fit a second order model. It is composed of 3 

main ingredients: 1) a 2k fractional design (or alternatively, a fractional factorial design with 

resolution of V) with nF runs, where nF is the number of fractional runs, 2) 2k axial or star runs and 

3) nC runs at the center point, where 3 ≤ nC ≤ 5 for better error estimation. The resulting taxonomy 

of a CCD can be seen in Fig. 1.2. A key aspect to ensure a good prediction of the model is the 

 

Fig. 1.2 Taxonomy of a central composite design (CCD). 
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selection of the distance between the center and the axial points, known as α. To guarantee that the 

design is rotable (the variance of the predicted response is uniform across all points with the same 

distance to the center point), then α = (nF)1/4. Furthermore, for a spherical CCD (all factorial and 

axial points are located in a sphere), then α = √k. 

1.2. Eye Diagrams in HSIO Links   

A HSIO link eye diagram is the superposition of several bits into a single time-domain 

graph [Moreira-10]. Fig. 1.3 shows a typical eye diagram. The horizontal axis displays time, while 

the vertical axis shows the voltage amplitude of the signal under investigation. Important signaling 

parameters can be retrieved from an eye diagram, such as rise/fall time, total jitter, amplitude noise, 

minimum eye width and minimum eye height [Zhang-15]. Eye diagrams help to determine the 

correctness of the transmitter (Tx) signaling, as well as the ability of a receiver (Rx) to understand 

incoming data. When the sampling point (both in timing and voltage scales) of a receiver is 

positioned at the center of the eye, the probability of an error is low.  Therefore, by increasing the 

eye width and eye height measurements of the eye, the probability of error decreases. 

 

Fig. 1.3 Example of an eye diagram. 
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1.3. Equalization Techniques 

Several undesired effects exist within a HSIO link: Tx jitter, channel-dependent sources 

such as channel loss, interconnect discontinuities and inter-symbol interference (ISI), EM 

interference and even noise sources within the Rx circuitry. The quality of an interconnection 

between a Tx and an Rx can be measured through an eye diagram. Correct reception depends on 

the ability of the Rx to decode incoming data regardless of the noise sources in the link.  In order 

to guarantee proper link functionality, equalization techniques are employed to emphasize certain 

signaling components and suppress unwanted ones. 

1.3.1 Transmitter Equalization 

Equalization on the transmitter (Tx EQ) side is usually referred to as pre-emphasis/de-

emphasis. It compensates loss by amplifying high frequency components (also known as pre-

emphasis) and attenuating low frequency ones (de-emphasis). Tx EQ is usually carried out by 

implementing a finite impulse response (FIR) filter. Pre-emphasis is performed by increasing the 

voltage level of the first bit of a series of consecutive bits of equal value. On the other hand, de-

emphasis decreases the voltage level of all but the first bit of a sequence of equal value bits. When 

the series of bits travels through a lossy channel, the forced distortions caused by the Tx EQ on 

the signals disappear, leaving the received signal shape closer to what was initially intended for 

transmission. 

1.3.2 Receiver Equalization 

Equalization at the receiver is a major research topic broadly documented in literature. 

Different EQ techniques have been proposed in digital and analog domains, in linear and non-

linear manners and with feed-forward and feedback topologies [Fan-11]; at data rates as high as in 

HSIO links, several techniques can be combined to achieve best performance. The two most 

common circuital equalization techniques on the receiver side are the continuous time linear 

equalizer (CTLE) and the decision feedback equalizer (DFE). The main purpose of the CLTE is 

to counteract the channel loss and open the eye by amplifying signals near the Nyquist frequency. 
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Even though the CTLE provides a great means to better sample the incoming data by opening the 

eye, it is still susceptible to noise, given that it also amplifies unwanted signals at high frequency.  

A DFE is a non-linear EQ technique used to cancel the post-cursor ISI from the present bit by 

using previously received bits. 

1.4. Rx Eye Area Maximization Methodology 

The case under study considered in this report consists of a 5 Gbps HSIO link comprised 

of a Tx, a channel and an Rx. Fig. 1.4 shows the entire system under study. The channel is 

emulating a real interconnection including packages, vias, PCB traces, a connector and a crosstalk 

aggressor. The entire system is modeled and simulated using Keysight ADS1. Every part of the 

system introduces certain kinds of noise. In order for the system to work optimally, EQ techniques 

are used. On the Tx side, de-emphasis is applied, while on the Rx side, a CTLE with one zero and 

one pole and a 4-tap DFE are employed. Thus, in total there are seven EQ variables to be used for 

maximizing the Rx eye. The outputs of the system are the eye width, ew, and eye height, eh, 

measurements. The area of the eye is taken as a figure of merit for the optimization process and is 

simply calculated by 

 
hwA eee =  (1-1) 

Noise factors are also included in the system; two Tx noise sources are used: random jitter 

with an amplitude of 7 mUI, and periodic jitter with 30 ps of amplitude at 20 MHz. A crosstalk 

 
1 Advanced Design Systems (ADS) ver. 2016.01, Keysight Technologies, 1400 Fountaingrove Parkway, Santa Rosa, 

CA. 

 

Fig. 1.4 HSIO system modeled in Keysight ADS. It is comprised of a Tx, an Rx, a 

crosstalk aggressor and a channel encompassing packages, vias, PCB traces and 

a connector. 
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aggressor is included with a random jitter of 10 mUI of amplitude and a 50 ps periodic jitter at 20 

MHz. Also, the PCB trace lengths are selected to emulate a long-channel topology commonly used 

in server applications.  

The plan of action pursued in this work is comprised of three main steps: 1) perform a 

fractional factorial design to find the most significant variables; 2) perform an initial optimization 

using the steepest ascent method, and 3) use a CCD to improve the model and maximize the area 

of the eye diagram. 

1.5. Results 

Given that we have 7 EQ variables, a 27−2
IV fractional factorial design is selected because 

it provides a resolution of IV. By employing this design, only 32 runs are needed, whereas a full 

factorial requires 128 runs. The designs 27−3 and 27−4 require only 16 and 8 runs respectively, but 

their resolution is III, which introduces unwanted aliases. The design generators chosen are x6 = x1 

x2 x3 x4 and x7 = x1 x2 x4 x5.  

Table 1.1 presents the factor to variable mapping, along with the +1 and −1 level coding 

for each factor. The resulting design is shown in Table 1.2. 

Fig. 1.5 depicts the Pareto chart resulting from the fractional factorial design, obtained 

using Minitab2. Even though it shows that all factors and most of the two-level interactions are 

 
2 Minitab version 17.3.1, Minitab, Inc, Pennsylvania, US, 2016.  

 

TABLE 1.1. VARIABLES AND LEVELS DEFINITIONS FOR THE EQ FACTORS 

Factor Variable +1 −1 

Tx deemphasis x1 1 dB 3 dB 

CTLE zero x2 −5 Grad/s −7 Grad/s 

CTLE pole x3 −7 Grad/s −10 Grad/s 

DFE Tap 1 x4 0.0005 0.0009 

DFE Tap 2 x5 0.0015 0.0020 

DFE Tap 3 x6 −0.0015 −0.0020 

DFE Tap 4 x7 −0.0020 −0.0025 
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significant, it is clearly seen that A, B and C, along with the two-level interactions between them, 

are the most significant. Therefore, those three factors are chosen for the next step.  

In order to better maximize the output, the other four factors were selected as follows: x4 

in (−) level, x5 in (+) level, x6 in (−) level and x7 in (−) level. After these considerations, the resulting 

first-order RSM (in DoE terminology) is 

 

TABLE 1.2. FRACTIONAL FACTORIAL DESIGN DEFINITION 

StdOrder RunOrder CenterPt Blocks x1 x2 x3 x4 x5 x6 x7 

1 1 1 1 − − − − −   

2 2 1 1  − − − − − − 

3 3 1 1 −  − − − − − 

4 4 1 1   − − −   

5 5 1 1 − −  − − −  

6 6 1 1  −  − −  − 

7 7 1 1 −   − −  − 

8 8 1 1    − − −  

9 9 1 1 − − −  − − − 

10 10 1 1  − −  −   

11 11 1 1 −  −  −   

12 12 1 1   −  − − − 

13 13 1 1 − −   −  − 

14 14 1 1  −   − −  

15 15 1 1 −    − −  

16 16 1 1     −  − 

17 17 1 1 − − − −   − 

18 18 1 1  − − −  −  

19 19 1 1 −  − −  −  

20 20 1 1   − −   − 

21 21 1 1 − −  −  − − 

22 22 1 1  −  −    

23 23 1 1 −   −    

24 24 1 1    −  − − 

25 25 1 1 − − −   −  

26 26 1 1  − −    − 

27 27 1 1 −  −    − 

28 28 1 1   −   −  

29 29 1 1 − −      

30 30 1 1  −    − − 

31 31 1 1 −     − − 
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Following the steepest ascent methodology, the gradient of ((1-2) was calculated, obtaining 

the relative effects of each variable, as  
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Given that bx2 presents the largest value, x2 is selected to dictate the step size for the 

following experiments, while x1 and x3 are varied, 
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Results for the steepest ascent execution are shown in Fig. 1.6. As it can be seen, the values 

corresponding to the 5th experimental run provide the maximum eye area. These values are selected 

as the center point for the CCD.  

 

 

Fig. 1.5 Pareto chart from the fractional factorial design analysis. 
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The CCD created with Minitab using factors x1, x2 and x3 with α = 1.681793 is shown in 

Table 1.3. The resulting second model order for the system under study is  

 

TABLE 1.3. CENTRAL COMPOSITE DESIGN DEFINITION 

StdOrder RunOrder PtType Blocks x1 x2 x3 

18 1      

6 2    −  

16 3      

14 4 −     

10 5 −     

2 6    − − 

7 7   −   

17 8      

20 9      

5 10   − −  

12 11 −     

19 12      

15 13      

4 14     − 

11 15 −   −  

8 16      

13 17 −    − 

1 18   − − − 

9 19 −  −   

3 20   −  − 

 

 

 

Fig. 1.6 Sequential results for the steepest ascent execution. 
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Fig. 1.7 and Fig. 1.8 show the contour and surface plots of the model. Under careful study, 

the maximum point of the system can be inferred from these plots. However, by using the built-in 

 

Fig. 1.7 Contour plots resulting from the CCD execution for the eye diagram area. 
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Fig. 1.8 Surface plots resulting from the CCD execution for the eye diagram area. 
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Minitab optimizer, a more accurate set of variable values is obtained, as well as a prediction of the 

area, as seen in Fig. 1.9.  Based on this, the system was simulated using the optimal EQ values. 

Results of this simulation are depicted in Fig. 1.10, along with the initial eye for comparison 

purposes and the corresponding measurement values. The measured eye area with the optimal 

settings increased 173% with respect to the original EQ values. Furthermore, the total number of 

simulations to arrive at the optimal point were 61, which is barely 46.21% of the number of 

simulations required to run a full factorial design.  

 

Fig. 1.9 Minitab optimizer output showing the optimal values for factors A, B and C, as 

well as the predicted eye area. 

 

Fig. 1.10 Simulation results for the initial EQ values (shown on the left side of the figure) 

and the optimal EQ values found (shown on the right side of the figure). 
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1.6. Post-Silicon Validation 

Post silicon validation is the stage from the product development of modern computer 

platforms where silicon is available at the laboratory and validation is performed by several groups 

or disciplines, such as functional validation (FV), bench design validation (BDV), and electrical 

validation (EV), among so many others. All of these disciplines execute validation in parallel, each 

one focusing on different specifications, with the objective of qualifying a product over different 

operation conditions, process corners, and usage models [Gu-12]. 

Electrical validation focuses on the validation of several analog phenomena, such as the 

tuning of the so-called physical layer (PHY) [Rangel-Patiño-16], validation of the electrical 

parameters from the I/O links, power delivery, and clocks, as well as resilience to noise 

impairments such as crosstalk, inter symbol interference (ISI), etc. 

HSIO interfaces have a Tx that sends a serial stream of bits with an embedded clock through 

a channel to the Rx. The Rx receives the incoming high-speed serial data, extracts the embedded 

clock, and determines a logical one or a logical zero for each bit received in the stream for further 

processing at the upper protocol layers. 

Given that the data rate of HSIO interfaces is on the order of several gigabits per second 

(Gbps), the specifications associated to those interfaces regarding the timing budget is very 

stringent. This timing budget is reflected on several jitter specifications. On the Tx side, it is 

specified how much timing deviation the Tx can generate to consume the total jitter budget. 

Whereas on the Rx side, it specifies how much time deviation the Rx should tolerate before a false 

detection occurs. As noted in [Fan-09b], “The traditional guaranteed by design paradigm cannot 

be applied anymore”. Hence, the chip maker companies invest a lot of resources to do an 

exhaustive validation on the tight timing specifications to ensure their design and chip quality. 

Many HSIO standards define the jitter performance at the BER of 10−12, which requires a 

very large amount of time to get a statistical valid measurement. Testing a representative number 

of parts on different operation conditions can increase the time exponentially, which cannot be 

afforded for the reduced validation times, which are continuously aimed to be reduced to achieve 

a competitive TTM. Hence, the need of suitable optimization algorithms to reduce the Rx JTOL 

testing time without compromising the quality on the validation becomes highly relevant. 
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1.7. Jitter Tolerance Testing 

Jitter is the variation in time of a periodical signal [Athavale-05]. In general, jitter sources 

are classified as random jitter (JR) and deterministic jitter (JD), which combined form the total jitter 

(JT). The JR is caused by stochastic unbounded sources or events and it can be characterized by a 

Gaussian distribution [Fan-11] and [Ham-05]. On the other hand, the JD sources can be classified 

as deterministic events with bounded peak-to-peak values. The JD is categorized into periodic jitter 

(JP) or sinusoidal jitter, bounded uncorrelated jitter (JBU), and data dependent jitter (JDD) [Kuo-04]. 

The JP is caused by the periodic variation of a signal from sources with repetitive noise, while the 

JBU is typically associated to coupling from adjacent signal traces or randomly switching logic 

located on-chip. The variation of jitter that occurs in the same signal traces and depends on the 

transmitted pattern corresponds to JDD; it is classified in two components: the duty-cycle distortion 

(DCD), which is the jitter produced by the inequality of the logic values of the high and low pulses 

widths, and the jitter caused by the bandwidth limitations and the signal traces losses triggered by 

the frequency, also known as inter-symbol interference (ISI). The jitter components classification 

is shown in Fig. 1.11 [Fan-11] and [Kuo-04].  

HSIO links specifications require the measurement of jitter components, which can be 

performed by the use of different techniques, such as time interval error (TIE) measurement, jitter 

 

Fig. 1.11 The jitter components classification. 
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histograms, JTOL, and BER bathtub, among others. Describing the measurement and 

characterization of each jitter components is beyond of the scope of this report. However, to 

perform a JTOL test, each protocol specification defines a calibration procedure prior to the JTOL 

execution. This procedure defines the specific JR, JBU, DCD, and ISI values injected to the test 

pattern, which remain constant throughout the JTOL test, while JP is varied in both amplitude and 

frequency. The JTOL response RJ can therefore be defined as  

 ( )fJuR ,PJ =  (1-10) 

where JP is the periodic jitter amplitude injected by the BER tester, and f is the frequency of the 

periodic jitter. The evaluation of u implies sending a certain amount of bits from the BER tester, 

receiving the data stream at the Rx of the device under test (DUT), looping back the data to the Tx 

of the DUT, and receiving it once again at the BER tester to check for bit errors. The equipment 

then computes the BER and returns a PASS if the measurement is above the target BER, or FAIL 

if there were more errors that those allowed to comply with the target BER. Therefore, u is a 

discrete function with continuous variables, and RJ is digital, since it can only have a PASS or a 

FAIL value. Given that there is usually a well-defined frontier between JP values that yield a PASS 

and JP values that yield a FAIL, u can be considered a unimodal function. Also, for a fixed value 

of f, the problem of finding the largest value of JP that yields a PASS becomes a unidimensional 

optimization problem.  

In the traditional way to run JTOL, at each frequency point, the value of JP is initialized at 

the starting point, where we are guaranteed to have a PASS result from the BER test. Then, JP is 

increased a certain amount, typically equivalent to the minimum value allowed by the BERT 

equipment for best accuracy. Then, a test is performed at the compliance BER. This is iteratively 

done until the BER test yields a FAIL. The result reported at each frequency point is the last JP 

value that yields a PASS. 

1.8. JTOL Optimization 

The proposed algorithm to optimize the JTOL testing time is divided in two main stages: 

1) execution of a linear search method based on the golden section [Chong-96] at a high BER, 

typically 10−11, and 2) a downwards search at the compliance BER, i.e. 10−12, starting from the 

value obtained from the previous step. This technique clearly takes advantage of the fast execution 
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of the golden section search with a high BER, while overcoming the lack of correlation between 

different BERs by performing a downward linear search at the actual target BER until no errors 

are seen.  

1.8.1 Golden Section Search 

The golden section search algorithm is one of the most widely used unidimensional search 

methods. It aims to find the minimum value of a unimodal function f: →. In order to do so, it 

is necessary to delimit the search points of the function to [a0, b0] as shown in Fig. 1.12, defined 

 

Fig. 1.12 Nature of the range reduction of the golden section algorithm. 

 

Fig. 1.13 Pseudo code implementation of the golden section algorithm. 
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as the lower bound (lb) and upper bound (ub) search points. To reduce the range of uncertainty, 

the function is evaluated in intermediate points, a1 and b1, which are symmetrically selected by 

applying the golden section rule in such a way that a1 is at a distance of ρ to a0 and (1− ρ) to b0 

while b1 is at a distance of (1− ρ) to a0 and ρ to b0, where ρ = (3−√5)/2 is the so-called golden ratio. 

The range reduction is then accomplished by comparing the function evaluations of the 

intermediate points. If u(a1) < u(b1), the minimum value must be in the new range of [a0, b1]; 

however, if u(a1) ≥ u(b1) then the minimum value lies in the range [a1, b0]. This process is iterated, 

as depicted in Fig. 1.13, until the following stopping criteria is met: 

 ( ) step − lbub
 (1-11) 

where εstep is defined as either the minimum JP increment allowed by the BER tester or the known 

measurement to measurement variability. In JTOL, the evaluation of the function returns a PASS 

or FAIL response from the BER test at a certain JP and f. This implementation of the golden section 

algorithm therefore differs from the classical one, in the sense that it is based on a discrete function 

response rather than a continuous one. Consequently, the decision of which search range to discard 

is based on the possibility to approach on every iteration the actual boundary between the PASS 

and FAIL responses, which is our optimal point. The value returned by the algorithm, α*, is the 

average between the upper bound and lower bound points from the last iteration. 

 

Fig. 1.14 Architecture of the system under test, including the PCH and CPU, as well as the 

USB, SATA and PCIe HSIO links. Figure taken from [Rangel-Patiño-20]. 
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1.8.2 Downwards Search 

The second stage of the proposed algorithm performs a search starting from α* from the 

previous stage, but now executing at the compliance BER. The search is performed in a downwards 

direction, meaning that the JP is decremented in linear steps equivalent to εstep (or a percentage of 

εstep in accordance to precision used in the traditional method) until no errors are seen, or in other 

words, until the BER test passes. The range reduction achieved by the golden section search allows 

to decrease the number of evaluations in the downwards search. Typically only one to three 

evaluations are needed at the compliance BER, thus the overall test time is dramatically reduced. 

1.9. Test Cases 

The proposed methodology in this report was tested in two different HSIO links: SATA3 

and USB3 super-speed Gen1. These links are part of an Intel platform controller hub (PCH) that 

works in conjunction with the CPU through the direct media interface (DMI) on a server platform, 

as shown in Fig. 1.14 [Rangel-Patiño-20]. 

1.9.1 Test Case 1: SATA3 

 

Fig. 1.15 SATA JTOL test setup. 



1. OPTIMIZATION TECHNIQUES TO ACCELERATE ANALOG VALIDATION 

26 

The JTOL setup for SATA is comprised of a system platform which includes the DUT and 

a SATA connector, as well as a SATA3 Fixture, a SATA ISI Channel, two transition time 

converters, two power dividers and DC blocking capacitors, as shown in Fig. 1.15. During the Rx 

JTOL test, the BERT pattern generator sends a compliance test pattern with added jitter through 

the compliance channels connected with fixtures the to the Rx. Prior to running the test, the port 

should transition to loopback state. Once in loopback, the data received from the DUT is compared 

to the data generated and errors are counted by the BERT, as seen in Fig. 1.16. The JTOL execution 

following our proposal took 5.29 hours to complete 3 repetitions at five different frequency points, 

as compared to 72.59 hours that the traditional method requires (see Fig. 1.17).  

 

Fig. 1.16 JTOL setup showing BERT and loopback in DUT. 

 

Fig. 1.17 SATA JTOL execution time comparison. 
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Fig. 1.18 SATA JTOL results for the traditional approach and the proposed golden section 

algorithm implementation. 
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 In other words, our proposal is 92.7% faster than the traditional approach to  reach a 

comparable solution, as shown in Fig. 1.18.  

1.9.2 Test Case 2: USB3 

In the case of USB3, the JTOL setup includes the system platform which contains the DUT 

and a USB3 connector where USB3 fixtures are inserted, one BERT and DC blocking capacitors, 

as shown in Fig. 1.19. Validation time was significantly decreased using our JTOL algorithm as 

compared with the traditional methods, without sacrificing accuracy.  

 In this test case, the JTOL results for the traditional approach and those with the proposed 

golden section algorithm were practically the same, as shown in Fig. 1.20, however, the validation 

time was reduced by up to 96.09% with respect to the traditional approach. Current methods 

 

Fig. 1.19 USB3 JTOL test setup. 

 

Fig. 1.20 USB3 JTOL results for the traditional approach and the proposed golden section 

algorithm implementation. 
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require around 6 days for a complete execution, while the method proposed in this work can be 

completed in a few hours, as illustrated in Fig. 1.21. 

1.10. Conclusions 

DoE has proven to be a powerful set of statistical tools to efficiently find the optimal 

performance of a system. With the use of a fractional factorial design, the most significant EQ 

variables were identified with respect to the resulting Rx eye area measured. The steepest ascent 

method was used to find the optimal region of operation and by using the central composite design, 

a second order model of the system was found, which aided in finding the appropriate EQ values 

to obtain the maximum eye area under the specified conditions of operation. 

Additionally, the golden section search algorithm has proven its effectiveness on reducing 

the jitter tolerance validation time as compared with the traditional method: it is around 95% faster 

without compromising the accuracy on the measurements. Even though the algorithm was tested 

on the SATA and USB3 standards as a proof of concept, the proposed algorithmic approach could 

easily be ported to be used on other standards, such as XAUI, and PCIe, among others. The 

incorporation of the golden section search algorithm to the post silicon JTOL tests allows, on one 

hand, a reduction of TTM by getting the evaluation of the silicon sooner, and on the other hand, 

an increase in the validation quality by achieving more unit coverage or PVT conditions at lower 

execution cost.  

 

Fig. 1.21 USB JTOL execution time comparison. 
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2. Surrogate based Modeling and Design 

Optimization of High-Performance Physical 

Platforms 

The combined effects of increased product complexity, performance requirements, and 

time-to-market (TTM) commitments have added tremendous pressure on post-silicon validation 

[Keshava-10]. Within the computer server segment, there are conditions that further increase 

system complexities. These include increased I/O density, decreased power consumption, as well 

as non-flexible form factors [Lee-11]. The latter implies that channel designs remain unchanged, 

thus turning the problem towards analog circuitry optimization. Therefore, physical layer (PHY) 

tuning based on equalization techniques are used to cancel any undesired effect, such as transmitter 

jitter, attenuation, or inter-symbol interference, among others [Hodgkiss-83] and [Zhang-15]. 

Current industrial practices to perform PHY tuning essentially consist of an exhaustive 

enumeration method, turning them into the most time-consuming processes in post-silicon 

validation [Keshava-10], [Wang-15] and [Cheng-11]. To perform PHY tuning, the receiver (Rx) 

eye diagram margins [Viveros-Wacher-14] are optimized until compliance of the link 

specifications. Accurate direct simulations for PHY tuning in high-speed input/output (HSIO) 

links are computationally very expensive given the complexity of the system involved. On the 

other hand, surrogate models are scalable mathematical models that can be used as a parameterized 

approximation of a system response within a design space of interest [Yelten-12] and [Garistelov-

12]. While an accurate surrogate model is desirable for direct surrogate-based optimization (SBO), 

it can be very expensive to derive it, since it typically requires massive lab measurements which 

are prohibitive under the current TTM schedules. However, by combining a good model vehicle 

with a suitable design of experiments (DoE) approach, more efficient surrogate modeling 

approaches can be developed.  

In this chapter, coarse surrogate models of an HSIO link based on actual measurements of 

an industrial server post-silicon validation platform are developed. Several surrogate modeling 

techniques combined with different DoE approaches are compared to find the best coarse model, 

verifying the response of the resultant coarse models by comparing with actual measurements. We 
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next perform a surrogate-based optimization (SBO) with the best coarse models found to obtain 

the optimal PHY tuning Rx equalizer settings. We finally validate our approach by measuring the 

actual functional eye diagram on the real system using the optimal settings predicted by the coarse 

model.  

Additionally, this chapter addresses a machine learning-based metamodeling technique to 

develop a coarse model. More specifically, a metamodeling approach is proposed, based on 

artificial neural networks (ANN), to efficiently simulate the silicon equalizer circuitry of the Rx. 

The model is generated using a frugal set of training data exploiting several design of experiments 

(DoE) approaches to reduce the number of test cases. We evaluate the neural model performance 

by comparing with actual measured responses on an industrial server validation platform. 

While an accurate surrogate model is desirable for direct surrogate-based optimization 

(SBO), it can be computationally expensive to develop. By combining an adequate modeling 

technique with a suitable DoE approach, a coarse surrogate model can be efficiently developed 

with a very reduced set of data, as in [Rangel-Patiño-17c] and [Rangel-Patiño-19]. Once this coarse 

model is available, space mapping (SM) techniques can be exploited. In the present chapter, the 

Broyden-based input space mapping optimization algorithm, better known as aggressive SM 

(ASM) [Bandler-95] and [Rayas-Sánchez-16], is used for the first time in HSIO PHY tuning 

optimization. The proposed SM approach takes advantage of a coarse surrogate model developed 

 

Fig. 2.1 Test setup: an Intel server post-silicon validation platform. Image taken from 

[Rangel-Patiño-17b]. 
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following [Rangel-Patiño-17c]. In this case, the fine model is a measurement-based post-silicon 

validation industrial platform. Our approach is illustrated by optimizing the PHY tuning receiver 

(Rx) equalizer settings for a SATA Gen 3 channel topology, accelerating tuning from several days 

to a few hours.  

This chapter revisits our work in [Rangel-Patiño-17b], [Rangel-Patiño-18], and [Rangel-

Patiño-19].  

2.1. System Description 

The system under test is an Intel server post-silicon validation platform in an industrial 

environment, as shown in Fig. 2.1. The platform is comprised mainly of a CPU and a platform 

controller hub (PCH). Within the PCH, our methodology was tested on a SATA Gen3 HSIO link 

[SATAOrg-16]. The SATA Rx eye diagram is measured by a process known as system margin 

validation (SMV). The functional eye diagram measurements in SMV rely on on-die design for 

test (DFT) features that shrink the eye opening up to a point where the Rx detects errors or the 

system fails, as illustrated in Fig. 2.2. 

2.2. Design of Experiments 

A large amount of training and testing data is usually needed to ensure surrogate model 

accuracy. However, generating large amounts of data is very expensive in the post-silicon 

 

Fig. 2.2 Functional eye diagram based on system margin validation. Image taken from 

[Rangel-Patiño-17b]. 
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validation environment. DoE can be exploited to reduce the dimension of these data sets, ensuring 

adequate parameter coverage [Mack-07]. Here we use DoE to sample the complete design space 

in an efficient manner by selecting a relatively small number of base points. With k variables and 

3 levels for each variable, a full factorial space search requires 3k experimental runs. We employ 

three different DoE techniques to explore the desired solution space with a far less number of runs: 

Box-Behnken (BB), orthogonal arrays (OA), and Sobol. For each technique, we use five input 

variables that represent Rx PHY parameters, including CTLE (two), VGA (one), and CDR (two) 

settings, and then we retrieve the eye measurements from the system under test. The samples taken 

are later used as the training and testing data required for surrogate modeling. 

2.2.1 Box Behnken (BB) 

Response surface methodology (RSM) is a collection of techniques to find first and second 

order effects of k variables on the measured outputs. First order effects are easily obtained through 

two-level full or fractional designs, whereas second order effects are usually captured by spherical 

designs such as the central composite design [Viveros-Wacher-16]. that requires up to five levels 

for each variable (the center points, ±1 and ±α, where α = k1/2). 

BB is a type of second order RSM design that combines factorial designs with balanced 

incomplete blocks designs [Wu-00]. This characteristic is particularly helpful for variables that are 

not able to take k1/2 values, such as digitally controlled variables, as in our system under test. In 

this manner, we use only 3 levels for each variable, yielding a total number of 46 experiments. We 

denote this DoE as BB. 

2.2.2 Orthogonal Arrays (OA) 

OAs are experimental designs identified by LN(sk), where N is the number of experimental 

runs, s is the number of states (or levels) for each variable and k is the number of variables [Chang-

05].  Their most important feature is that for each variable, all possible levels appear equally often. 

OAs help to reduce the number of experiments while maintaining the ability to measure the effect 

of each variable on the output without the need to test all possible combinations.  

When s = 2, the resulting OA allows to see linear effects. By increasing the value of s, non-
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linear effects can be assessed. We use an L27(3
5) OA in our work in order to capture non-linear 

effects in the objective function by only running 27 experiments. We denote this DoE as OA27.  

2.2.3 Sobol  

The most commonly used stochastic sampling algorithm is Monte Carlo. Monte Carlo 

sampling tends to generate clusters of points, leading to unnecessary samples, as well as leaving 

gaps in the solution space. One approach to overcome these issues is to use quasi-Monte Carlo 

methods such as low-discrepancy sequences [Cheng-00], where discrepancy is the measure of non-

uniformity of a sequence of points. 

We select the Sobol [Sobol-67] low-discrepancy sequence as the third DoE option to 

sample the solution space, which improves the exploration  as the number of samples increases, at 

the expense of increasing test time on the real system. Therefore, we use three different Sobol 

DoE, denoted as Sobol50, Sobol100 and Sobol150, with 50, 100 and 150 samples, respectively.  

2.3. Surrogate Modeling and Optimization 

Surrogate models provide fast approximations of the system response, making optimization 

and sensitivity studies possible [Queipo-05]. The major benefit of surrogate models is the ability 

to quickly obtain any number of additional function evaluations without resorting to more 

expensive numerical models. In this section, several surrogate modeling techniques are explored 

to construct an efficient surrogate model for PHY equalizer simulation.  

2.3.1 Surrogate Model Formulation 

The electrical margining system response Rf  2, denoted as the fine model response, 

consists of the eye width ew   and eye height eh   of the measured functional eye diagram, 

and depends on the Rx PHY tuning setting values x, the operating conditions  (voltage and 

temperature), and the devices  (silicon skew and end-point devices), 
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The surrogate models are trained such that its response is as close as possible to the fine 

model response for all data in the training set, 

 
s f( , , ) ( , , )R x ψ δ R x ψ δ  (2-2) 

where Rs  m is the response of the surrogate model.  

The training procedure requires two sets of inputs x and targets Rf, one during the learning 

phase, where the model aims to approximate the actual measurements, and another one for the 

testing phase, to measure the generalization performance of the model. 

2.3.2 Surrogate Modeling Techniques 

We exploit five different surrogate modeling techniques: polynomial-based surrogate 

modeling (PSM), support vector machines (SVM), kriging, generalized regression neural networks 

(GRNN), and 3-layer perceptron neural networks (3LP ANN).  

In PSM, the surrogate model is implemented by exploiting the multinomial theorem, which 

allows the algorithm to raise a polynomial to an arbitrary power. A polynomial function is used to 

represent the behavior of the response around a reference design. The order of the polynomial 

function is increased until generalization performance deteriorates. 

The SVM technique solves a constrained quadratic optimization problem, finding a global 

optimum for the model parameters. The optimization problem is feasible due to the use of kernel 

functions, being the radial basis function the most employed kernel [Angiulli-07] and [Xia-06]. 

Kriging surrogate modeling is based on space filling experiments, aiming at covering the 

whole experimental area [VanBeers-05].  

GRNN is a special type of ANN that does not require an iterative training procedure 

[Mahouti-14]. Moreover, the number of neurons in the hidden layers is equal to the number of 

learning samples [Specht-91]. As the number of samples becomes large, this technique exhibits a 

fast learning and convergence to the optimal regression surface [Panda-14]. 

The 3LP ANN is the most widely used feedforward network [Rayas-Sánchez-04]. The 

number of neurons in the hidden layer (h) depends on the required complexity of the ANN, and its 

final number is defined based on the ANN generalization performance. In this work, the 3LP ANN 
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is trained by using Bayesian regularization training [MacKay-92] available in the MATLAB 

Neural Network ToolBox . We start training the 3LP ANN with h = 1, and we keep increasing the 

complexity of the ANN (the number of hidden neurons h) until the generalization deteriorates 

[Rayas-Sánchez-06]. 

2.3.3 Direct Surrogate Model Optimization 

We select the best surrogate model based on the generalization performance, from all DoE 

and modeling techniques combinations, and we apply a direct optimization algorithm to maximize 

the eye diagram area using the following objective function: 

   w h( ) ( , , ) ( , , )u e e= −x x ψ δ x ψ δ  (2-3) 

We aim at finding the optimal set of PHY tuning knobs, x* by solving 

 * arg min ( )u=
x

x x  (2-4) 

The optimization procedure uses the Nelder-Mead simplex-based method [Lagarias-98] to 

solve (2-4). Since u(x) is evaluated from the surrogate model, solving (2-4) is computationally 

 

TABLE 2.1. SURROGATE MODELS GENERALIZATION ERROR  FOR EYE HEIGHT 

model BB OAL27 Sobol50 Sobol100 Sobol150 

PSM 2.77% 8.90% 2.68% 2.05% 0.42% 

SVM 6.35% 6.70% 6.69% 6.79% 6.77% 

Kriging 3.10% 7.01% 2.74% 1.89% 1.45% 

GRNN 7.47% 9.27% 2.86% 2.15% 1.58% 

3LPANN 3.33% 7.14% 2.49% 1.96% 1.15% 

 

 

TABLE 2.2. SURROGATE MODELS GENERALIZATION ERROR  FOR EYE WIDTH 

model BB OAL27 Sobol50 Sobol100 Sobol150 

PSM 1.66% 2.79% 1.37% 1.23% 0.11% 

SVM 3.27% 4.32% 3.43% 3.48 % 3.49% 

Kriging 2.71% 5.36% 1.23% 1.28% 0.55% 

GRNN 3.82% 4.33% 1.14% 1.04% 0.53% 

3LPANN 2.96% 2.59% 1.71% 1.27% 0.56% 
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very efficient.  

2.4. Results and Comparisons 

The accuracy of the generated surrogate models is evaluated by comparing against actual 

SATA margins on the validation platform. The average relative error  for eye height and eye 

width at testing base points (xT) not seen during training is calculated as  

 f T s T 2

f T 2

( ) ( )

( )


−
=

R x R x

R x
 (2-5) 

The norms in (2-5) are calculated with 30 randomly distributed testing base points not seen during 

  
a) b) 

  
c) d) 

 
e) 

Fig. 2.3 Surrogate models absolute testing errors for eye height, using: a) OAL27, b) BB, 

c) Sobol50, d) Sobol100, and e) Sobol150. Image taken from [Rangel-Patiño-

17b]. 
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training.  

Table 2.1 and Table 2.2 show a summary of the generalization performance, obtained from 

(2-5), for the eye height and eye width, comparing the five surrogate models using the five DoE: 

a) OAL27, b) BB, c) Sobol50, d) Sobol100, and e) Sobol150. It is seen from those tables that, 

overall, the PSM technique yields the lowest testing average relative errors for both eye 

measurements when using Sobol150, which is the DoE technique yielding best generalization 

performance. 

Fig. 2.3 and Fig. 2.4 show the absolute error at the 30 testing samples for eye height and 

eye width, respectively, for the five surrogate models using the five DoE techniques. Both figures 

show that the accuracy of the models improve as the number of samples in the DoE technique 

  
a) b) 

  
c) d) 

 
e) 

Fig. 2.4 Surrogate models absolute testing errors for eye width, using: a) OAL27, b) BB, 

c) Sobol50, d) Sobol100, and e) Sobol150. Image taken from [Rangel-Patiño-

17b]. 
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increase. Using OAL27, the best performance is obtained with SVM for eye height (Fig. 2.3a), 

and with 3LP-ANN for eye width (Fig. 2.4a). When using the BB DoE, the PSM shows the best 

accuracy for both eye height and width (Fig. 2.3b and Fig. 2.4b). Neural networks (both 3LP-ANN 

and GRNN models) exhibit the best performance when using Sobol50 DoE (Fig. 2.3c and Fig. 

2.4c).  

When the surrogate models are developed using Sobol100 DoE, the best performance is 

achieved by Kriging and GRNN models (Fig. 2.3d and Fig. 2.4d). Finally, it is observed that the 

PSM technique with Sobol150 DoE yields the best generalization performance (Fig. 2.3e and Fig. 

2.4e), with the lowest average relative testing errors for all DoE-model combinations, as confirmed 

in Table 2.1 and Table 2.2. We therefore select PSM with Sobol150 as the best surrogate model 

found. The eye width and eye height responses from this model are compared against the actual 

system measurements on the 30 testing points in Fig. 2.6 and Fig. 2.6, where it is shown that the 

 

Fig. 2.5 Comparison between fine model responses and polynomial surrogate model 

responses at testing base points for the eye width. Image taken from [Rangel-

Patiño-17b]. 

 

Fig. 2.6 Comparison between fine model responses and polynomial surrogate model 

responses at testing base points for the eye height. Image taken from [Rangel-

Patiño-17b]. 
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surrogate model closely approximates the fine model responses. 

The PSM model generated with the Sobol150 DoE is used to obtain the optimal Rx PHY 

tuning knobs by performing a SBO, as described in Section 2.3.3. The results, shown in Fig. 2.7, 

indicate an improvement of 400% on eye diagram area as compared to the initial PHY tuning 

settings, demonstrating the high effectiveness of our approach. 

2.5. Machine Learning in Post-Silicon Validation 

Machine learning algorithms, a branch of artificial intelligence, build statistical models 

from examples, which are then used to make predictions when faced with cases not seen before. 

On the other hand, the goal of HSIO post-silicon validation is to understand and validate from 

physical examples the correct operation of the design, identify bugs, and determine the best 

settings to avoid any failure. Machine learning aims at a similar goal: learning from examples and 

identifying the structure in a system [DeOrio-13]. In addition, the large volume of data generated 

from typical post-silicon testing suggests the application of machine learning techniques to predict 

post-silicon behavior. 

There has been recent research on machine learning applications to some areas of post-

silicon validation. In [Rahmani-17], authors propose a trace signal simulation-based selection 

technique that exploits machine learning to efficiently identify a small set of key traceable signals, 

reducing the simulation cost. An algorithm that applies anomaly detection techniques is proposed 

 

Fig. 2.7 Comparison between the system fine model responses before and after surrogate-

based optimization (square and circle marks, respectively). Image taken from 

[Rangel-Patiño-17b]. 
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in [DeOrio-13] for post-silicon bug diagnosis. A Bayesian model fusion is described in [Wang-16] 

to efficiently reuse the data from pre-silicon and reduce the data collection for tuning during post-

silicon. Machine learning is applied in [Pridhiviraj-15] to bug finding in post-silicon server power 

management. In [Deyati-14], several neural models are developed to learn post-silicon unknown 

module-level behavior and diagnose localized design bugs. 

It is seen that all the previously cited machine learning approaches to post-silicon validation 

have been focused on developing efficient and reliable techniques for diagnosis, failure detection, 

or bug identification. An assessment of several surrogate modeling and DoE techniques to identify 

the best approach for a HSIO link model and simulation is realized in [Rangel-Patiño-17b]. From 

that assessment, polynomial-based surrogate modeling (PSM) combined with Sobol DoE with 150 

samples was identified as the most accurate surrogate model [Rangel-Patiño-17b]. While an 

accurate model is desirable for direct optimization, it can be still expensive since it requires a 

significant amount of lab measurements to develop. Here, we propose a neural modeling approach 

to efficiently approximate the effects of a HSIO post-silicon receiver equalizer with a very reduced 

set of testing and training data. The resultant metamodel, obtained from the proposed inexpensive 

method, could later be used as a fast coarse model in a space mapping approach [Bandler-04] and 

[Rayas-Sánchez-16] to find the optimal equalizer settings that maximize the actual HSIO 

performance. 

2.6. ANN-Based Receiver Metamodeling 

Metamodels are scalable parameterized mathematical models that emulate the component 

behavior over a user-defined design space. These techniques allow developing an approximation 

of a system response within a design region of interest, following a “black-box” approach. The 

problem of modeling in post-silicon validation can be mapped to a mathematical problem of 

function estimation in presence of noisy data points. The most popular estimators are neural 

networks and Kernel estimation. In [Goulermas-07], authors demonstrate the functional estimation 

capability of an artificial neural network (ANN).  

ANNs are particularly suitable to approximate high-dimensional and highly nonlinear 

relationships, in contrast to more conventional methods such as numerical curve-fitting, empirical 

or analytical modeling, or response surface approximations [Vicario-16]. ANNs have been used 



2. SURROGATE BASED MODELING AND DESIGN OPTIMIZATION OF HIGH-PERFORMANCE 

PHYSICAL PLATFORMS 

 41 

in many areas of applications, including RF and microwave circuits [Zhang-00], EM-based design 

optimization [Rayas-Sánchez-04], control process, telecommunications, biomedical, remote 

sensing, pattern recognition, and manufacturing, just to mention a few [Haykin-99]. Recently, 

ANNs have been used for HSIO simulations, but they were focused to model the nonlinear 

relationships between channel parameters and system performance to speed up system simulations, 

as in [Bistola-15] and [Liu-15]. In [Goay-17], authors proposed ANNs for eye diagram modeling 

based on simulations, and they use an adaptive sampling method for data collection process. 

Once trained, ANN provides a fast way to perform a large number of I/O links and channel 

simulations that take into account the die-to-die process variations, board impedances, channel 

losses, add-in cards, end-point devices, and operating conditions [Beyene-07]. ANN modeling 

involves two inter-related process: a) neural network model development - that includes selection 

of representative training data, network topology, and training algorithms; and b) neural model 

validation - the neural network model is tested and validated according to its generalization 

performance in a given region of interest. A large amount of training data is usually needed to 

ensure model accuracy, and this could be very expensive in the post-silicon validation 

environment. An alternative to reduce the dimension of the learning set is to properly select the 

learning points by using DoE, to ensure adequate design space parameter coverage [Mack-07].  

2.6.1 ANN Topology 

Multilayer perceptrons are feedforward networks widely used as the preferred ANN 

topology [Rangel-Patiño-17a]. We use a 3-layer perceptron (3LP) to implement our neuromodel, 

with n inputs (equal to the number of Rx knobs), h hidden neurons, and m outputs (number of 

system responses of interest) [Rangel-Patiño-17a]. The required complexity of the ANN, 

determined by h, depends on the required generalization performance for a given set of training 

and testing data [Rayas-Sánchez-01].  

2.6.2 ANN Modeling and Training 

Let Rf  m represent the actual electrical margining system response, denoted as a fine 

model response, which consists of the eye width ew   and eye height eh   of the measured 
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eye diagram, 

  T
hwf ),,(),,(),,( δψxδψxδψxR ee=  (2-6) 

The electrical margining system response depends on the Rx knobs settings x  n, the 

operating conditions  (voltage and temperature), and the devices  connected to the system. The 

ANN is trained to find an optimal vector of weighting factors w, such that the ANN response, 

denoted as Rs, is as close as possible to the fine model response for all x, ,  in the region of 

interest, 

 ),,(),,,( fs δψxRwδψxR   (2-7) 

The ANN main input-output relationship is denoted as 

 )(xfR =s  (2-8) 

We aim to develop a fast and accurate ANN model for f by training the ANN with a set of 

measured learning data. In [Rangel-Patiño-17a] an ANN modeling procedure was outlined, and an 

algorithm for training the ANN was developed. We use the same modeling procedure considering 

the learning data are pairs of (xL, tL), with L = 1, 2…, l, where tL contains the desired outputs or 

 

Fig. 2.8 HSIO server post-silicon hardware configuration for Rx metamodeling. 

On-die instrument:
Margins measurements

Post-silicon platform

PCH
Display

IME
I/O Controller

Real time 
Clock

DMI

USB 2.0/3.0/3.1

CPU
iGFX
IMC

PCI Express 2.0/3.0

SSD SATA 2.0/3.0

PHY tuning settings control

ANN Modeling

Pre-production silicon 
samples

Automation host

Time

V
ol

ta
ge

Eye Width

Ey
e 

H
ei

gh
t

Rx eye diagram

 S φk(sk)xk2

xk1

bk

x

xwk2

wk1

xkn

wkn x  
yk=φk(sk)

sk = bk+xk
Twk



2. SURROGATE BASED MODELING AND DESIGN OPTIMIZATION OF HIGH-PERFORMANCE 

PHYSICAL PLATFORMS 

 43 

targets (obtained from measurements) for the ANN model at the xL inputs, and l is the total number 

of learning samples. During training, we keep fixed the system at voltage/temperature (VT) 

nominal conditions and without changing the external device. Under these conditions,   and   

remain constant. Therefore, the ANN model during training is treated as 

 ),(ss wxRR LL =  (2-9) 

Following the procedure in [Rangel-Patiño-17a], the ANN model is developed.  

2.7. Experimental System Configuration and DoE approaches 

The system under test is a server post-silicon validation platform, comprised mainly of a 

CPU and a platform controller hub (PCH). The PCH is a family of Intel microchips which 

integrates a range of common I/O blocks required in many market segments, and these include 

USB, PCIe, SATA, SD/SDIO/MMC, and Gigabit Ethernet MAC, as well as general embedded 

interfaces such as SPI, I2C, UART, and GPIO. The PCH also provides control data paths with the 

Intel CPU through direct media interface (DMI), as shown in Fig. 2.8. This figure also shows the 

automation mechanism to read the Rx eye diagram parameters (eye width and eye height). Within 

the PCH, our methodology was tested on two different HSIO links: USB3 Super-speed Gen 1 and 

SATA3. 

The measurement system is based in the system margin validation (SMV) process [Rangel-

Patiño-16] and [Viveros-Wacher-14], which is a methodology to verify the signal integrity of a 

circuit board and assess how much margin is in the design relative to silicon characteristics and 

processes. The SMV methodology consists of measuring the Rx functional eye width and eye 

  

a) b) 

Fig. 2.9 Comparison of SATA neural model generalization performance for different 

DoE techniques: a) eye height error; b) eye width error. 
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height by using on-die design for test (DFT) features until the eye opening has been shrunk to a 

point where the Rx detects errors or the system fails [Rangel-Patiño-17b].   

We employ three different DoE techniques to explore the desired solution space with a 

reduced number of test cases. For each test case, we use seven input variables that represent Rx 

knobs (n = 7), such as CTLE, VGA, and CDR settings, and then we retrieve the eye measurements 

from the system under test. The employed DoE techniques are: 1) Box Behnken (BB), which is a 

type of second order response surface methodology (RSM) that combines factorial designs with 

balanced incomplete blocks designs [Wu-00], using 62 experiments; 2) orthogonal arrays (OA) 

[Chang-05], using an L27(39) array in order to capture non-linear effects in the objective function 

by only running 27 experiments; and 3) Sobol [Sobol-67] low-discrepancy sequence to sample the 

solution space. Given the quasi-Monte Carlo sampling approach of Sobol, the solution space is 

better explored as the number of samples increases, at the expense of increasing test time on the 

real system. Therefore, we use three different Sobol DoE, denoted as Sobol50, Sobol100 and 

Sobol150, with 50, 100, and 150 samples, respectively. 

System margining testing is very time consuming when running many test cases for PHY 

tuning. A single test case with 3 repetitions can take up 20 minutes, and then running a Sobol150 

can take up 50 hours of testing for a single VT corner. The objective of comparing several DoEs 

is to find a suitable sampling strategy that provides adequate ANN model performance with the 

least amount of testing time.  

2.8. Neural Modeling Results 

  
a) b) 

Fig. 2.10 Learning and testing errors during SATA neural training using Sobol50, for a) 

eye width and b) eye height. 
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Fig. 2.9 shows the generalization error of the already trained neural model, comparing the 

different DoEs for SATA. It is seen that the best performance is achieved with Sobol150. The three 

Sobol cases provide the best generalization performance, as seen in Fig. 2.9. However, Sobol50 is 

able to achieve acceptable accuracy with only 50 samples. 

Fig. 2.10 shows the learning and generalization performance of the neural training 

algorithm for SATA. The best performance is achieved with h = 3 for the eye width ANN, 

achieving a maximum relative learning error of 3.65% and 7.63% for the relative testing error. For 

the eye height ANN, best performance is achieved with h = 4, yielding 7.98% of learning error 

and 6.75% of testing error. Thus, the metamodels are able to reach above 90% of accuracy for 

these initial sampling points. 

The already trained neural model response with h = 3 for ew and h = 4 for eh from Sobol50 

is compared in Fig. 2.11a and Fig. 2.11b, respectively, with the fine model (real measurements), 

by using 30 testing base points not used during training, in order to test the generalization 

performance. It is observed that the neural model effectively simulates the actual physical 

measurements with a total relative error of 1.7% for the ew response and 2.5% for the eh response. 

In other words, the ANN metamodel is able to predict margins with up to 95% of accuracy when 

using equalization values not used during the ANN training.  

We obtained similar results for the case of USB3 Super-speed Gen 1. For the sake of 

brevity, we present only the final results in Fig. 2.12. It is seen that for USB, the resultant neural 

model also effectively simulates the fine model (physical platform), finding a total relative error 

of 6.7% for the ew response, as shown in Fig. 2.12a; and 5.7% relative error for the eh response, 

as shown in Fig. 2.12b. This metamodel performance was achieved using also a Sobol50 DoE. 

  
a) b) 

Fig. 2.11 Neural model generalization performance using Sobol50 for: a) SATA eye width; 

b) SATA eye height. 
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As mentioned before, system margining testing is very time consuming when running 

many test cases for PHY tuning. A single test case with 3 repetitions can take up 20 minutes, and 

then running a Sobol150 can take up 50 hours of testing for a single VT corner. The objective of 

comparing several DoEs is to find the optimal sampling strategy that provides adequate ANN 

model performance with the least amount of testing time. The three Sobol cases provide the best 

error performance, as seen in Fig. 2.9. However, Sobol50 is able to achieve this with only 50 

samples. Next, we improved the ANN metamodels by collecting data at three different VT corners: 

fast (high voltage, low temperature), slow (low voltage, high temperature), and high (high voltage, 

high temperature) using a Sobol 50 DoE at each corner, for ANN training purposes. A different 

VT corner − low (low voltage, low temperature) – and 50 testing base points not used during 

training were used to further test the generalization performance. Fig. 6 shows the comparison 

between the responses predicted by the neural model at low VT and the actual measured responses. 

The proposed coarse metamodel achieves a maximum error of 17.75% for eye width and 12.78% 

for eye height.  

2.9. Broyden-Based Input Space Mapping 

SM optimization methods belong to the general class of surrogate-based optimization 

algorithms [Booker-99]. They are specialized on the efficient optimization of computationally 

expensive models. The most widely used SM approach to efficient design optimization is the ASM 

or Broyden-based input space mapping algorithm [Rayas-Sánchez-16]. ASM efficiently finds an 

  
a) b) 

Fig. 2.12 Neural model generalization performance using Sobol50 for: a) USB eye width; 

and b) USB eye height. 
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approximation of the optimal design of a computationally expensive model (fine model) by 

exploiting a fast but inaccurate surrogate representation (coarse model) [Rayas-Sánchez-16]. ASM 

aims at finding a solution that makes the fine-model response close enough to the desired response 

or target.  

2.9.1 Fine Model 

Our fine model is an Intel server post-silicon validation platform in an industrial 

environment, as shown in Fig. 2.13. The platform is comprised mainly of a CPU and a platform 

controller hub (PCH) [Rangel-Patiño-16]. Within the PCH, our methodology is applied to a HSIO 

link SATA Gen3. The SATA channel topology is comprised of the Tx driver, the Tx base board 

transmission lines, several via transitions, an I/O card connector, and 1 m SATA cable used to 

connect the base board to the device I/O card, as illustrated in Fig. 2.14. The measurement system 

is based on an Intel process called system margin validation (SMV) [Rangel-Patiño-16] and 

[Viveros-Wacher-14], which is a methodology to assess how much margin is in the design relative 

 

Fig. 2.13 Test setup: an Intel server post-silicon validation platform. 
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to silicon characteristics and processes that vary over time, including voltage, and temperature.  

The fundamental process behind the SMV consists of systematically adjusting the corner 

conditions under which the validation platform operates, then measure the Rx functional eye 

opening by using on-die design for test (DFT) features until the eye opening has been shrunk to a 

point where the Rx detects errors or the system fails [Rangel-Patiño-17b].  

Let Rf  m represent the actual (measured) electrical margining system response, denoted 

as a fine model response, which consists of the eye width ew   and eye height eh   of the 

measured eye diagram, 

  
T

f w h( , , ) ( , , ) ( , , )e e=R x ψ δ x ψ δ x ψ δ  (2-10) 

This electrical margining system response depends on the PHY tuning settings x (EQ 

coefficients), the operating conditions  (voltage and temperature), and the devices  (silicon skew 

and external devices). We use five input variables that represent the SATA Rx PHY tuning 

coefficients; these variables are settings used in three main Rx circuitry blocks (CTLE, VGA, and 

CDR). ew and eh are obtained from measured parameters, 

 w wr wl( , , ) ( , , ) ( , , )e e e= +x ψ δ x ψ δ x ψ δ  (2-11) 

 h hh hl( , , ) ( , , ) ( , , )e e e= +x ψ δ x ψ δ x ψ δ  (2-12) 

where ewr   and ewl   are the eye width-right and eye width-left measured parameters, 

respectively, and ehh   and ehl   are the eye height-high and eye height-low parameters, 

respectively. 

2.9.2 Coarse Model 

Surrogate models can be constructed using data from high-reliability models or from 

measurements and provide fast approximations of the original system or component at new design 

 

Fig. 2.14 SATA3 Rx channel topology. From [Rangel-Patiño-17b]. 
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points [Queipo-05]. In [Rangel-Patiño-17c], we analyze several surrogate models trained with 

different DoE techniques to find a good coarse model able to approximate a USB3.1 Gen1 HSIO 

link with a very reduced amount of measurements, selecting the best combination of surrogate 

modeling technique and DoE in terms of accuracy and development time. Here, we follow 

[Rangel-Patiño-17c] to develop a coarse surrogate model for a HSIO link SATA Gen3. By using 

the PHY tuning setting coefficients as inputs x and the corresponding eye height and width as 

outputs Rc, we select a Kriging surrogate modeling technique [Rangel-Patiño-20] with a Sobol 

[Rangel-Patiño-17c] DoE approach with only 50 samples.  

2.9.3 Objective Function 

We want to find the optimal set of PHY tuning settings x that maximize the functional eye 

diagram area. Therefore, our objective function is given by 

   w h( ) ( , , ) ( , , )u e e= −x x ψ δ x ψ δ  (2-13) 

During optimization, both  and  are kept fixed. 

2.10. ASM Optimization 

ASM starts by finding the optimal coarse model design xc
* from direct numerical 

optimization, that yields the optimal coarse model response, Rc(xc
*) = Rc

*. ASM takes Rc
* as the 

target response for the fine model, aiming to find a fine model design, xf
SM (also known as the 

space-mapped solution) that makes the fine model response Rf(xf
SM) as close as possible to the 

target response Rc
*. 

The central part of the ASM algorithm is the parameter extraction process [Rayas-Sánchez-

16], which can be considered as a vector function P representing the mapping between both design 

parameter spaces, xc
(i) = P(xf

(i)). If the current extracted parameters xc
(i) correspond approximately 

to xc
*, then the current fine model response approximates the desired response, Rf(xf

(i))   Rc
*. To 

find xf
SM, the ASM algorithm solve a system of nonlinear equations defined as, 

 
*

f f c( ) ( )= −f x P x x  (2-14) 

The parameter extraction process consists of finding, for the i-th fine model design xf
(i), the 
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coarse model design xc
(i) whose corresponding response Rc(xc

(i)) is as close as possible to Rf(xf
(i)). 

This can be realized by solving 

 
c

2
( ) ( ) ( )
f c f f c c

2
( ) arg min ( ) ( )i i i= = −

x
P x x R x R x  (2-15) 

The system of equations f(xf) is directly solved by using Broyden's updating formula 

[Broyden-65]. Notice that solving f(xf) is equivalent to solving the mapping equation P(xf) = xc
*, 

which denotes that a solution to the system is found when the extracted parameters are equal to 

the optimal coarse model design, implying also that the fine model response is sufficiently close 

to the target response.  

The next iterate in the algorithm is predicted by 

 
( 1) ( ) ( )
f f
i i i+ = +x x h  (2-16) 

where h(i) solves the linear system defined as, 

 
( ) ( ) ( ) ( )

f( )i i i i= − = −B h f x f  (2-17) 

where Broyden matrix B is an approximation of the Jacobian of f with respect to xf at the current 

 

Fig. 2.15 Pseudo-code for the Broyden-based input space mapping optimization. From 

[Rayas-Sánchez-11]. 
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iterate i. The matrix B is first initialized by the identity matrix and updated by using Broyden’s 

formula, 

 

( ) ( )T
( 1) ( )

( )T ( )

i i
i i

i i

+ = +
f h

B B
h h

 (2-18) 

The pseudo-code used to implement this algorithm is based on [Rayas-Sánchez-11] as 

shown in Fig. 2.15. 

The stopping criteria considered in this work include four possibilities: when a root of the 

nonlinear system is found; when the relative change in the fine-model design parameters is small 

enough; when the maximum relative error in the fine-model response with respect to the target 

response is small enough; or when a maximum number of iterations is reached; as follows 

 ( )
f 1( )i 


 f x  (2-19) 

 ( 1) ( ) ( )
f f 2 2 f

2 2
( )i i i + −  + x x x  (2-20) 

 ( ) * *
f f c c 3 3 c c( ) ( ) ( ( ) )i  

 
−  + R x R x R x  (2-21) 

 maxi i  (2-22) 

where 1, 2, and 3 are arbitrary small positive scalars. 

 

Fig. 2.16 Normalized coefficients and objective function values across SM optimization 

iterations. 



2. SURROGATE BASED MODELING AND DESIGN OPTIMIZATION OF HIGH-PERFORMANCE 

PHYSICAL PLATFORMS 

52 

2.11. Optimization Results 

After applying the Broyden-based input space mapping algorithm [Rayas-Sánchez-16], we 

arrive to a space-mapped solution, xSM, in just 6 iterations (or fine model evaluations), as shown 

in Fig. 2.16. The set of Rx EQ coefficients contained in xSM makes the measured SATA Rx inner 

eye height and width of the PCH as open as that one predicted by the optimized coarse surrogate 

model. The SM solution (xSM) found makes an improvement of 85% on the fine model eye diagram 

area as compared to that one with the initial settings (xc
(0)), and a 33% improvement as compared 

to that one with the optimal coarse model solution (xc
*), as shown in Fig. 2.17. 

The efficiency of this approach is also demonstrated by a very significant time reduction in post-

Si validation and PHY tuning Rx equalization. While the traditional industrial process requires 

days for a complete empirical optimization (based on engineering expertise), the method proposed 

here can be completed in a few hours. The technique can easily be applied to other interfaces such 

as USB and PCI express. 

 

Fig. 2.17 Comparison between the system fine model responses at the initial Rx EQ 

coefficients, xc
(0), at the optimal coarse model solution, xc

*, and at the space-

mapped solution found, xSM. 
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2.12. Conclusions 

In this chapter, the analysis of several surrogate modeling methods were presented with 

different DoE techniques to approximate the response of a SATA HSIO link in a validation 

platform when subject to a variety of PHY tuning knobs combinations. All surrogate models were 

evaluated by comparing with actual measured responses. We selected the best combination of 

surrogate modeling technique and DoE in terms of accuracy and generalization performance and 

maximized the eye diagram area through SBO. The values obtained through the proposed SBO 

procedure were evaluated by measuring the real functional eye diagram of the physical system, 

showing a great improvement as compared with the initial margining system performance. 

This chapter also presented a metamodeling technique based on artificial neural networks 

to efficiently simulate the effects of the receiver equalization circuitry in industrial HSIO links. 

The neural model is trained using different DoE approaches to identify the best system response 

sampling strategy that yields an acceptable neural model with a very reduced set of learning and 

testing samples. The resultant neural model approximates with sufficiently accuracy the eye 

diagram of a real post-silicon HSIO validation platform. The proposed machine learning approach 

can be exploited to develop extremely efficient vehicles to drive fast PHY tuning in HSIO links. 

Through this procedure, we found an efficient surrogate model that approximates the system with 

a reduced set of testing and training data, suitable for a future co-Kriging or space mapping 

optimization for PHY tuning.  

Additionally, it was also demonstrated in this chapter how the Broyden-based input SM 

optimization algorithm, better known as aggressive space mapping (ASM), can efficiently 

optimize the PHY tuning receiver equalizer settings by using a low-cost low-precision surrogate 

as the coarse model, and a measurement-based post-silicon validation platform as the fine model. 

Our experimental results, based on a real industrial validation platform, demonstrated the 

efficiency of our method to deliver an optimal eye diagram, showing a substantial performance 

improvement while significantly reducing the typical time required for the PHY tuning process.
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3. Analog Faults Diagnosis Exploiting Artificial 

Neural Networks 

In the electronics business there is no such thing as a perfect design or perfect 

manufacturing processes. It is therefore fairly safe to assume that all products in industry will 

eventually fail. However, as Crosby states [Crosby-95]: “all non-conformances are caused. 

Anything that is caused can be prevented.” Prevention of failures comes from understanding all 

sources of failures as well as how, when, and why they appear.  

The cost of finding a failure exponentially increases through the different stages of the 

lifecycle of a product. A defect found during the design development stage has an effect orders of 

magnitude lower than a defect found in the field. Proper fault diagnosis methodologies along with 

efficient testing strategies targeted to identifying all possible faults prior to production are key 

means for delivering a reliable and fault tolerant product to the market.  

System on chip (SoC) technologies have boosted the importance of analog and mixed-

signal circuitry in electronic devices. New technologies drive the demand for ever-increasing data 

rates, which prompts for more analog circuit complexity. While fault modelling and fault 

diagnostics in digital circuitry are widely used in industry, the same cannot be said for the analog 

counterpart. In order to deliver competitive and reliable products, substantial progress must be 

made in the analog fault diagnostics and testing fields. The present chapter outlines the definition 

of faults, distinguishing between digital and analog ones. Basic definitions of analog fault models 

to be used in diagnostics and testing are also reviewed. 

In general, fault diagnosis is used to monitor, locate, and identify faults. Therefore, it 

includes three main tasks: fault detection, to check if and when a fault occurs; fault isolation, to 

determine the location of the fault, and fault identification, to determine the fault characteristics.  

The simplest way to increase reliability and fault tolerance of a system is to use hardware 

redundancy, where the system is partially or completely duplicated in such a way that the different 

outputs can be compared to extract a diagnosis. However, hardware redundancy is expensive. For 

the past 40 years, alternatives such as analytical redundancy [Willsky-76] and fault tolerant control 

[Stengel-91] have been explored, where different methods have been created to provide fault 

diagnosis without the need to use hardware redundancy. There is a vast amount of applications of 
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these methods, ranging from industrial applications, building systems, mining and machinery to 

electrical systems, motors and electronic circuits [Sottile-94], [Benbouzid-00], [Nandi-05], 

[Mortazavizadeh-14], [Katipamula-05a], [Katipamula-05b], [Widodo-07], [Feng-13], [Qin-14], 

[Campos-Delgado-08], [Song-13] and [Mirafzal-14].  

This chapter is complemented by presenting an overview of diagnosis methods, not only 

for analog faults but for any fault that a system or process may present. The methods are 

categorized into five main branches [Gao-15a] and [Gao-15b]: a) model-based methods, b) signal-

based methods, c) knowledge-based methods, d) hybrid methods, and e) active methods, as 

depicted in Fig. 3.1. 

Additionally, this chapter presents an artificial neural network (ANN) modeling approach 

to efficiently emulate the injection of analog faults in RF circuits. The resulting meta-model is 

used for fault identification by applying an optimization-based process using a constrained 

parameter extraction formulation. The proposed methodology is illustrated in analog circuit 

examples with passive and active components. Then, a generalized neural modeling formulation 

to include auxiliary measurements in the circuit is proposed. This generalized formulation 

significantly increases the uniqueness of the faults identification process. The generalized 

methodology is illustrated by a faulty analog circuit: a reconfigurable bandpass microstrip filter. 

This chapter revisits our work in [Viveros-Wacher-18b] and [Viveros-Wacher-19].  

3.1. Definition of Faults  

A fault is a malfunction in the system that affects its performance [Kabisatpathy-05]. There 

are many different types of classifications of faults. A fault can be a hardware defect, also known 

as physical flaws, or software errors [Koren-10]. In digital circuits, faults are classified as logic 

 

Fig. 3.1 Five main categories of fault diagnosis methods. 
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faults (perturbations leading to flawed logic) and timing faults (caused by delays within 

combinational logic that lead to an unexpected outcome) [Swingler-14]. In terms of duration, faults 

can present themselves as permanent, transient or intermittent: intermittent faults change between 

being active and inactive through time, transient faults disappear after some time and the circuit 

goes back to normal functionality, while permanent faults endure throughout the life of the circuit 

[Sorin-09]. Permanent faults are caused by three main sources: 1) physical wear-out due to 

mechanical stress [Dasgupta-91], thermal shocks [Blish-97], or electromigration phenomena 

[Barsky-04], among others; 2) defects caused by imperfect manufacturing processes or even in a 

perfectly manufactured chip, incorrect behavior can be caused by design defects; and 3) 

unendurable stress caused by improper operation.  

The manner in which a fault is observed is known as a failure mode. There are three main 

categories of failure modes: 1) open and short circuits, 2) degraded performance, and 3) functional 

faults. In digital circuitry, open and short circuits lead to the so-called stuck-at faults, in which 

regardless of the input of a circuit, its output is stuck to a logical value, namely stuck-at-0 and 

stuck-at-1 [Yau-71]. Degradation faults are caused by variations of certain component parameters 

outside of their nominal range. Finally, in the presence of a functional fault, a circuit could still 

function, however its performance drops below the acceptable specified values. 

3.2.  The Importance of Fault Diagnosis 

Integrated circuit (IC) complexity continues to increase exponentially as deep sub-micron 

technologies are pushed towards new horizons. This, in turn has increased the demand for efficient 

fault detection. One of the major cost factors in IC manufacturing is attributed to testing and fault 

diagnosis. Up to 70% of the total cost is related to test, according to [Koenemann-98]. Testing 

costs include the cost of test equipment, the cost of test development (including CAD tools and 

test programming) and the cost of design for test (DFT) circuitry development, among others 

[Bushnell-02].  In addition, cost brings other key elements to any company involved in the IC 

business: profitability, time to market (TTM) and beating the competition. Therefore, an optimal 

test strategy can provide companies a substantial competitive edge on the market. Fault diagnosis 

and testing techniques are valuable resources to check initial system installation and configuration 

and ensure correct system startup as well as to avoid masking and accumulation of errors during 
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normal system operation. 

3.3. Digital vs Analog Faults 

Methodologies for testing digital circuits are well developed and even included in industry 

standards, such as Level Sensitive Scan Design (LSSD) [Eichelberger-77] and IEEE standard 

1149.1 [IEEE-93]. CAD tools dedicated to generate tests and test circuitry for digital circuits have 

existed for several decades as well. The same cannot be said for analog circuits. The major reason 

for this huge difference is that test generation for digital circuits can easily be treated as a 

mathematical problem. This is due to the fact that in digital circuits, the difference between what 

does work and what does not work is crisp clear because of their intrinsic discrete signaling and 

timing characteristics.  However, in analog circuits the question is ‘how good’ the circuit behaves.  

Since the 1960’s algorithms have been developed to create tests patterns for digital circuitry 

[Roth-66] and [Goel-81]. The creation of these patterns is based on calculating signal changes that 

might be introduced by faults. Such algorithms rest on logic rules that define input combinations 

to create different signatures between a faulty and a fault-free circuit. In the same manner, the 

algorithms calculate the way in which the faulty behavior can be propagated to the output pins. 

This concept is known as a fault dictionary. 

 In the case of combinational logic, the fault dictionary is comprised of test vectors, 

which define a set of inputs and the corresponding expected outputs (faulty and fault-free) [Strunz-

16]. Test sequences, on the other hand, target sequential circuitry that requires not only a set of 

pre-defined inputs to target a fault, but a particular test vector preceded by a certain sequence of 

vectors. 

Fault dictionaries have several limitations for their application in the analog domain. 

Firstly, because there are not only two choices for signal values, but in principle, an infinite number 

of possible values. In addition, the time characteristics of the signals is not discrete, thus time 

variation brings an extra dimension to the problem. A key characteristic in digital fault dictionaries 

is their ability to propagate the improper behavior caused by a fault to the primary outputs of the 

circuit under test; in the analog domain the main issue is that faulty behavior does not propagate 

in a single direction, it disseminates in all directions, thus even calculating the paths is far more 

complex than in a digital case. Furthermore, when a fault is present in a certain circuit node, it 
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does not correlate with the actual signal values of that particular node, requiring a large amount of 

extra calculations. In addition to the limitations already exposed, further complications arise from 

non-linearities, parasitic elements and energy-storing elements within the circuit, among others.  

The limitations for analog fault dictionaries imply the need for an extremely large number 

of simulations. Moreover, the traceability issues after a fault is found render the complexity as 

nearly infinite [Liu-87]. Consequently, the brute force manner in which the fault dictionaries work 

for digital fault simulations is not applicable for the analog case.   

3.4. Modeling Analog Faults 

There are three main outcomes when testing an analog IC:  

a) An acceptable performance, in which all specifications are within their acceptable 

ranges. It is said that the IC behaves correctly when facing this outcome.  

b) An unacceptable performance degradation, where the circuit continues to operate, 

however some of its performance parameters fall outside of the adequate range; it is said that a 

“soft failure” is observed when the test encounters this sort of outcome.  

c) A catastrophic failure, otherwise known as a “hard failure”, is seen when the circuit 

is completely inoperable.  

Based on these kinds of outcomes, analog faults can generally be classified as catastrophic 

(also known as gross or hard) faults and parametric (or soft) faults. A catastrophic fault is caused 

 

Fig. 3.2 Taxonomy of analog faults. The white area near the nominal performance 

parameter value shows the fault free zone. The yellow area shows soft faults and 

the red area shows hard faults. 
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by major structural deformities. Examples of these type of faults are open and short circuits. On 

the other hand, a parametric fault is caused by parameter variations outside of the tolerable range. 

Fig. 3.2 shows the taxonomy of analog faults based on these models. It shows a region of 

acceptable performance around the nominal value of a certain parameter. Then, beyond this range, 

parametric faults are seen and at the extremes of the parameter variations, gross faults are observed. 

Thus, whenever an extreme parametric fault is encountered, it can also be deemed as a hard fault.  

The lack of efficient analog fault models is the major problem in analog fault diagnosis 

[Nagi-92]. Since both gross and parametric faults can have infinite varieties, there is an infinite 

number of possible analog faults, therefore, a subset has to be selected to be added into the fault 

list. The chosen models should be accurate enough to capture the major effects and at the same 

time simple enough to avoid the introduction of unnecessary components. By employing adequate 

models for each type of fault, a suitable diagnosis for analog ICs can be obtained. 

3.4.1 Gross Fault Models 

The two main types of gross faults are opens and shorts. An open fault can be modeled as 

a purely capacitive component inserted in series with the module under test, or as a high enough 

resistance at the incidence of the fault. Short faults are modeled as bridging faults using very small 

resistances in parallel with the component under test. Parasitic elements should be added into the 

fault models whenever their effect is large enough that it changes the expected outcome of the 

circuit under test, such as a capacitive coupling of an adjacent net. Fig. 3.3 shows examples of 

gross fault models introduced into an analog circuit. 

    

Fig. 3.3 A faultless analog circuit (left) and three models of gross faults introduced into 

the analog circuit. 
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3.4.2 Parametric Fault Models 

As their name states, parametric faults are excursions of certain parameters outside the 

specified range. Examples of parameters for a CMOS transistor are its threshold voltage (VTH) and 

channel length (L). In a typical manufacturing process, the specified range of these parameters is 

said to be ± 3, where  is the standard deviation of the process distribution. Therefore, parametric 

fault models address alterations outside this range, either by shifting the mean value of the 

parameter or by increasing the standard deviation, effectively widening the parameter distribution. 

A parametric failure can occur due to a random or a systematic fault. A random parametric fault is 

modeled by setting the value of a parameter of each transistor (one at a time) within the circuit 

under test significantly further than the manufacturing range, e.g. ± 6. A systematic parametric 

fault model addresses parameter shifts of all transistors on a die in a correlated manner. 

3.5. Model-Based Fault Diagnosis Methods 

Model-based methods diagnose faults by monitoring the consistency between the measured 

outputs and the outputs predicted by the model. These models can be obtained by using physical 

principles or system identification techniques. Current model-based methods can be classified as 

deterministic methods, stochastic methods, discrete events methods, and methods for networked 

and distributed systems.  

3.5.1 Deterministic Fault Diagnosis Methods 

In deterministic systems, observers are used to detect faults through the use of residuals 

between the measured and the estimated outputs. A bank of residuals can be used to isolate faults 

using several residuals in such a way that a certain residual is sensitive to a particular fault and 

robust against other faults. Fault identification is performed with advanced observers (such as 

proportional and integral observers [Gao-08], proportional multiple integral observers [Gao-04], 

[Koenig-05] and [Gao-07], or sliding mode observers [Alwi-14], among others) by introducing 

additional system states for each fault and estimating the extended state vector. Fig. 3.4 shows the 

fault detection, isolation and identification of a system whose input is u and output is y and is prone 



3. ANALOG FAULTS DIAGNOSIS EXPLOITING ARTIFICIAL NEURAL NETWORKS 

62 

to actuator faults (fa), process faults (fc) and sensor faults (fs). The detection of a fault is feasible 

with the topmost observer through the residual r that must be robust against process disturbances 

(d) and measurement noise ().  The bank of observers can isolate n faults using rn residuals, while 

the advanced observers perform fault reconstruction. 

3.5.2 Stochastic Fault Diagnosis Methods 

Similarly to observers in deterministic systems, Kalman filters are used in stochastic 

systems [Hwang-10]. Kalman filters diagnose faults using statistical tests on whiteness, mean, and 

covariance of residuals. Banks of Kalman filters can be similarly used to isolate faults. 

Identification techniques are also used in parameter estimation methods, where certain system 

parameters that are prone to faults are compared to reference parameters. 

3.5.3 Fault Diagnosis for Discrete Events and Hybrid Systems 

 

Fig. 3.4 Fault detection, isolation and identification techniques in model-based fault 

diagnosis methods. Figure taken from [Gao-15a]. 
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Systems that change in a discrete manner rather than in a continuous one require special 

event-driven techniques for fault diagnosis, given that sequences of observable events need to be 

used to determine whether an unobservable event has occurred. For this purpose, there are two 

main techniques used: automata-based methods [Pencole-05] and Petri-net based methods 

[Cabasino-10]. 

There are also systems that combine continuous signals and discrete events that interact 

with each other. These hybrid systems can be represented with hybrid automata models [Zhao-05] 

and Bond-graph models [Arogeti-12]. 

3.5.4 Fault Diagnosis for Networked and Distributed Systems 

Apart from modeling errors, process disturbances and measurement noises, networked 

systems are prone to problems such as communication delays, data dropout and monitoring loops. 

Fault diagnosis techniques for this type of systems need to be robust against all these problems. 

Certain types of observers and Kalman filters have been used for this type of application [He-13a] 

and [Rahme-13]. 

Distributed systems can be modeled as an interconnection of subsystems. Local estimators 

are used in each subsystem and a consensus strategy is used to ensure the whole estimation 

performance of the diagnostics network [Keliris-13], [Menon-14]. 

3.6. Signal-Based Fault Diagnosis Methods 

Signal-based methods use actual signals from the system instead of input-output models 

for diagnosis. This type of methods can be used when faults manifest directly on a measurable 

signal that is analyzed and compared against a signal from a healthy system. Fig. 3.5 shows the 

 

Fig. 3.5 Nature of the signal-based fault diagnosis methods. Figure taken from [Gao-15a]. 
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nature of signal-based methods for fault diagnosis. 

Signal-based methods are categorized by the type of signals measured: time-domain signal-

based methods are used in continuous dynamical processes, where analysis can be performed 

based on RMS or peak magnitudes, phase, slope, mean or trends, among others; frequency-domain 

methods detect faults using spectrum analysis; finally, in cases where transient and steady states 

of the system need to be analyzed, time-frequency methods are used, extracting the required feature 

information of faults at any time of operation.  

3.7. Knowledge-Based Methods 

Knowledge-based methods require a large volume of historic data to be available, and 

based on this previous knowledge, artificial intelligence techniques are used for diagnosis, as 

shown in Fig. 3.6. The two main categories of knowledge-based methods are qualitative, and 

quantitative. In the former, expert-system-based methods and qualitative trend analysis (QTA) 

methods are found. In the latter, statistical analysis methods, non-statistical analysis methods and 

joint data driven methods are found. 

3.7.1 Expert-system-based Methods 

 

Fig. 3.6 Nature of the knowledge-based fault diagnosis methods. Figure taken from [Gao-

15b]. 
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Expert-system-based fault diagnosis consists of generating a set of rules to detect the 

presence of a fault by using knowledge from past experience of human experts. In this manner, 

these methods are easily implemented and are able to provide diagnosis even under uncertainty. 

However, these methods tend to be system-specific and are therefore hard to generalize and 

expand. 

3.7.2 Qualitative Trend Analysis 

QTA is a technique that identifies trends on a process and associates them to fault trends 

stored in a database. This method requires either knowledge on how to identify a true change in 

trend vs. noise or other transient states that should not be considered as faults 

[Venkatasubramanian-03].  

Signed directed graphs (SDG) are another qualitative fault analysis method that helps to 

show the causality between variables as well as to search for fault propagation paths [Xu-16]. 

Recent studies have also combined QTA and SDG to compensate for the disadvantages of each 

approach [Maurya-07] and [Gao-10]. 

3.7.3 Statistical-analysis-based Fault Diagnosis Methods 

The main quantitative methods based on statistical analysis are principal component 

analysis (PCA), partial least squares (PLS), independent component analysis (ICA), and support 

vector machines (SVM). All of these require a large amount of training data to be able to carry out 

a statistical analysis.  

PCA helps to reduce the dimension of the dataset into smaller features by determining the 

principal components of the dataset under study [Putra-16]. PLS also helps to reduce the 

dimensionality; this method models the relation between variables and responses by computing 

vectors that maximize correlation while preserving variance of the two data sets [Prates-16]. The 

goal of ICA, on the other hand, is to recover statistically independent components of a non-

Gaussian random vector from certain observed linear mixtures of its elements [Sela-16]. Finally, 

SVM is a machine learning technique that relies on statistical learning theory; it can achieve high 

generalization even with low samples and in some cases it has proven to yield better fault diagnosis 
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than PLS [Yin-14]. 

3.7.4 Non-statistical-analysis-based Fault Diagnosis Methods 

Neural networks (NN) have become the most used non-statistical method for fault 

diagnosis [Chunlai-16], [Madani-99], [Ma-99], [Yang-08], [Talebi-07] and [He-00]. There is a 

large variety of NN topologies that can be used for this purpose: radial basis, recurrent dynamic, 

self-organizing, backpropagation and generalized regression, among others. Based on the learning 

strategy, NN are classified as supervised learning-based NN, in which both normal and faulty 

behaviors are used, and non-supervised learning-based NN, where only the normal system 

behavior is used during training.  

Another non-statistical knowledge-based method is fuzzy logic, which partitions the 

feature space into fuzzy sets and uses fuzzy rules for diagnosis, approximating the way human 

reasoning works [Zidani-08]. 

3.7.5 Joint Data-driven Fault Diagnosis Methods 

It is often desired to jointly use statistical and non-statistical methods to improve the 

diagnosis capabilities. Previous work includes the combination of PCA and NN [Ozgonenel-11], 

a fuzzy SVM and a self-organizing NN [Wang-12], and a Bayesian network and a recurrent NN 

[Cho-10]. 

3.8. Hybrid Fault Diagnosis Methods 

Even though model-based, signal-based, and knowledge-based methods have been proven 

to be highly effective for fault diagnosis, each of them have some disadvantages and constraints. 

Model-based methods rely on the availability and accuracy of the model of the system. So, for 

processes where it is unfeasible or extremely difficult to derive an input-output relationship model, 

signal-based and knowledge-based methods are more suitable. Signal-based methods on the other 

hand, hardly take into account input disturbances and unbalanced conditions of the system, while 

knowledge-based methods depend on a high amount of prior data and are computationally 
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expensive. Therefore, hybrid methods have appeared as a means to leverage the strength of two or 

more fault diagnosis methods, while decreasing the disadvantages of each individual method. 

Examples of hybrid methods include frequency signal-based models with statistical data-driven 

models [He-13b], a combination of a signal-based method, a PCA and a probabilistic NN 

[Seshadrinath-14], an observer-enhanced SVM [Sheibat-Othman-14], and a signal-based method 

combined with a knowledge-based method [Liu-17]. 

3.9. Active Fault Diagnosis 

All the previous methods are non-invasive on the system to be diagnosed. To improve real-

time detection and suppression of faults, a method known as active fault diagnosis can be used, 

where in specific testing intervals, the system is injected with specially designed input signals to 

quickly identify faults. However, as this method is invasive, the performance of the system is 

changed. Active methods are classified as stochastic, deterministic, and hybrid stochastic-

deterministic.   

3.10. Introduction to Neural Modeling of Analog Gross Faults 

The growing utilization of analog and mixed signal integrated circuits (IC) has increased 

the demand not only of fault tolerant techniques but also of fault detection and isolation [Gao-15a]. 

While fault diagnosis techniques for digital circuits are mature and well established, those for 

analog circuits are still under development, facing significant technical challenges. This is mainly 

due to three key features [Bandler-85], [Kabisatpathy-05] and [Liu-91] of analog circuits not 

present in pure digital ones: a) there are not only two possible signal values, but in principle an 

infinite number of possible values; b) the timing characteristics of signals are not discrete, but 

continuous; and 3) the failure mode does not necessarily propagate to the output pins of the circuit. 

Analog faults can be classified as catastrophic (or gross) faults and parametric (or soft) 

faults [Bhatta-13]. Gross faults are typically caused by structural deformities, such as open and 

short circuits, while parametric faults are generally caused by variations of component parameter 

values outside of their tolerance range. Prior work has used these two types of basic fault models 

and pursued a fault injection methodology to capture the circuit behavior under faulty conditions 
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[Bhatta-13] and [Yelten-13]. 

Among machine learning techniques for knowledge-based fault diagnosis, those that 

exploit artificial neural networks (ANN) have become the most extensively used approaches for 

fault diagnosis of many types of systems, including analog circuits [Chunlai-16], [Madani-99], 

[Ma-99], [Yang-08], [Talebi-07] and [He-00]. Machine learning-based techniques in current 

literature are mostly centered in trying to generate a fault dictionary to detect a predetermined k-

number of faults [Haini-07] and [Ying-00], extracting features from circuital measurements, and 

modeling a binary-encoded set of failure modes [Yuan-06], [Zhang-16] and [Xue-11]. Most of this 

prior work focuses on the utilization of neural networks as classifiers, to distinguish between faulty 

and non-faulty responses [Chakrabarty-98], [Grzechca-02], [Yang-00]  and [Rajan-98]. Other 

works have used the wavelet transform in pre-processing methods to improve not only the 

detection but also the isolation of faults [Guoming-15] and [Li-10], namely, the localization of the 

specific faulty circuit component. However, they require large and complex neural networks as 

well as significant pre-processing procedures to achieve the correct identification.  

Optimization algorithms have also been extensively used in conjunction with neural 

networks for fault diagnosis, such as genetic algorithms [Li-12], [Liang-03] and [Li-09], particle 

swarm optimization [Tang-09] and [Ming-09], simulated annealing [Grzechca-11], and even 

hybrid methods [Haijun-12] and other novel algorithms [Binu-19]. However, most of this prior 

work applies those algorithms to reduce the training time, to improve the accuracy of the model, 

or to efficiently select the input features to model, while still employing fault dictionaries as means 

of identifying faults within the circuit. 

This work proposes using a simple artificial neural network (classical 3-layer perceptron) 

to model the effects of injecting gross faults to the circuit under diagnosis. This neural model is 

used to learn the relationship between a faulty circuit set of responses (ANN outputs) and the origin 

of the failure (ANN inputs). Once the ANN is trained, it is used for fault identification and isolation 

through a simple yet efficient optimization process based on a constrained parameter extraction 

formulation, reproducing the faulty circuit responses by extracting by optimization the inputs of 

the already trained ANN model. We also present a generalized formulation for our fault 

identification neural model, by incorporating auxiliary (internal) responses of the circuit under 

diagnosis, in order to improve the uniqueness of the predicted fault identification. 
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3.11. Analog Fault Models 

Analog fault models aim at exposing the circuit under diagnosis to: a) a catastrophic failure, 

where the circuit cannot operate; b) a performance degradation, where the circuit still works but 

the performance is lower than its specification; and c) an acceptable performance, despite having 

the faults. The classification of fault models can be composed of gross fault models, which emulate 

open and short circuits within the main circuit topology, and parametric fault models, which 

emulate a variation in a circuit component outside of its nominal tolerance range. 

In this work, we focus on employing gross fault models. Opens are modeled by using a 

high enough value of a serial resistance, while shorts are modeled by using a small enough value 

of a parallel resistance. Fig. 3.7 shows how fault models are employed within a resistor. A similar 

approach is followed when fault models are injected on any given circuit component with two 

terminals, such as capacitors, inductors or diodes. Fig. 3.8 shows how gross faults are injected in 

a transistor. An open fault is injected on each terminal (excepting the gate for the case of a CMOS 

transistor), while a short is injected between each pair of terminals. Given that the faults are analog, 

 

Fig. 3.7 Two possible faults in a resistor R: an open modeled with a resistance in series 

(RS) or a short modeled with a resistance in parallel (RP). 
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Fig. 3.8 Five possible faults in a transistor, modeled with opens on the drain (RD) and 

source (RS) terminals, and shorts between each pair of terminals (RDS, RDG and 

RSG). Taken from [Viveros-Wacher-18b]. 

RDS

RS

RD

RDG

RSG



3. ANALOG FAULTS DIAGNOSIS EXPLOITING ARTIFICIAL NEURAL NETWORKS 

70 

their values could take in theory an infinite number of possible values. However, a nominal value 

is chosen so that we guarantee that the desired effect is generated. In this work, the nominal values 

for the faults are in the order of MΩ for opens and mΩ for shorts. 

We inject faults on each component of interest in a parametrized manner, in such a way 

that each fault can be individually activated and have a specific resistive value. When faults are 

not active, the value used for opens is in the order of mΩ and for shorts is in the order of MΩ. In 

this way, we guarantee that under no-fault conditions, the fault-injected circuit behaves as the 

original circuit. 

3.12. Analog Faults Neural Modeling 

3.12.1 Neural Model Formulation 

We define the vector of ANN inputs, x, as follows: x1 represents the location of the fault, 

or in other words, the component where the fault is injected during simulation; x2 represents the 

possible fault in each component (1-2 for two-terminal components corresponding to RS and RP, 

or 1-5 for CMOS transistors corresponding to RD, RS, RDS, RDG and RSG); and x3 represents the 

 

Fig. 3.9 Original state variable band rejection filter. 
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amount of deviation from the nominal fault value. In this work, we employ a reduced range from 

−5% to +5% for x3, which is a reasonable manufacturing tolerance. As an initial approach, we aim 

to neuro-model the behavior of the circuit when injecting a single fault at a time. The output for 

the ANN model actually represents the deviation of the circuit responses from a no-failure 

condition. 

3.12.2 ANN Characteristics and Training 

We select a 3-layer perceptron for the topology of our ANN. The ANN is implemented and 

trained using the Matlab3 neural network toolbox. We select the Bayesian regularization algorithm 

for training, and use 1,000 base points generated using the Sobol pseudo-random sequence to 

sample the selected solution space as uniformly as possible [Sobol-67]. Out of the total number of 

 
3 MATLAB, Version 8.6.0, The MathWorks, Inc., 3 Apple Hill Drive, Natick MA 01760-2098, 2015. 

 

Fig. 3.10 State variable band rejection filter with gross faults injected on each passive 

component. 
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base points, 70% are selected for learning and 30% are selected for testing. The algorithm used for 

training increases the number of neurons on the hidden layer, h, until the generalization 

performance deteriorates, or until the learning and testing errors are below 1%, 

 ( ) %)1%1( l_newt_newl_newt_newt_newt_old  eeeeee  (3-1) 

where et_old is the testing error at the previous iteration and et_new and el_new are the testing and 

learning errors, respectively, at the current iteration. Each error is calculated as the Frobenius norm 

of the difference between the ANN output and the circuit output. Once the ANN is trained, we test 

it using 100 extra base points not used during training. The output from the ANN model is 

compared against actual deviations of the circuit simulated responses to calculate the model 

maximum relative error. 

3.12.3 Fault Identification by Parameter Extraction 

Parameter extraction (PE) is an optimization problem that aims at minimizing the 

difference between a target response and the system response being optimized [Rayas-Sánchez-

16]. In our work, we aim at finding the input values of the ANN model that minimize the difference 

between the objective function value of a faulty circuit, treated as the target, and the ANN output. 

The optimization procedure is executed by solving  

 
1

* )(minarg tRR −= zz
z

 (3-2) 

where R(z) is the ANN model output and Rt is the target output. In our case, (3-2) is solved by 

using the Nelder-Mead method. In order to keep x, the ANN inputs, within feasible values during 

 

Fig. 3.11 Output comparison between the original circuit and the fault-injected circuit, 

when all faults are inactive. 
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the optimization iterations, we use box constraints defined as  
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where x1
lb and x1

ub are the selected lower and upper values, respectively, corresponding to the 

minimum and maximum values of x1 when the ANN was trained. Similarly, x2
lb and x2

ub 

correspond to the upper and lower values for x2. Notice that the optimal values of x1 and x2 should 

be both integer numbers; however, we solve (3-2) by letting the optimization process to run on 

continuous values for z1 and z2, rounding to the nearest integer the optimal final values found for 

x1 and x2. 

Given the high number of possible local minima, to improve the PE performance we use a 

statistical PE algorithm, where the starting point of the optimization procedure is slightly perturbed 

TABLE 3.1. NOMINAL VALUES FOR THE TEST CIRCUIT COMPONENTS 

Component Value 

R11 19.9 kΩ 

R12 20 kΩ 

R13 20 kΩ 

R21 12.7 kΩ 

R22 20 kΩ 

R31 59.1 kΩ 

R32 20 kΩ 

R41 10 kΩ 

R42 3.3 kΩ 

R43 10 kΩ 

R44 10 kΩ 

R5 5.1 MΩ 

R6 20 kΩ 

C1 5.79 nF 

C2 5.79 nF 

RS11, RS12, RS13, RS21, RS22, RS31, RS32, RS41, 

RS42, RS43, RS44, RS5, RS6, RSC1, RSC2 
10 nΩ 

RP11, RP12, RP13, RP21, RP22, RP31, RP32, RP41, 

RP42, RP43, RP44, RP5, RP6, RPC1, RPC2 
1000 MΩ 

 

 



3. ANALOG FAULTS DIAGNOSIS EXPLOITING ARTIFICIAL NEURAL NETWORKS 

74 

each time the normalized difference between the optimal ANN response and the target response is 

larger than a desired value, εPE. In our case, the value selected is εPE = 1×10-5. 

3.13. Example 1: State Variable Band Rejection Filter 

3.13.1 Circuit Description 

 

Fig. 3.12 Fault-injected circuit showing the 15 possible fault locations (shown in dotted 

rectangles). 

 

Fig. 3.13 ANN performance while increasing h, the number of neurons in the hidden layer. 
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The circuit selected for fault injection is a classical state variable band rejection filter 

[Stanley-89] depicted in  and simulated in SPICE. Under nominal conditions (without faults), the 

circuit is tuned at 1 MHz, as shown in Fig. 3.9.  

For argument sake, we injected an open and a short fault to each passive component in the 

circuit in a parametrized manner, in such a way that each fault can individually be activated and 

have a specific resistive value. The resulting circuit is shown in Fig. 3.10. When faults are not 

active, the value used for opens is 10 nΩ and for shorts is 10 MΩ. In this way, we guarantee that 

under no-fault conditions, the fault-injected circuit behaves exactly the same as the original circuit, 

as shown in Fig. 3.11. The nominal values for each circuit component is found in Table 3.1.  

3.13.2  Faults Neural Model and Training 

We define the vector of inputs, x, as follows: x1 represents the location of the fault, from 

 

Fig. 3.14 ANN performance comparison with actual circuit simulation measurements at 

100 cases not seen during training. 

TABLE 3.2. VALUES FOR THE INJECTED FAULTS AND THE RESULTING IDENTIFIED 

FAULTS 

Fault Case Variable Original fault Predicted fault 

Fault 1 

x1 12 12 

x2 open open 

x3 3.01% 3.61% 

Fault 2 

x1 3 3 

x2 open open 

x3 −0.20% 0.59% 
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one out of 15 passive components, as shown in Fig. 3.12; x2 represents whether the selected fault 

is an open or a short; and x3 represents the amount of deviation from the nominal fault value. The 

output selected for the ANN model is y, defined as 

  nf
 −=
n

i
ii AvAvy  (3-4) 

where Av is the voltage gain at the circuit output, n is the number of sampled frequency points, 

and Avnf is the gain of the circuit when no faults are injected. In other words, the modeled output 

represents the deviation of the circuit voltage gain from a no-failure condition. The ANN 

performance while increasing h is seen in Fig. 3.13. The final value of h is 12. 

Once the ANN is trained, we test it using 100 extra base points not used during training. 

The output from the ANN model is compared against actual circuit simulations. The ANN can 

closely predict the circuit faulty response with around 0.0103% of error, as seen in Fig. 3.14.  

 

Fig. 3.15 Comparison between the circuit output at the first predicted fault and that one at 

the actual fault injected (used as target during parameter extraction). 

 

Fig. 3.16 Comparison between the circuit output at the second predicted fault and that one 

at the actual fault injected (used as target during parameter extraction). 
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3.13.3 Parameter Extraction to Faults Identification 

To validate the effectiveness of our proposal, we selected two different random faults as 

targets, and followed the PE procedure. The values of x for the actual faults and the faults predicted 

by the PE outcome are shown in Table 3.2. The resulting values of x match exactly on x1 and x2, 

thus the fault location within the circuit and the fault type (open or short) are identified precisely 

on each case. There is, however, a slight variation between the predicted and the actual value in 

the variable corresponding to the deviation from the nominal fault value, x3. Nevertheless, the 

simulated outputs from the circuit with the identified fault closely resemble the outputs with the 

original injected fault, as shown in Fig. 3.15 for the first fault and in Fig. 3.16 for the second one. 

 

Fig. 3.17 Original negative feedback CMOS RF amplifier. 
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Fig. 3.18 Response (voltage gain) comparison between the original circuit and the fault-

injected circuit with all faults inactive. 
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3.14. Example 2: CMOS Negative Feedback RF Voltage 

Amplifier 

3.14.1 Circuit Description 

The second circuit example to illustrate our fault injection and identification procedure is 

the classical CMOS negative feedback RF voltage amplifier depicted in Fig. 3.18, which uses an 

external series-parallel ideal feedback network formed by R1 and R2. Its nominal voltage gain is 

shown in Fig. 3.18. We inject an open to the drain and source pins of each transistor, and a short 

between each pair of transistor nodes, in a parametrized manner, in such a way that each fault can 

be individually activated and have a specific resistive value.  When faults are not active, the value 

used for opens is 1 mΩ and for shorts is 200 MΩ. In this way, we guarantee that under no-fault 

conditions, the fault-injected circuit behaves as the original circuit, as it is confirmed in Fig. 3.18. 

3.14.2 Faults Neural Model and Training 

We define the vector of ANN inputs, x, as follows: x1 represents the location of the fault, 

from one out of 8 transistors; x2 represents one out of the 5 possible faults for each transistor (RD, 

RS, RDS, RDG and RSG), as seen in Fig. 3.8; and x3 represents the amount of deviation from the 

nominal fault value. Given that the faults are analog, their values could take in theory an infinite 

 

Fig. 3.19 ANN performance while increasing h, the number of neurons in the hidden layer. 
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number of possible values. However, for this work we employ a reduced range from −5% to +5% 

for x3, which is a reasonable manufacturing tolerance. 

The output R  m for the ANN model, is defined as 
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where Avnf is the complex amplifier voltage gain when no faults are injected, Av is the gain with 

the injected fault, and N is the number of sampled frequency points. In this case, the number of 

responses of interest is m = 2, corresponding to the real and imaginary accumulative difference of 

the voltage gain with respect to the no-failure case in the complete frequency sweep. In other 

words, the neuro-modeled output represents the deviation of the circuit voltage gain from a no-

failure condition. The ANN performance while increasing h is seen in Fig. 3.19.  The final value 

of h is 21. 

Once the ANN is trained, we test it using 100 extra base points not used during training. 

The output from the ANN model is compared against actual circuit (SPICE) simulations. The ANN 

can closely predict the circuit faulty response, with around 0.00635% of maximum relative error. 

3.14.3 Parameter Extraction to Faults Identification 

We select a random fault as target, and followed the PE procedure. The values of x for the 

actual faults are [2 3 0.1498%]. The resulting values of x match exactly on x1 and x2, thus the fault 

  

Fig. 3.20 Comparison between the circuit responses at predicted fault and those at the 

actual fault injected (gain magnitude and phase). 
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location within the circuit and the fault type (one out of five possible faults) are identified precisely 

on each case. There is, however, a slight variation between the predicted (0.02967%) and the actual 

value in the variable corresponding to the deviation from the nominal fault value, x3. Nevertheless, 

the simulated outputs from the circuit with the identified fault closely resemble the outputs with 

the original injected fault, as shown in Fig. 3.20. This consistency was verified for other 5 cases 

of different injected faults, observing a similar behavior. 

3.15. Generalized Neural Model Formulation 

In Section 3.12, the identification of faults was achieved through observing the output 

responses of the circuit under test related to its main specifications (i.e., the responses of interest), 

and comparing them against those of a faultless scenario. However, a certain subset of faults can 

yield similar or even exactly the same output responses of the circuit. This directly impacts on the 

decision of our proposal to identify the fault, yielding to non-uniqueness issues in the extraction 

of the failure cause. To overcome this issue, we propose the use of auxiliary responses other than 

those used as specified output responses. These auxiliary responses may include internal responses 

of the circuit (measured at topologically internal nodes, branches, or ports), or other overall 

performance metrics (input impedances, cutoff frequencies, etc.). These additional simulated 

responses are not directly related to the main specifications of the circuit, but are extremely useful 

to uniquely identify the failing component in the circuit and its kind of failure. Moreover, obtaining 

 

Fig. 3.21 Reconfigurable microstrip bandpass filter topology. Taken from [Brito-Brito-

09]. Highlighting (in red) the components where faults are injected. 
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these additional responses practically do not increase the overall computational cost, since no 

additional simulations are implied.  

We aim to neuro-model a matrix of response deviations R  m×n, where m is the number 

of simulated responses, including the output specification-related responses, as well as the 

auxiliary internal simulated responses, and n is the number of components for a given response, e. 

g., the real and imaginary parts of the voltage gain of an amplifier, or the magnitude and phase of 

an S-parameter, etc. In this manner, the matrix R of response deviations to be modeled is 

represented by 
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where N is the number of frequency points at which the response is sampled, Rnf
mn is the m,nth 

response (complete frequency sweep) when no faults are injected, and the additional index i refers 

to the i-th simulated frequency point. We then use the same ANN characteristics, and follow the 

training procedure in Section 3.12.2, as well as the PE procedure from Section 3.12.3 for fault 

identification.  

3.16. Example 3: Reconfigurable Microstrip Bandpass Filter 

 

Fig. 3.22 Bandpass filter response in UMTS state. Comparing the original circuit and the 

fault-injected circuit with all faults inactive. 
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3.16.1 Circuit Description 

The circuit example is a reconfigurable microstrip bandpass filter able to switch between 

WiFi and UMTS transmit band standards [Brito-Brito-09]. When in WiFi mode, the filter center 

frequency is 2.44 GHz with a bandwidth of 80 MHz, and in UMTS mode, the center frequency is 

1.955 GHz with a 140 MHz bandwidth. The circuit is implemented in Keysight ADS making use 

of co-simulation. In other words, the EM simulation was performed beforehand in Momentum and 

its results are stored and used in ADS. As seen in Fig. 3.21, the circuit uses two PIN diodes to 

switch between WiFi and UMTS states and four RF choke inductors. 

We inject an open fault model and a short fault model on each inductor and diode of the 

circuit in its UMTS state. In this example, each fault is also activated individually in a parametrized 

manner. When inactive, the open fault value is 1 mΩ and the short fault value is 1 MΩ. When all 

faults are inactive, the circuit behaves as the original circuit, as expected (see Fig. 3.22). The 

responses of interest of the circuit are the return loss (S11) and the insertion loss (S21). 

3.16.2 Faults Neural Model and Training 

 

Fig. 3.23 Section of the circuit schematic in Fig. 3, illustrating the implementation of ports 

to replace a diode (top), and two inductors (bottom). 
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The inputs selected for the ANN model are the fault location (x1) from out of the 6 selected 

circuit elements, the fault type (x2), meaning whether the injected fault is an open or a short, and 

the fault value (x3) which relates to the deviation from the nominal value of the fault. The output 

for the ANN model is the deviation of the circuit responses from a no-fault condition. In this case, 

apart from using the return and insertion losses to calculate this deviation, we treat each fault 

location as a port, and use each S-parameter as auxiliary information to improve the identification 

uniqueness during the parameter extraction process. In order to insert a port on each fault location, 

the ADS schematic is modified in such a way that the actual inductors and diodes are removed, 

and the port is assigned a complex impedance corresponding to the impedance of the replaced 

circuit element, as shown in Fig. 3.23.  

In this case, the selected matrix of response deviations, R  64×2, includes the magnitude 

and phase of the 64 S-parameters for the complete circuit (S11, S12, …, S88), as follows: 
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We also select a 3-layer perceptron for our ANN, and increase the number of neurons in 

the hidden layer, h, until the generalization performance deteriorates, or until the learning and 

testing errors are below 0.1%. In this example, the final value of h is 11, as seen in Fig. 3.24. The 

final performance of the ANN shows a maximum relative testing error of 0.007917%. 

 

Fig. 3.24 Training the fault diagnosis neural model for the bandpass microstrip filter: ANN 

performance while increasing h, the number of neurons on the hidden layer. 
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3.16.3 Parameter Extraction to Faults Identification 

To validate our proposal, we select two random faults as targets (not seen during training). 

The values of x for the first actual fault are [5  1  0.016231%]T and the predicted fault, following 

the PE process, is [5  1  0.0373%]T. As in other examples reported in [Viveros-Wacher-18b], the 

fault type and location are accurately identified, with a small error in the actual variable deviation. 

Additionally, the simulated responses of the circuit with the predicted fault closely reproduce the 

responses with the actual fault, as confirmed in Fig. 3.25. As an additional validation point, we use 

a second actual fault at x = [3  2  −0.05445%]T, for which the corresponding predicted fault, 

following the PE process, is [3  2  −0.02897%]T. Fig. 3.26 shows the comparison between the 

circuit responses with the second target fault and the predicted fault. A similar performance was 

observed at other random faults testing points.  

3.17. Conclusions 

As technology continues to advance beyond the many predicted limits of Moore’s Law, 

and circuit and systems complexities keep increasing along the way, it is necessary to find adequate 

methodologies to detect failures that might occur. Analog fault modelling, diagnostics, and testing 

methodologies need to be developed to be able to deliver high quality SoC and mixed-signal 

 

Fig. 3.25 Comparison between the circuit responses at predicted fault and those at the first 

actual fault injected for the RF bandpass microstrip filter. 
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products. This chapter presented a brief introduction to key concepts on faults and fault models, 

focusing on the analog type of failures.  

This chapter also presented a review on the most important and most used methods for fault 

diagnosis. The described methods are not only applied in electronic systems, but in many different 

systems and processes such as chemical, nuclear, mechanical, biomedical, and electric systems, 

among many others. The methods presented were categorized in five main classifications, based 

on how faults are diagnosed, and some literature examples were provided for each method 

presented. 

Finally, in this chapter, an analog gross fault diagnosis method based on artificial neural 

networks (ANN) and constrained parameter extraction was proposed.  Our method was illustrated 

by injecting analog gross faults in two circuit examples: a state variable band rejection filter, where 

faults were injected in passive components, and a CMOS negative feedback RF voltage amplifier, 

where faults were injected in transistors. The chapter also presents a generalized formulation to 

increase the uniqueness of the predicted faults, by incorporating auxiliary information from 

internal nodes within the circuit topology. Our generalized method was illustrated by injecting 

analog gross faults in a circuit example: a reconfigurable bandpass microstrip filter. The gross 

faults were modeled as resistances with a high enough value in series to cause an open circuit and 

with a low enough value in parallel to cause a short circuit. The ANN was then used as a 

metamodel, with an extremely low computational cost, to automatically identify faults through a 

constrained statistical parameter extraction process. Following this process, we were able to 

properly identify the actual injected faults in both circuits.

 

Fig. 3.26 Comparison between the circuit responses at predicted fault and those at the 

second actual fault injected for the RF bandpass microstrip filter. 
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4. Deep Neural Modeling of BER Extrapolation in 

HSIO Links 

Post-silicon electrical validation of high-speed input/output (HSIO) links in high-

performance computer platforms involves measuring the receiver (Rx) system margins using on-

die design for test (DFT) circuitry. The measurement system allows to dwell for a certain amount 

of time, to check for errors in the incoming data stream. A BER can then be calculated based on 

the number of errors detected and the amount of bits received within the particular dwell time. In 

order to comply with industry standards, most HSIO links must be capable of operating at a BER 

of 10−12, rendering volume data collection at this target BER prohibitive under current validation 

timelines.  

Some of the current strategies involve the use of BER extrapolation techniques from 

volume data collection at a high BER, therefore accelerating test time, and subsequently measuring 

the effect of BER on margins to extrapolate the volume measurements to the target low BER. 

However, under high variability between measurements, these extrapolation techniques are prone 

to incorrect estimations. 

The problem of BER extrapolation modeling is so complex that conventional meta-models, 

such as decision trees, or three-layer perceptron neural networks, to name a few, fail to provide 

the required performance (we developed numerous experiments with such conventional meta-

models; they are omitted here for the sake of brevity). The high dimensionality of this modeling 

problem is more suitable for deep neural networks, where rather than only increasing the number 

of hidden neurons in a shallow network, the number of layers is also increased [Telgarsky-16]. 

This type of neural networks has been extensively used in numerous fields, such as image and 

video processing [Farabet-13], language processing [Collobert-08] and [Cho-14], and speech 

recognition [Chen-15], and even recent applications in microwave engineering [Jin-19] and [Ogut-

19], among others. 

In this chapter, an extrapolation modeling problem formulation is proposed. The chapter 

starts by revisiting BER definition, followed by describing BER extrapolation concepts. Next, it 

presents a measurement methodology based on the use of two BER values to derive a margin value 

extrapolated to the target BER. We aim to model the accuracy of the extrapolated margin by 
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determining whether the obtained result is over-estimated, under-estimated or within a pre-defined 

error threshold. The main chapter’s contribution consists of presenting a deep neural model 

capable of predicting the accuracy of the BER extrapolated Rx margin in HSIO links, based on 

statistical data from actual measurements. This chapter is based on a future publication [Viveros-

Wacher-21]; for that reason, it should be temporarily treated as confidential. 

4.1. BER Definitions 

HSIO links standards define BER as a measure of performance. In current industrial 

practice, the usual expected BER is 10−12, which both transmitters and receivers must comply with.  

Post-silicon validation tests performed at the target BER are very time-consuming, therefore, 

extrapolation techniques based on high BER measurements are usually employed to accelerate test 

time. 

On the transmitter side, the concept of bathtub is usually employed [Pizano-Escalante-19]. 

A simple histogram-based model of the measured total jitter (TJ) distribution is composed of a 

bounded deterministic jitter (DJ) component, and an unbounded random jitter (RJ) component, 

where the latter one is modeled as a Gaussian distribution [Erb-12]. These types of models allow 

to identify the Gaussian model parameters and to extrapolate the histogram tails down to the 

desired target BER level, as seen in Fig. 4.1, where the eye opening for a specified BER level can 

be calculated based on the RJ parameters once the DJ boundary is passed. 

On the receiver side, design-for-test (DFT) circuitry allows to measure the eye opening in 

terms of margin, by systematically adjusting the sampling point and checking for errors [Rangel-

 

Fig. 4.1 Deterministic and random jitter effects on eye opening with respect to BER. 
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Patiño-20]. In order to measure margins at the target BER, each time the sampling point is moved, 

the error checking engine should operate while at least 1012 bits are received, rendering this type 

of test prohibitive under current validation time constraints. Q-slope is a technique usually 

employed to extrapolate Rx margin measurements performed at a high BER to the target BER 

[Erb-09] and [Erb-10]. Q-slope is defined as the rate of change of BER with respect to the DFT 

step size (otherwise known as tick), where BER is measured in quantiles (Q). Formally, Q is 

defined as: 

 ( ) ( )1 1
BER 2 1 BER

T

Q erf t
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where erf−1 is the complementary error function, and ρT is the transition density of the data, or the 

ratio of the number of logic transitions to the total number of bits [Stephens-04], and t represents 

time-delay, or the horizontal axis on the eye diagram. Since there is no closed form solution to (4-

1) for t, it is usually approximated with the normal inverse cumulative distribution function: 

 ( ) ( )1norminv 2 2t erf t−= −  (4-2) 

Assuming a balanced transition density (ρT = ½), Q is then approximated as: 

 ( )BER norminv(BER)Q = −  (4-3) 

The advantage of converting BER to a Q-scale relies in the fact that a Gaussian distribution, 

such as the RJ effects, behaves linearly with respect to Q, allowing to perform extrapolations to 

lower BER values very simply. In this way, the traditional methodology entails measuring margins 

at a high BER, and then perform a dedicated experiment to calculate the value of the Q-slope. 

Finally, the margins are extrapolated to the target BER using the Q-slope value. 

4.2. Measurement Methodology in an Industrial Environment 

Next-generation physical layer designs include DFT circuitry that allows to measure Rx 

eye height margins at a specific BER value. The DFT allows to configure error ratio parameters: 

Nsym, or the number of bits to be sampled, and an error threshold eth, i.e. the amount of errors 

tolerated during the margin measurement. Based on the DFT architectural changes, the margin 

methodology is modified so that two different sets of eye height margins (EHM), named as EHM1 

and EHM2, are now taken at two different BER levels. Using these two margin sets, the margin at 
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the target BER, or EHM12, is obtained by performing a linear extrapolation in the Q scale: 

 1 2
12 1 12 1

1 2

( )
EHM EHM

EHM EHM Q Q
Q Q

−
= + −

−
 (4-4) 

where Q1, Q2, and Q12 are calculated with (4-3), and correspond to the BER values of EHM1, 

EHM2, and EHM12. 

Since the EHM has inherent variations that depend on the real-time errors detected, the 

method to use this DFT includes a certain amount of EHM results or readouts, n, typically set at n 

= 8. This implies that for each EHM measurement at any specified BER level, a vector of 8 margin 

results is stored. 

The BER values for both EHM measurements are selected in such a way to avoid the DJ 

region of a traditional bathtub curve, to guarantee that the extrapolation is performed in the linear 

RJ region. Any residual DJ effects found in EHM measurements can be removed by using moving 

average methods [Kim-06], [Hansun-17] and [Zhang-12]. 

The system under test is an Intel server post-silicon validation platform in an industrial 

environment, whose block diagram is shown in Fig. 4.2. The platform is comprised of a multichip 

package (MCP) that contains both the CPU and the platform control hub (PCH) dies. Within the 

many HSIO interfaces on the MCP, we aim to measure margins and extrapolate them in the multi-

protocol ethernet interface, capable of operating at up to 25Gb/s per lane [IEEE-18], as shown in 

Fig. 4.2.  

4.3. Synthetic Data Generation  

 

Fig. 4.2 HSIO post-silicon validation platform highlighting the multi-protocol ethernet 

interface. 



4. DEEP NEURAL MODELING OF BER EXTRAPOLATION IN HSIO LINKS 

 91 

The nature of the EHM measurements described in the previous section allows to 

synthetically generate random sets of EHM1 and EHM2 values, and along with the known Nsym and 

eth parameter values, the corresponding Q values can also be synthetically derived. Furthermore, 

from actual measurements, a covariance matrix between EHM1 and EHM2 can be calculated. In 

this way, we generate two sets of random synthetic data scaled to the variation of actual 

measurements taken in a post-silicon validation scenario, obtaining a vector EHM  ℜns given by 

 randn(1, ) xxns K= EHM  (4-5) 

where randn is a function, used in this case as a Matlab command, that generates a normally 

distributed pseudorandom number vector of size ns (n being the number of EHM readouts, and s, 

the amount of EHM measurements being generated), and Kxx is the variance of the EHM 

measurements obtained from the covariance matrix previously calculated from post-silicon tests. 

4.4. BER Extrapolation Modeling Problem Formulation 

Given the two EHM measurement sets and the previously defined extrapolation technique, 

variations are expected in the resulting EHM12 value. Fig. 4.3 shows measurement distributions 

for EHM1 and EHM2, and the resulting over-estimated, under-estimated or accurate extrapolated 

 

Fig. 4.3 BER extrapolation problem based on two EHM distributions (EHM1 and EHM2), 

and the resulting EHM12 distribution showing under-estimated values (in 

orange), over-estimated values (in yellow) and accurate estimations (in green). 
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margin. We aim to model the extrapolated response, Rextrap  {−1, 0, 1}, denoting the three possible 

outcomes: an under-estimated extrapolation (−1), an accurate extrapolation (0), and an over-

estimated extrapolation (1). The extrapolation accuracy is defined by a threshold εth, such that 

 
12 12, 12, 12

1 1

1 1
sgn

n n

extrap i th i
i i

R EHM EHM
n n


= =

    
= −  −    

    
 EHM EHM  (4-6) 

where sgn(·) is the sign function. In other words, EHM12 values that deviate below εth from the 

mean are under-estimated, values above εth from the mean are over-estimated, and values within ± 

εth from the mean are deemed accurate. Notice that subtraction operations in (4-6) are implemented 

element-wise. 

  We initially define the vector of model inputs, x  ℜ2n, as the two sets of EHM 

measurements: 

  
T

1 2  =x EHM EHM  (4-7) 

where EHM1, EHM2  ℜn. We therefore aim to find a model f such that 

 ( )extrapR f= x  (4-8) 

The model inputs x can be extended to include additional statistical measurements for each 

EHM set. Analyzing each set of measurements as a distribution, we include as model inputs the 

standard deviation, minimum value, maximum value, skew, and kurtosis of each EHM set. 

Additionally, we divide the distribution in five equidistant bins, as illustrated in Fig. 4.3 for EHM1 

and EHM2, and count the number of occurrences that a measurement falls within one of these five 

bins, as well as the number of bins with zero occurrences.  

The bin-related inputs allow to measure the shape of the distribution. Once these statistical 

features are generated, the ratio between the EHM1 and EHM2 statistics is also calculated, i.e. we 

include the ratio of standard deviations, the ratio of skews, the ratio of kurtosis, etc., between the 

EHM1 and EHM2 distributions. Moreover, the two distributions can be combined in a single one 

by normalizing the mean values, and additional statistical information can be further derived. 

Therefore, the number of inputs can increase up to 50 when n, the number of EHM readouts, is 8. 

A full list of model inputs is shown in Table 4.1 for m EHM distributions, where j=1, 2, …, m is 

the j-th measured BER.  The inputs selected are intended to provide additional information to 

improve the performance of the model in (4-8), thus enabling the proper classification of the 

extrapolated margins to ultimately enable test time acceleration without compromising on 
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accuracy.  

As described in the next section, a deep neural network model to approximate (4-8) 

becomes a natural candidate for this modeling scenario.  

TABLE 4.1. LIST OF INPUTS FOR THE MODELING PROBLEM FORMULATION 

Input Definition Formulation 

EHMj 
Vector of size n of measurements 

at the j-th BER 

Direct or synthetically generated 

measurements 

SSj Standard deviation of EHMj ( )
2

1

1 n

i
i

x
n


=

−  

SKj Skew of EHM1 distribution 
( )

3

3

E x 



−  

Kj Kurtosis of EHMj distribution 
( )

4

4

E x 



−  

MaxEHMj Maximum value from EHMj max( )jEHM  

MinEHMj Minimum value from EHMj min( )jEHM  

Bj 
Vector of 5 bin values from the 

EHMj distribution 

Generate a linearly spaced histogram of 

5 bins and count occurrences in each bin 

nZBj 
Number of bins with a value of 

zero from the EHMj distribution 

5

1,
1

0i
i=

= B  

SSall 
Standard deviation of the two 

distributions combined 
( )

2

1

1 n

i
i

x
n


=

−  

SKall 
Skew of the two distributions 

combined 
( )

3

3

E x 



−  

Kall 
Kurtosis of the two distributions 

combined 
( )

4

4

E x 



−  

Ball 
Vector of 5 bin values from the 

two distributions combined 

Generate a linearly spaced histogram of 

5 bins and count occurrences in each bin 

nZBall 

Number of bins with a value of 

zero from the two distributions 

combined 

7

1

0i
i=

= B  

SS ratio Ratio between SS1 and SS2 
1

2

SS

SS
 

SK ratio Ratio between SK1 and SK2 
1

2

SK

SK
 

K ratio Ratio between K1 and K2 
1

2

K

K
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4.5. Deep Neural Models  

Conventional artificial neural networks (ANN), also known as shallow ANNs, typically 

use a few layers of parallel processing units (neurons), interconnected by artificial synapses 

[Haykin-99]. The most widely used topology for shallow ANNs, as applied to electrical, RF, and 

microwave circuits, is the 3-layer perceptron (3LP) [Rayas-Sanchez-04]. In contrast, deep neural 

networks (DNN) use a massive topology, with many layers each containing many neurons. DNNs 

are able to perform complex processing tasks remarkably well. The training procedure of these 

networks is usually performed via supervised learning algorithms, typically based on gradient 

descent techniques, where the input data is forward-propagated through the neuron layers, and the 

outputs are compared against previously obtained data, then the comparison errors are back-

propagated through the network [Sebastian-19]. 

Shallow machine learning techniques (such as 3LP ANNs, support vector machines, and 

decision trees, among many others) are capable of transforming input data into one or two 

representation stages. In complex problems, techniques such as feature engineering are needed 

prior to making use of shallow learning methods, such that the inputs, or engineered features, can 

be processed to obtain the desired outputs [Chollet-17].  

In deep learning, feature engineering is automated in such a way that while the model is 

being trained, it is learning about the required features. The two essential characteristics of deep 

learning are: 1) the layer-by-layer incremental way in which complex representations are 

generated, and 2) the fact that these incremental intermediate representations are learned jointly. 

This second characteristic is the reason why deep learning outperforms shallow learning models, 

even when two or more of them are stacked.  

Shallow ANNs typically use smooth switch activation functions, such as the sigmoid and 

hyperbolic tangent functions; they are also usually trained with gradient-based algorithms. As the 

number of layers increases, the calculated gradients diminish exponentially. This is known as the 

vanishing gradient problem [Bengio-94] and [Hochreiter-01]. To overcome this, deep neural 

networks typically use the rectified linear unit (ReLu) as activation function. In a sigmoid function, 

the gradient becomes zero when the activation value is very high (large positive) or very low (large 

negative). However, in a ReLu function, the gradient is zero when the activation is negative and 

unit positive when the activation is positive (see Fig. 4.4). Recent advances also propose the use 
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of leaky ReLus, which allows for a small positive gradient when the unit is not active [Maas-13], 

parametric ReLus, which include a leakage coefficient that is also learned during the training 

procedure [He-15], and exponential linear units, which saturate to a negative value with smaller 

inputs [Clevert-15]. Due to the size of deep neural networks, the training procedure entails tuning 

a large number of hyper parameters, therefore, several techniques have been reported to improve 

training performance. Batch normalization is a commonly used technique to reduce the 

phenomenon known as internal covariate shift during training, by generating mini batches of inputs 

and normalizing within each batch [Ioffe-15] and [Thakkar-18]. To avoid overfitting, 

regularization techniques such as dropout are used. Dropout entails randomly dropping units and 

their corresponding connections, so even with small training data sets, sampling noise issues can 

be avoided [Srivastava-14] and [Gal-16].  

The most common application area for DNNs usage is in classification problems, where 

the desired output is a categorical variable representing discrete values. However, networks with 

discrete variables present difficulties in back-propagation due to the inability to differentiate. To 

overcome this, a layer with softmax activation functions (see Fig. 4.4) is typically employed [Jang-

17], where a discrete output with k different categories is encoded into a k-dimensional one-hot 

encoded vector, which is a vector that encodes a categorical output employing the one-hot 

encoding [Potdar-17]. In this manner, an output with three possible values is represented by a one-

hot encoded vector composed of three bits, where each bit is a flag representing each category. 

4.6. Proposed DNN Architecture 

As mentioned before, we aim to exploit deep neural networks to model the BER 

extrapolation accuracy, due to the complexity and high dimensionality of the problem. We defined 

 

Fig. 4.4 Deep neural network (DNN) model topology, including the type of layer, the 

number of neurons (in parenthesis) and the type of activation function for the 

neurons on each layer. 
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in Chapter 4.4 the categorical output corresponding to the accurate, under-estimated, or over-

estimated responses, as well as the vector of inputs related to statistical information from margin 

measurements. 

Our model is comprised of a four-layer fully connected network, which uses a funnel 

structure encoding our input into a new representation on the embedded layer. The first three layers 

use ReLu as the activation function, while layer four uses a leaky ReLu function. Finally, since 

the problem we aim to solve is a classification problem in nature, the output layer employs softmax 

as the activation function. The topology of the network is depicted in Fig. 4.4. To avoid over-

fitting, we use batch normalization in the leaky ReLu layer, and L2 normalization in the rest of the 

fully connected layers. We also exploit the dropout technique [Srivastava-14] in between each 

fully connected layer. The input layer is equal in size to the number of inputs, while the output 

layer is a vector of size 3, due to the one-hot encoding employed for the three possible categories 

of the extrapolated margin accuracy response previously defined.  

 

Fig. 4.5 Initial performance of the DNN model in terms of accuracy for the training (green 

dotted line) and testing (black crossed line) data sets. 
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To compile the model, we employ the Keras Python libraries, with Tensorflow as the 

backend. The training loss function we select is categorical cross-entropy, due to the nature of the 

problem. The algorithm selected for hyper-parameters optimization is Keras’ implementation of 

the Adam optimizer algorithm [Kingma-15], using a learning rate of 0.001. We employ 10,000 

test points for training, out of which 80% are randomly selected for learning and the remaining 

20% are used for testing. 

4.7. Results 

As an initial approach, we define n = 8 as the number of eye height margin (EHM) 

measurements performed at each BER. This brings the total number of model inputs to 50, after 

including the statistical information calculated from the measurements. The value of εth (the 

threshold for the extrapolated response accuracy) we select is 1. Fig. 4.5 shows the performance 

of the DNN model during training. After training, the performance of the DNN model shows a 

75% of accuracy (approximately), which is very similar to the performance obtained with shallow 

machine learning techniques (those results are omitted for the sake of brevity).  

 In order to improve accuracy, we increased n from the starting value of 8 up to 20, 

generating new training data sets for each value of n.  Fig. 4.7 shows the accuracy improvement 

with respect to n; it is seen that accuracy is enhanced from approximately 78% to 94%. We also 

observe that starting from a value of n = 18, accuracy reaches a level of 94%. Further increasing n 

does not provide any improvements on the model accuracy. Moreover, the major improvement 

 

Fig. 4.6 Performance improvement of the DNN model by varying n, the number of EHM 

measurements. 
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found is on the under- and over-estimated responses. Fig. 4.7 shows the confusion matrix from the 

deep neural model trained with n = 8, while Fig. 4.8 shows the confusion matrix from the model 

trained with n = 20.  The vertical colored bar in Fig. 4.7 and Fig. 4.8 represents the number of 

cases that fall within each classification case. By comparing Fig. 4.7 and Fig. 4.8, it is clear that 

not only does accuracy improves, but also sensitivity (the ability to select a true value in a true 

population) and specificity (the ability to rule out a failure in a failure-free population), thus 

improving the capability of the DNN model to provide valuable information on the extrapolated 

margin responses. 

4.8. Conclusions 

In this chapter, a modeling problem formulation to estimate the accuracy of BER 

extrapolation in Rx margin measurements of HSIO links was presented. The proposed formulation 

considers statistical information of eye height margin data at two different high BER values and 

establishes a metric to classify the extrapolated margin at a low BER value as over-estimated, 

under-estimated, or accurate. The formulation is then used in a deep neural network (DNN) model 

to efficiently classify the accuracy of the extrapolated receiver margin under a specification bit 

error rate (BER). The best DNN model accuracy was obtained by increasing the number of 

 

Fig. 4.7 Confusion matrix of the DNN model generated with n = 8. 
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measurement samples at each BER. By using the proposed DNN model, post-silicon validation is 

capable of extrapolating system margins to the specification BER to accelerate validation, and at 

the same time, classifying the accuracy of the extrapolated margins. 

 

Fig. 4.8 Confusion matrix of the DNN model generated with n = 20. 
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General Conclusions 

Analog validation and test engineers need to find innovative solutions to tackle 

continuously increasing challenges, such as technology process shrinkage, product complexity 

increase, and data rates increase, among others, in order to enable product competitiveness in the 

market. This doctoral dissertation proposes machine learning and optimization techniques as 

feasible paths towards creating viable solutions to improve and accelerate validation and testing 

processes in the analog domain.  

In Chapter 1, two optimization procedures were described to accelerate analog validation. 

The first one is based on DoE techniques to automatically optimize Rx eye diagrams in a PCIe 

gen2 HSIO link. DoE techniques allowed to find the most significant variables through a fractional 

factorial design, and then to find the optimal values of these variables using RSM CCD DoE 

models, which were optimized in closed form. The second proposed procedure exploited the 

golden search optimization approach to find the pass/fail boundary in an accelerated manner during 

JTOL execution, while at the same time achieving a high precision on the JTOL results by 

executing a downwards search at the target BER. This allows to accelerate JTOL tests in HSIO 

links by more than 90%.  

PHY tuning is known to be one of the most time-consuming processes in analog validation, 

since current practices are based on exhaustive enumeration techniques or fully based on empirical 

expert knowledge. In Chapter 2 of this dissertation, a series of optimization methods were 

proposed to accelerate tuning by exploiting machine learning surrogate models. First, several 

surrogate modeling methods and DoE sampling approaches were evaluated to approximate the 

response of an HSIO link with respect to different EQ combinations. Then, with the optimal 

combination, SBO is performed to find the optimal EQ values. An ANN-based metamodeling 

technique was also described in Chapter 2, where a sufficiently accurate model was built with the 

least computational effort in the validation laboratory. Finally, using this low-cost machine 

learning model, we accelerated the PHY tuning process with the use of the ASM optimization 

algorithm. In Chapter 2, all results were based on a real validation platform to demonstrate the 

efficiency of our proposals.  

Chapter 3 is focused on analog fault diagnosis in the testing field. First, it presented analog 
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faults and fault modeling concepts. Then, a review of the most important fault diagnosis methods 

was presented. Finally, an analog faults diagnosis method based on ANN and constrained PE was 

proposed. The proposed method is based on comparing the circuit output response of a faulty 

circuit against a faultless one. This method was exemplified with two different analog circuits; 

results showed that the method efficiently identifies faults in both passive and active components. 

Then, the chapter also presented a generalized formulation to increase the uniqueness of the 

identified faults by using auxiliary information from internal circuit nodes. In Chapter 3, the 

machine learning techniques, based on ANN, were used as metamodels to identify faults with an 

extremely low computational cost, using an optimization process known as constrained statistical 

parameter extraction. Following the proposed methods, faults were properly identified in all the 

analog test case circuits.  

When the modeling problem is too complex, traditional metamodels fail to provide the 

required performance, since high dimensionality is more suitable for deep learning techniques. In 

Chapter 4, a deep neural model was proposed to classify the precision of BER extrapolation of 

margins. The chapter first provided BER definitions, and BER extrapolation concepts. Then, an 

extrapolation modeling problem formulation was presented, by determining whether the 

extrapolated margin is over-estimated, under-estimated, or within a predefined error threshold, 

using statistical information derived from the measurements. Results show that by using our 

proposed DNN model, post-silicon validation and testing is capable of extrapolating margins to 

the specification BER to accelerate tests, while at the same time classifying the accuracy of the 

resulting margins. 

 In summary, this doctoral dissertation proposes a series of machine learning- and 

optimization-based methods to improve analog validation and test processes. Many proposals 

focus on accelerating the current industrial practices, such as JTOL tests and PHY tuning, to reduce 

TTM without sacrificing precision, and even improving results quality. Others, not only automate 

and accelerate current practices, but also improve precision on the testing and validation results, 

such as fault identification and BER extrapolation.  

This doctoral dissertation offers a plethora of possible future research opportunities. 

Simple, yet efficient, optimization techniques, such as the golden section search used to accelerate 

JTOL tests, can be used in similar characterization tests in both validation and test scenarios, where 

the pass/fail boundary is not well known due to its analog nature,  thus possibly offering multi-
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million dollar savings in test cost. DoE methodologies used in this dissertation to find the most 

significant EQ variables in tuning procedures, are open to be exploited for debug and triage 

activities, where variables interactions are not well understood.  

Machine learning-based surrogate models have been proven effective in this dissertation 

for optimization-based tuning in a single test condition. However, validation engineers need to 

ensure product robustness against all valid conditions, such as process variations, temperature, and 

voltage conditions, channel loss specifications, and end point devices variations. So, future 

research should be focused on finding solutions to find optimal EQ values that satisfy all these 

multi-physics variables interactions. Additionally, parallel buses such as DDR have not been yet 

considered and pose a significant challenge in next-generation data rates for memory interfaces. 

The fault identification methods presented in this dissertation have been proven to work 

for gross faults, i.e. short and open faults. Future work should also consider parametric faults; by 

doing this, fault diagnosis can be accelerated in many real-life analog faults scenarios, such as 

process shifts, aging effects, and non-catastrophic variations. Furthermore, as an initial approach, 

our fault-injection proposal is based on the premise that a single fault occurs at any given time. 

Future work must also consider multiple concurring faults.  

The DNN models presented in this dissertation are limited to classifying whether the 

resulting extrapolated margin is precise or not. Future work should not only classify the 

extrapolation precision, but also predict the precise extrapolated margin. Future work could also 

delve into finding cost-effective models that can be implemented in memory-constrained 

architectures, such as embedded microcontrollers, so that the predicted extrapolated margins can 

be calculated in real-time within the next-generation PHY architectures.
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Conclusiones generales 

Ingenieros de validación y de pruebas analógicas necesitan encontrar soluciones 

innovadoras para abordar retos continuamente crecientes, tales como la permanente 

miniaturización de los procesos de tecnología, los incrementos en la complejidad de los productos, 

y el aumento en la velocidad de datos, entre otros, para lograr la competitividad de los productos 

en el mercado. Esta tesis doctoral propone técnicas de aprendizaje automático y de optimización 

como posibles caminos hacia la creación de soluciones viables para mejorar y acelerar los procesos 

de validación y pruebas en el dominio analógico.  

En el Capítulo 1, dos procedimientos de optimización fueron descritos para acelerar la 

validación analógica. El primero está basado en técnicas de DoE para optimizar automáticamente 

diagramas de ojo en el receptor de un enlace HSIO de PCIe generación 2. Las técnicas DoE 

permitieron encontrar las variables más significativas mediante un diseño factorial fraccionado, y 

posteriormente ayudaron a encontrar los valores óptimos de dichas variables usando modelos DoE 

RSM CCD, los cuales fueron optimizados en forma cerrada. El segundo procedimiento propuesto 

aprovecha el enfoque de optimización de búsqueda áurea para encontrar la frontera de paso/falla 

de una manera acelerada durante la ejecución de JTOL, logrando al mismo tiempo una alta 

precisión en los resultados de JTOL al ejecutar una búsqueda hacia abajo en el BER objetivo. Esto 

permite acelerar pruebas de JTOL en enlaces HSIO por más del 90%. 

La sintonización del PHY es uno de los procesos que más tiempo consumen en validación 

analógica, ya que las prácticas actuales se basan ya sea en técnicas de enumeración exhaustiva o 

bien son dependientes por completo del conocimiento experto empírico. En el Capítulo 2 de esta 

tesis, una serie de métodos de optimización fueron propuestos para acelerar la sintonización 

aprovechando modelos sustitutos de aprendizaje automático. Primero, varios métodos de 

modelado sustituto y técnicas de muestreo DoE fueron evaluadas para aproximar la respuesta de 

un enlace HSIO con respecto a diferentes combinaciones de EQ. Posteriormente, con la 

combinación óptima, se ejecutó SBO para encontrar los valores óptimos de EQ. Una técnica de 

meta-modelado basada en ANN también fue descrita en el Capítulo 2, donde se construyó un 

modelo suficientemente preciso con el menor esfuerzo computacional en un laboratorio de 

validación. Finalmente, usando este modelo de aprendizaje automático, aceleramos el proceso de 
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sintonización del PHY con el uso del algoritmo ASM de optimización. En el Capítulo 2, todos los 

resultados están basados en una plataforma de validación industrial para demostrar la eficiencia de 

nuestras propuestas.  

El Capítulo 3 está enfocado en el diagnóstico de fallas analógicas en el campo de pruebas. 

Primero presentó conceptos de fallas analógicas y de modelado de fallas. Luego, una revisión de 

los métodos de diagnóstico de fallas más importantes fue presentado. Finalmente, un método de 

diagnóstico de fallas analógicas basado en ANN y PE restringida fue propuesto. El método 

propuesto se basa en comparar la respuesta de salida de un circuito con fallas contra la de un 

circuito sin fallas. Este método fue ejemplificado con dos diferentes circuitos analógicos; los 

resultados mostraron que el método identifica eficientemente fallas tanto en componentes pasivos 

como activos. Luego, el capítulo también presenta una formulación generalizada para aumentar la 

unicidad de las fallas identificadas mediante el uso de información auxiliar de nodos circuitales 

internos. En el Capítulo 3, las técnicas de aprendizaje automático, basadas en ANN, fueron usadas 

como metamodelos para identificar fallas con un costo computacional extremadamente bajo, 

usando un proceso de optimización conocido como extracción de parámetros estadística 

restringida. Al seguir los métodos propuestos, las fallas fueron adecuadamente identificadas en 

todos los circuitos analógicos probados.  

Cuando el problema de modelado es demasiado complejo, metamodelos tradicionales no 

logran proveer el rendimiento requerido, ya que la alta dimensionalidad es más adecuada para 

técnicas de aprendizaje profundo. En el Capítulo 4 se propuso un modelo neuronal profundo para 

clasificar la precisión de la extrapolación de BER de márgenes. Dicho capítulo primero provee 

definiciones de BER y conceptos de extrapolación de BER. Luego se presentó una formulación 

del problema de modelado de extrapolación, determinando si el margen extrapolado está 

sobreestimado, subestimado, o dentro de un límite de error predefinido, empleando información 

estadística derivada de mediciones. Los resultados muestran que al emplear el modelo DNN 

propuesto, la validación post-silicio y las pruebas son capaces de extrapolar márgenes al BER 

especificado para acelerar pruebas, y al mismo tiempo clasificar la precisión de los márgenes 

resultantes.  

En resumen, esta tesis doctoral propone una serie de métodos basados en aprendizaje 

automático y en optimización para mejorar los procesos de validación y pruebas analógicas. 

Muchas de las propuestas se enfocan en acelerar las prácticas industriales actuales, como pruebas 
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de JTOL y sintonización del PHY, para reducir TTM sin sacrificar precisión, e incluso, mejorando 

la calidad de los resultados. Otros, no solo automatizan y aceleran las prácticas actuales, sino 

también mejoran la precisión en los resultados de pruebas y de validación, como la identificación 

de fallas y la extrapolación de BER.  

Esta tesis doctoral ofrece una plétora de posibles oportunidades de investigación futura. 

Técnicas de optimización simples, pero efectivas, como la búsqueda basada en la sección áurea 

usada para acelerar pruebas de JTOL, pueden ser usadas en pruebas similares de caracterización 

tanto en escenarios de validación como de pruebas, donde la frontera de paso/falla no es bien 

conocida debido a su naturaleza analógica, por lo que posiblemente ofrecerían ahorros 

multimillonarios en el costo de las pruebas. Metodologías DoE empleadas en esta tesis para 

encontrar las variables de EQ más significativas en procedimientos de sintonización, pueden ser 

aprovechadas para actividades de depuración y triaje, donde la interacción entre variables no es 

del todo conocida.  

Los métodos de identificación de fallas presentados en esta tesis han sido probados que 

funcionan para fallas burdas, por ejemplo, fallas de cortocircuitos y circuitos abiertos. El trabajo 

futuro también podría considerar fallas paramétricas; al hacer eso, el diagnóstico de fallas puede 

ser acelerado en muchos escenarios reales de fallas analógicas, como cambios de proceso, efectos 

de envejecimiento y variaciones no catastróficas. Además, como un abordaje inicial, nuestra 

propuesta de inyección de fallas se basa en la premisa de que una única falla ocurre en determinado 

tiempo. El trabajo futuro también debería considerar múltiples fallas concurrentes.  

Los modelos DNN presentados en esta tesis están limitados a clasificar si el margen 

resultante extrapolado de BER es preciso o no. Trabajo futuro podría no solo clasificar la precisión 

de la extrapolación de BER, sino también predecir el margen extrapolado preciso. El trabajo futuro 

también podría ahondar en encontrar modelos económicos o frugales que puedan ser 

implementados en arquitecturas con memoria restringida, como microcontroladores embebidos, 

para que los márgenes extrapolados predichos puedan ser calculados en tiempo real dentro de las 

arquitecturas de PHY de próxima generación.  
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