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Resumen

Este trabajo de tesis doctoral presenta el desarrollo e implementación de un esquema de estimación

basado en un filtro de Kalman, para la estimación de los estados de vehículos durante su navegación,

fusionando mediciones provenientes de sensores de bajo costo. Los estados de interés para la

navegación corresponden a los componentes que definen la posición y orientación de un vehículo. El

incorporar información sobre la dinámica de movimiento del vehículo, en conjunto con mediciones

obtenidas por medio de uno o varios sensores, favorece a la mejora de la precisión y exactitud con

la que se pueden determinar dichos estados. En específico, se propone e implementa un esquema

de estimación de estados para aplicaciones pedestres y aéreas. Para aplicaciones pedestres, se

propone una metodología para mejorar la estimación de la posición por medio de imágenes aéreas.

Adicionalmente, se estudia a profundidad la dinámica de vuelo de sistemas de entrega aérea de

precisión, en específico sistemas campana-carga útil denominados micro ligeros. Para estos sistemas,

se proponen dos modelos lineales que capturen su dinámica de vuelo, en los cuales se implementa

el esquema de estimación de posición y orientación, fusionando mediciones de sensores de bajo

costo por medio de un filtro de Kalman. Los resultados obtenidos muestran que la implementación

del esquema de estimación es efectiva y viable para aplicaciones de bajo costo. Por un lado, la

incorporación de imágenes aéreas en el proceso de estimación de la posición en aplicaciones pedestres

permite determinar la exactitud de los sensores de navegación, así como mejorar el proceso de

estimación de su posición. Los modelos lineales desarrollados para sistemas micro ligeros de entrega

aérea de precisión demuestran capturar su dinámica de vuelo. La incorporación de estos modelos,

junto con la fusión de mediciones de sensores de bajo costo en el esquema de estimación, demuestran

una mejoría en la determinación de la posición y orientación de los vehículos durante su trayectoria

de descenso.
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Summary

The research in this doctoral thesis presents the development and implementation of an estimation

scheme, based on a Kalman filter, for the state estimation of vehicles during navigation, fusing

measurements from low-cost sensors. For navigation purposes, the states of interest are the compo-

nents that define the position and attitude of the vehicle. The inclusion of information regarding

the dynamics of the vehicle, together with measurements from one or several sensors, enhances the

accuracy and precision to which the states can be determined. The proposed state estimation scheme

is implemented in pedestrian and aerial applications. For pedestrian applications a methodology

is developed, to improve the position estimation by using aerial images. Also, the flight dynam-

ics of precision aerial delivery systems is studied thoroughly, specifically for micro-lightweight

parafoil-payload systems. For these systems, two linear models that capture their flight dynamics are

proposed and implemented in the state estimation scheme for position and attitude determination,

fusing measurements from low-cost sensors employing a Kalman filter. The implementation results

proved that the state estimation scheme is effective and suitable for low-cost applications. The

incorporation of aerial images in the position estimation process for pedestrian applications allows

for the accuracy determination of low-cost navigation sensors, as well as improving the estimation

of the position. The lineal models developed for micro-lightweight precision aerial delivery systems

proved to capture their flight dynamics. The use of these models, together with the fusion of mea-

surements from low-cost sensors in the estimation scheme, demonstrates an improvement in the

position and attitude determination of the vehicles during their descent trajectory.
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1. Introduction

This doctoral thesis presents the development and implementation of a state estimation scheme

based on Kalman filters, for the position and attitude estimation of vehicles, fusing measurements

from low-cost sensors. This estimation scheme is implemented for the navigation of pedestrian

applications and aerial delivery systems.

A thorough exploration on the flight dynamics of aerial delivery systems is carried out, specif-

ically for micro-lightweight systems. The state estimation scheme proposed in this research is

implemented for the navigation trajectory of precision aerial delivery systems. All the calculations,

data processing and plots presented in this thesis, were conducted using MATALB1.

In the following sections, the motivation and background of the applications intended for this

research are presented.

1.1. Low-Cost Satellite Navigation

Nowadays, there is a growing field of acquisition processes for remote sensing and surveying

applications, based on aerial and terrestrial systems, like Unmanned Aerial Vehicles (UAVs), rovers,

aerial delivery systems, and hand-held devices. These systems navigate on a trajectory while

acquiring information on their surroundings. Whether the final product is the determination of

characteristics of crop fields, monitoring natural reserves and disasters, the generation of data-sets

for information extraction, precise farming, or digital elevation models, frequently the followed

trajectory of the vehicle is required. Such a trajectory can be processed concurrently to data collection.

Likewise, it can be used for the optimization of the intended trajectory (desired overlap in the scenes,

georeferencing, energy efficiency, etc.) [Pajares-15; Manfreda-18].

Different strategies and equipment are used for the estimation of traveled trajectories, depending

on the required accuracy, the payload capacity of the vehicle, and available resources. For applica-

tions demanding high accuracy, Harwin and Lucieer [Harwin-12] use Differential Global Positioning

System and thousands of accurately determined ground control points to achieve 5 cm accuracy in
1MATLAB, Version 9.8.0, The MathWorks, Inc., 3 Apple Hill Drive, Natick MA 01760-2098, 2020.
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point clouds. Benassi et al. [Benassi-17] incorporates dual-frequency Global Navigation Satellite

System (GNSS) receivers and differential corrections provided by local ground stations to obtain

accuracies at the 10 cm level. In addition, different applications of trajectory reconstruction making

use of high-end sensors have proved effective to estimate the position of aerial and terrestrial systems

at the meter level [Sanz-Ablanedo-18; Gong-19; Scheiner-19; Marucci-17; Adjrad-17; Kingston-04;

Peng-00]. Although effective, these methods demand expensive and sometimes heavy sensors.

Furthermore, they require the implementation of complex algorithms with high computational

demand and therefore power consumption, not suitable for low-cost systems.

Miniaturized low-cost systems typically rely on affordable GPS receivers, making only use

of single-frequency code measurements. Additionally, small vehicles have very limited payload

capacities, constraining the allocated weight for structural components, energy storage, actuators,

sensors, and processing units. For this reason, low-cost applications face the challenge of achieving

the best results possible with a limited budget, translated in low-end measuring equipment and

reduced onboard computational capabilities.

For an unambiguous understanding of the terms “light” and “low-cost”, we consider a system

to be compliant with this adjectives if the total payload is smaller than 4 kg, and the sensors and

processing units cost under $250 USD, altogether integrated into a portable solution. This is neither

an exact nor strict value, but it provides a rough idea of the order of magnitude of the budget for

the considered application. As such, it is considerably lower than the values reported for high-end

applications, in the order of tens of thousands of US dollars [Stempfhuber-11; Manfreda-18].

In this research we focus on applications where the navigation trajectory of a vehicle or pedestrian

is required to be estimated, relying on low-cost sensors. We propose the implementation of a discrete

Kalman filter to improve the user trajectory estimates provided by the employed GPS receiver. As a

further enhancement to user position estimation, we present a method to incorporate landmarks in

aerial images into the proposed estimation scheme.

In addition to the pedestrian applications of satellite navigation relying on low-cost receivers,

navigation of aerial vehicles is thoroughly explored, specifically related to the delivery of payload

by analyzing the controlled descent of parachutes.
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1. Introduction

1.2. Parachues

Introduced and patented by Jalbert [Jalbert-66], ram-air parachutes have been studied and

optimized for a wide range of applications, from the military for emergency ejection escapes,

delivery of troops and munitions; civil applications as the delivery of supplies and towed cargo; the

aerospace industry for the controlled reentry, recovery and reuse of spacecraft; to other recreational

activities as sport jumping.

Ram-air parachutes are constructed from not porous fabric, which allows a compact storage,

without any rigid member. When released, they inflate as regular parachutes, but in contrast, these

types of parachutes resemble a low aspect ratio wing, once fully deployed. Their construction is

based on an upper and a lower membrane connected by spanwise distributed ribs, forming individual

cells. As the parafoil expands, air flows through an opening on the leading edge, spreading along the

entire wing as the cells have apertures to ensure full inflation, and exits on the trailing edge. It is this

airflow that provides rigidity to the structure to perform efficiently as a wing. Finally, suspension

lines attached to the ribs are connected to the control unit, if existent, or directly to the payload

[Lingard-86]. Different accessories are commonly used, as lateral stabilizer panels and flaps to

control the airflow, increasing the controllability of the parachute.

In comparison, traditional round parachutes descend primarily in the vertical direction. Their

construction consists of a circular parafoil with radial symmetry and cuts at the top, allowing the

air to flow through the inflated canopy and to gain a minimum gliding capability. These cuts, also

called vents, provide some stability to the rather unstable structure, otherwise commonly suffering

from pendulum oscillations [Lingard-95].

The lift to drag ratio (L/D) represents the aerodynamic efficiency of the parafoil, which directly

relates the horizontal and vertical traveled distance. Typical L/D ratios for circular parachutes range

from 0.8 to 1.5, whereas ram-air parachute used on PADSs range from a minimum of 2.5 up to 4 for

typical applications, reaching up to 6, according to Yakimenko [Yakimenko-16]. The notation X:1

is commonly used to express the glide ratio, equal to the lift to drag ratio, meaning that X horizontal

meters can be obtained per unit of height loss, or vertical displacement.

A full description on the overall aerodynamic characteristics of ram-air parachutes, including

aspect ratio, lift and drag coefficients, drag contributions per component, lateral and longitudinal
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dynamics, as well as flight performance under deflections and maneuvers, is presented by Lingard

[Lingard-95].

1.3. Weather Balloons

A sounding balloon is a probe mainly composed of three parts: a filled balloon as an up-thrust

source, a parachute, and a payload. The buoyancy force that drives the probe upwards is obtained

from filling the balloon with a gas lighter than air, typically helium or hydrogen, reaching altitudes

up to 30 km.

According to Knacke [Knacke-91] and Yakimenko [Yakimenko-16], circular parachutes are used

mostly to decelerate uncontrolled payloads on their trajectory back to the surface of the Earth. In

contrast, controlled descents make use of ram-air parafoils due to their capacity to cover considerably

large horizontal distances with respect to a vertical descent, together with their steering capabilities.

A weather balloon is a type of sounding balloon used to acquire atmospheric parameters during

its trajectory, collecting information regarding the vertical profile of the lower troposphere, such

as temperature, humidity, pressure, wind speed, and wind direction. A typical weather balloon

flight can last around 2 hours without being controlled, drifting more than 200 km from the release

point. The information gathered by weather balloons represents the worldwide core input for air

pollution models, meteorological forecasts, and the assessment of atmospheric conditions during

meteorological events. When a weather balloon is equipped with a radio transmitter, is referred to

as a radiosonde.

Nowadays, according to the Integrated Global Radiosonde Archive (IGRA) [NOAA-16], there

are almost 1000 stations gathering upper-air information by means of synchronous sounding at 00:00

and 12:00 UTC, by international agreement, 365 days a year, representing around 500 000 launches

per year. The National Weather Service (NWS) of the United States of America (USA), as part

of the National Oceanic and Atmospheric Administration (NOAA), releases approximately 75 000

radiosondes each year [NOAA-18]. In Switzerland, through the Federal Office for Meteorology and

Climatology, MeteoSwiss, approximately 730 radiosondes are released per year [MeteoSwiss-20].

According to Dabberdt and Turtiainen [Dabberdt-15], just a few countries actively seek to recover

and reuse their radiosondes. For example, the USA reuses only between 10 % and 15 %, whereas
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Switzerland, reuses more than 60 % of their yearly releases. A common way to recover probes is by

adding a prepaid envelope to the radiosonde, so that when it is found it can be shipped back by the

person who finds it [NOAA-18]. If a weather balloon is not equipped with a transmitter, it must be

recovered in order to obtain the collected data, otherwise, the information would be lost. Due to

the elevated cost of the equipment that comprises a ground station, some sounding balloons do not

broadcast the collected data during flight. The cost of the required gear and antennas of a ground

station can go from thousands to the hundreds of thousands of US dollars. Even if a weather balloon

is equipped with a transmitter, the decision to seek the payload after the flight is mostly based on the

economic factor, since a recovery expedition can be costly in comparison with the radiosonde cost,

especially when the landing zone is in an inhospitable area.

A significant risk is taken when using weather balloons since there is no type of control over

the probe during its ascent. As the probe ascents, the balloon continuously expands due to the

decrease in atmospheric pressure, up to bursting. Typically, the onboard parachute starts deploying

immediately after the bursting point, reaching full inflation still at a very high altitude. If the descent

is not controlled, the trajectory of the probe is solely modified by the wind during the rest of its

flight back to the surface of the Earth, resulting in significant drift distances from the intended

point of impact. For this reason, aerial delivery systems have been developed, so that probes can be

maneuvered towards desired landing-zones, useful for a wide range of applications. In the following,

these delivery systems are analyzed, including a thorough description of their historical development,

modeling, functioning and classification.

1.4. Precision Aerial Delivery System

The use of Unmanned Aerial Vehicles (UAVs) has spread to numerous disciplines and will

continue to expand in the foreseeable future, as more affordable sensors, actuators, and processing

units become available, together with the advances in their legislation around the globe. Nowadays,

UAVs are used in several applications in the scientific, civil, and commercial fields; for instance, in

precision agriculture, weather monitoring, search and rescue, mining, remote sensing, and delivery

of goods [Shakhatreh-19; Park-20].

In this research, we focus on the use of UAVs for the delivery of payloads. A large number of
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applications make use of UAVs to deliver food, merchandise, medical supplies, or rescue equipment,

among others. When natural disasters occur, such as earthquakes, landslides, blizzards, wildfires,

or floods, affecting the terrestrial infrastructure, UAVs can promptly deliver emergency supplies.

Additionally, UAVs provide a solution in situations where the rugged topography of a region inhibits

fast transportation. For example, the company Zipline is delivering daily blood and blood products

to health centers in the regions around the countries of Rwanda and Ghana, in Africa [Ackerman-19].

Given the Coronavirus disease 2019 (COVID-19) pandemic, Zipline is also distributing medical sup-

plies and personal protective equipment, and recently pursuing the possibility to provide COVID-19

supplies in the USA [Ackerman-20].

Several applications of UAVs rely on vehicles instrumented with expensive and delicate sensors.

For instance, in remote sensing scenarios, it is common the use of Light Detection and Ranging

(LiDAR); optical, multispectral, hyperspectral, and thermal cameras; radar; GNSS receivers; and

processing units [Manfreda-18]. In the case of a vehicle malfunction, these instruments could

be damaged given a collision with the ground, or lost in the event of loss of flight control or

communication, causing landing in an unknown or unreachable location. In these situations, a

safe-landing feature is most needed to recover the vehicle and its equipment. PADSs make use of

guidance, navigation, and control, to maneuver parafoil-payload systems towards safe-landing zones,

increasing the chances of successfully delivering payloads on target, and diminishing the possible

damage while landing.

A typical descent flight of a PADS is illustrated in Fig. 1.1. The trajectory is composed of three

segments: an initial flight towards the intended landing point (homing); a lemniscate (figure-eight)

or circular pattern while losing altitude (energy management); and finally, a narrow turn to reach

the target facing into the wind (landing). In this illustration three vehicles are depicted to represent

different application scenarios, for example, a cargo aircraft for the delivery of goods, or as a recovery

system for a weather balloon or a multicopter.

1.4.1 Flight Dynamics Modeling

Design, modeling, and characterization of PADSs have been taking place since the beginning of

the 1970s. Static and dynamic longitudinal stability was first studied by Goodrick [Goodrick-75;
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Fig. 1.1. Typical Precision Aerial Delivery System (PADS) flight profile.

Goodrick-79], together with the early development of the equations of motion governing parafoil-

payload systems, considering 3- and 6-DOF, and the characterization of a 150 kg test payload.

Simulations that first studied the parafoil-payload as a nonrigid system were introduced by Wolf

[Wolf-71], who developed a 5-DOF system allowing for the relative motion between the parafoil

and the payload, assembled by a joint, considering three-dimensional translation and bi-dimensional

rotation, neglecting the roll angle.

At the beginning of the 2000s, the Small Autonomous Parafoil Landing Experiment (ALEX I

and II), described in detail by Jann [Jann-01; Jann-05], set a milestone on modeling, validation, and

verification of PADSs using 3- and 4-DOF, employing a ram-air parachute with a payload of 100 kg.

In order to improve the understanding of the governing forces acting on PADSs, models that

accounted for the relative motion between the parafoil and the payload became necessary, together

with the corresponding validation between real flight data and computer simulations. Typically,

sensors dedicated to obtaining information on the motion of the parafoil-payload system are mounted

on the payload, or very near to it. While this provides sufficient information on the behavior of

the payload itself, it does not add enough information on the flight dynamics of the parafoil, nor

about their relative motion. For this reason, efforts arose to determine the behavior of the complete

system using different techniques. For example, Strickert and Jann [Strickert-99] used video-image

7



1. Introduction

processing techniques to estimate the relative motion (attitude only) between the parafoil and the

payload based on the ALEX vehicle.

Different models have been developed for a varying range of DOF, either considering the parafoil-

payload system as a rigid body or allowing relative motion between their components [Lingard-95;

Mortaloni-03].

Comparisons between models happen to be a complex task, since different considerations,

payload masses, parafoil aerodynamic properties, and general assumptions are used by different

authors. To be able to compare the effectiveness between models ranging from 6- to 9-DOF, Gorman

and Slegers [Slegers-11a; Gorman-12] developed a parafoil model using the same aerodynamic

properties for each scenario, realizing different DOF by modifying the kinematics constraints

between the parafoil and the payload, under the same control inputs and initial conditions. The

6-DOF model represents the three inertial position components of the joint connecting the parafoil

and the payload, as well as three Euler orientation angles. The 7-, 8-, and 9-DOF models incorporate

extra Euler orientation angles for the payload, depending on the connection constraints. The 7-

DOF model allows for yaw relative motion, the 8-DOF model allows yaw and pitch, whereas the

9-DOF model allows yaw, pitch, and roll relative motion between the parafoil and the payload. By

contrasting experimental data with the models, Gorman and Slegers were able to conclude that the

6-DOF trajectory differed from the 7-, 8-, and 9-DOF trajectories mainly because of the great yaw

relative motion (parafoil-payload twist). Since the relative roll and pitch motion is negligible in

comparison to the relative yaw motion, the 7-DOF represents the model with the minimum DOF

that captures the most significant flight dynamics, while the 6-DOF successfully characterizes the

parafoil-payload system as a rigid body, presenting lower complexity than the rest of the proposed

models.

Since the PADS analyzed in this investigation is considered a rigid body, a 6-DOF model is

adopted.

1.4.2 Classification

Due to the versatility of these delivery systems, and their possible applications in military

scenarios, different sectors of the US Army teamed to form the Joint Precision Airdrop System
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(JPADS), categorizing their systems by weight as micro-light (4.5 kg to 68 kg), ultra-light (113 kg to

318 kg), extra-light (318 kg to 998 kg), light (2268 kg to 4536 kg) and medium (6804 kg to 19 051 kg)

[Benney-07; Benney-09].

The lightest platforms developed are the Mosquito Tactical Resupply System, developed and

commercialized by STARA Technologies; and Snowflake, developed by the University of Alabama

and the Naval Postgraduate School [Yakimenko-09]. Both systems report a Circular Error Probability

(CEP) of 30 m. The Snowflake system by itself, considering only a ram-air parafoil, guidance,

navigation and control unit, together with its packing, weights at minimum 2 kg, being capable of

carrying up to additional 2.2 kg as payload.

Initially, one of the JPADS requirements was to achieve $13.22 USD per kilogram of payload,

a goal only met for the heavy categories, but far from being met for the light categories (micro-

light, ultra-light, and extra-light) [Yakimenko-16]. Making more affordable systems has been a

priority, even at the expense of reducing their delivery precision. Cost reduction can be achieved

by employing cheaper parachutes. Ram-air parafoils are typically expensive, approximately 3 to 4

times more expensive than circular parachutes, and about 20 times more expensive than cruciform

parachutes.

The Affordable Guided Airdrop System (AGAS), formed in 1999 [Brown-99], has the goal to

minimize as much as possible the cost of delivery systems, obtaining the best achievable accuracy

within a threshold of 100 m CEP. The AGAS initiative has been focusing on the extra-light and

lightweight ranges, where mainly 900 kg payload implementations have been tested using circular

parachutes, achieving 211 m CEP when 12 hours-old wind forecast information was used, and 38 m

CEP when near real-time wind profiles were used [Jorgensen-05]. Lighter systems have been able

to achieve up to 10 m in specific cases [Yakimenko-16]. Reduction in the actual landing distance to

the intended point of impact, which translates to small CEP, has been achieved by the development

of optimal control and guidance [Kaminer-03; Slegers-09], strongly dependent on high-quality

information about the wind profiles during the entire flight, from the beginning of the descent up to

touchdown, and the capability to account for variable winds [Cacan-15]. Nevertheless, achieving

such high precision comes with a price, requiring computational power and elevated costs on sensors,

actuators, and parachutes.

Although the 5 kg to 19 000 kg weight-range has been widely analyzed and tested, delivery

9



1. Introduction

systems for lighter applications have not been thoroughly explored, especially for low-cost solutions.

Lightweight applications of PADSs face the challenge of relying on light hardware to perform guid-

ance, navigation, and control. Current parafoil-payload systems make use of high-end processing

units, capable of handling sophisticated real-time implementations of highly nonlinear dynamical

models to estimate their attitude and position to operate their guidance system. If low-cost miniatur-

ized versions of these delivery systems are to be explored, simplified models that capture their flight

dynamics need to be developed. Additionally, estimation schemes for their position and attitude need

to be taken into account, especially for further guidance and control implementations on vehicles

with limited sensors, actuators, and processing capabilities.

10



2. Kalman Filter

This chapter presents the formulation of a model-based Kalman filter using a total state-space

formulation [Simon-06].

Given a linear discrete-time system with state vector x and a measurement vector z:

xk = Fk−1xk−1 +Gk−1uk−1 + Wk−1 (2.1)

zk = Hxk + Vk (2.2)

the Kalman filter provides the best estimate of the states x̂, as a linear combination of the mea-

surements. F represent the state transition matrix, G the control matrix, and H the observation

matrix. The observation matrix H communicates the availability of the measurements, relating

them with the state vector. The process noise W and measurement noise V, are both assumed to be

white, uncorrelated, and zero-mean.

The estimate of the states is denoted as an a posteriori estimate x̂k, if information from the

measurements is available up to, and including, epoch k. If all the measurements are available

before epoch k, therefore excluding epoch k, the estimate is denoted as an a priori estimate x̂−k .

Similarly, the a posteriori covariance of the estimation error is represented as Pk, and the a priori

error covariance as P−k .

The initialization of the covariance of the state estimation error (Pk=0), depends on how well the

initial state estimate (xk=0) is known. The bigger the uncertainty of the initial state, the larger the

initial covariance. In the case the initial state is precisely known, the covariance is initialized close

to zero. In the case there is no information about the initial state, the covariance is initialized with

close to infinity.

The estimation process is initialized by propagating the a posteriori estimate and covariance,

from epoch k − 1 to k, in the so-called time-update equations:

x̂−k = Fk−1x̂k−1 +Gk−1uk−1 (2.3)

11



2. Kalman Filter

P−k = Fk−1Pk−1F
T
k−1 +Qk−1 (2.4)

where Q represent the process noise covariance matrix. Notice that to update the estimation of the

states, only the dynamics of the system is required. This represents the estimate of the state at epoch

k, but before the measurement zk is available.1

Next, the a posteriori state estimate x̂k is computed as a linear combination of the a priori estimate

x̂−k , and the difference between the measurement vector zk and the predictionHkx̂
−
k , weighted by the

Kalman gainKk, designed to minimize the a posteriori error covariance Pk, as part of the so-called

measurement-update equations:

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1 (2.5)

x̂k = x̂−k +Kk

(
zk −Hkx̂

−
k

)
(2.6)

Pk = (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k (2.7)

= (I −KkHk)P
−
k (2.8)

where R represents the measurement noise covariance matrix, and I corresponds to the identity

matrix. The information of the measurements is incorporated into the estimation process in (2.6) in

the denominated innovations, defined as
(
zk −Hkx̂

−
k

)
.

Two alternatives for calculating the a posteriori covariance are presented. The first expression

(2.7) is known as the Joseph stabilized version, which is a more robust formulation, less susceptible

to numerical instabilities, for example, in a computational algorithm prone to round off errors.

The stability and robustness of the Joseph version is gained at the cost of more computational

workload [Crassidis-11].

The performance of the filter can be evaluated by investigating the statistics of the innovations.

Specifically, it can be verified that the innovations represent a white noise process, with zero mean.

Additionally, the estimation accuracy is indicated by the covariance Pk.

1Note that (2.3) has the same form as the state vector derived in (5.176) for the linearized model, as well as in (5.180)
for the double integrator model, developed in future chapters.
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3. Performance of Low-Cost GPS Receiver for Pedes-
trian Navigation

The diverse and rapidly growing number of low-cost systems dedicated to the surveying of land,

oceans and agricultural ecosystems, require affordable sensors and processing units. Typical applica-

tions of these systems rely on the estimation of their trajectories while sensing, where conventionally

low-cost Global Positioning System (GPS) receivers are used. Consequently, there is a direct relation

between the accuracy of the position determination of the system and the quality of the generated

surveying products.

This chapter focuses on the accuracy estimation of a low-cost GPS receiver based only on

position measurements, and landmarks in aerial images. For comparison purposes, and to validate

the performance evaluation, the positioning results are compared with respect to a commercial

receiver and coordinates obtained using Differential GPS (DGPS).

Furthermore, we propose a methodology for the estimation of the navigation trajectory, based

exclusively on one onboard low-cost GPS receiver combined with aerial images, employing a discrete

Kalman filter. A total state-space formulation of the filter is implemented over a reference path to

assess its performance. Additionally, error state-space corrections are applied to the filter based on

landmarks in aerial images.

3.1. Accuracy Estimation

Tackling the problem of obtaining the position estimation accuracy of a low-cost GPS receiver is a

necessary task, in order to evaluate its possible applications. While accuracy evaluations of low-cost

GPS receivers have been carried out in previous studies [Matosevic-06; Reisdorf-16; Rodríguez-

Pérez-07], most assessments are based on elaborated statistical analyses, depend on having access

to code and carrier phase measurements, or ultimately make use of the DGPS technique. In contrast

with professional (and costly) receivers, most low-cost GPS receivers do not allow for direct access

to the raw satellite measurements, making the analysis based on processing the navigation message
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3. Performance of Low-Cost GPS Receiver for Pedestrian Navigation

impossible to perform.

The complexity in estimating the positioning accuracy of any Global Navigation Satellite

System (GNSS) receiver, relies on the lack of knowledge about the true position of the user at all

times during navigation. In order to have access to the true position of the user, alternatives have

been proposed based on surveying techniques using in situ measurements [Abdi-12], which are

highly time-consuming and require specialized equipment.

The research here presented aims to evaluate the accuracy of a low-cost GPS receiver by com-

paring its position estimates with respect to a known trajectory of the user, based on aerial images

(visible spectrum only). A methodology is developed that allows a direct comparison between the

estimated position of the GPS receiver and the true path traveled by the user, by correlating the

followed trajectory with landmarks on the image. In order to comparatively evaluate the performance

of the low-cost GPS receiver, a commercial GNSS receiver is included in the analysis. Professional

equipment that uses DGPS is employed to obtain a pair of highly precise positioning solutions for

comparison purposes.

The low-cost GPS receiver under analysis is an u-blox NEO-6M equipped with a 25 × 25 mm

patch antenna. The commercial GNSS receiver (GPS and GLONASS capable) is a handheld Garmin

eTrex 10. Finally, the georeferenced coordinates are obtained by a professional Trimble DGPS

receiver. While the exact model of the Trimble receiver is not available, its generated topographic

survey is used as reference, reporting a subcentimeter accuracy.

3.1.1 Trajectory Definition

A pedestrian trajectory was followed on a predefined route at ITESO University campus, taking

care of selecting a route that can be precisely identified on a high-resolution aerial image. The path

was chosen to mostly cover open outdoors routes where visible landmarks could be identified, such

as painted sidewalks, jogging track lanes, and recognizable patterns in the concrete.

Although several routes were tested including different types of areas, for example, proximity

to buildings that could increase the impact of multipath and a combination of outdoor and indoor

walking, only one final route is presented in this work for clarity, designated as the reference path.

The carrier of the receivers, hereinafter denoted as the user, walked through the reference path
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Fig. 3.1. Trajectory under analysis. Position estimates of the low-cost (NEO-6M), commercial
(eTrex 10), and professional (Trimble DGPS) receivers are shown over the followed reference path.

holding both receivers, the low-cost u-blox NEO-6M, and the commercial Garmin eTrex 10 receiver,

ensuring less than 1 m of distance between them at all times. Both were set to track the reference

path with a 1 Hz sampling rate. The position estimates are considered as provided by default, i.e.,

with no manipulation on the solution algorithm used by the receivers.

The resulting estimated positions of the low-cost GPS receiver (NEO-6M), the commercial

GNSS receiver (eTrex 10), the followed reference path, as well as the available DGPS coordinates

(Trimble DGPS) are presented in Fig. 3.1. The position estimates are overlaid on an orthorectified

aerial image, which has a ground sampling distance of 15 cm.

The complete travelled distance was of 1989.0 m, from beginning (top-left) to end (bottom-left)

in 25.2 min, representing 1509 samples. Considering a resulting slow pedestrian average motion of

around 4.75 km/h, the samples of the receivers tracked along the reference path are assumed to be

taken at the exact same epoch.

The accuracy evaluation is based on the direct comparison between the position estimation of

the receiver at a given sampled epoch and the true position of the user at that moment. To do so, a

synchronization between the location of the user over the reference path and the receiver sample

needs to be achieved. In other words, even when the trajectory of the user is perfectly known, its
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location at a specific moment (epoch) is not known. This missing information is to be obtained so

that the true location of the user at a given epoch can be paired with the correspondent epoch of the

receiver.

As an option to achieve such type of synchronization, an additional reference could be incorpo-

rated into the system, for example, time stamps recorded along the reference path. Nevertheless, this

implies an increment in the complexity for the accuracy estimation methodology, since an additional

clock is to be considered.

Since the objective of this research is to develop a methodology that allows for a direct accuracy

estimation process, without depending on accurate (and typically expensive) clocks, and increased

complexity, an alternative is introduced. In the following, a method based on recognizable features in

the aerial image and the reference path is developed in order to perform the discussed synchronization.

3.1.2 Trajectory Synchronization

The shape of the reference path is used to perform the synchronization between the true location

of the user and the corresponding epoch of the receiver. The accuracy of the methodology presented

in this work relies on the precision and accuracy to which the reference path is known. Therefore,

only parts of the trajectory that can be identified to a submeter level in the aerial image are considered

for the accuracy estimation process of the receivers. Consequently, parts with occlusions due to

the canopy of the trees, or uncertainty on the traveled path where no recognizable landmarks were

available, are discarded.

After inspecting the reference path over the orthophoto, 75.5 % of the traveled trajectory is

estimated to be known at the level of decimeters (1139 out of the 1509 data points available), and

only these validated data points are to be considered for the analysis. Invalid data points are omitted

in all the following calculations and figures. This shows the relevance in the selection of a reference

path rich in recognizable landmarks in the orthophoto.

The reference path has been selected so that the user has to walk over landmarks, as well as

having both abrupt and smooth changes in the direction of motion. Since the walking direction of the

user is known in correspondence with the reference path, the change in its direction is also known

and computable. By identifying the change in direction of the user in accordance to the changes in
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0 1 5 10 m

NEO-6M

Reference

Fig. 3.2. Synchronization of the low-cost GPS receiver with respect to the reference path, based
on the change in direction of the user and recognizable landmarks in the orthophoto (only a close-up
section of the image is shown for clarity).

the reference path, it is possible to synchronize the location of the user along the reference path, and

finally, interpolate the results between recognizable changes of direction or landmarks over the path.

Initially, the estimated latitude and longitude coordinates from the receivers are forward projected

to the aerial image using as reference the World Geodetic System 1984 (WGS84). Throughout the

reference path there is only an altitude variation of approximately ±5 m, and therefore the area

under study is considered to be flat. For all further comparison purposes, only the resulting x and y

map coordinates, measured in units of length (m), will be analyzed in order to obtain a horizontal

accuracy estimation, discarding the altitude parameter.

The result of the synchronization is shown in Fig. 3.2. It can be clearly observed how features of

the referenced path are translated to the receiver estimated trajectory by virtue of the synchronization

process. For example, it can be seen how the corresponding locations at the corners have been

paired, even when the curvy trajectory of the receiver differs from the reference path with sharp

edges. For a better understanding, a line has been explicitly drawn connecting the corresponding

epoch on the reference path and on the estimated position of the low-cost GPS receiver.

The accuracy of the low-cost GPS receiver is computed by calculating the Euclidean distance

between the position of the user on the reference path and the corresponding receiver position

estimation, as:

dru =

√
(pr − pu) (pr − pu)T (3.1)

where pu represents the row vector (x, y)u of map coordinates of the low-cost GPS receiver at a given

epoch, and pr represents the corresponding synchronized row vector (x, y)r of map coordinates over
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Fig. 3.3. Error of the low-cost GPS receiver with respect to the reference path. Synchronization
based on the change in direction of the user and image landmarks.

the reference path. The distance dru corresponds to the line segment connecting each data point as

shown in Fig. 3.2.

Fig. 3.3 shows the error (distance) between the low-cost GPS receiver and the reference path for

all valid data points. The accuracy was found to be at a meter level, with a mean value of 2.08 m

and a standard deviation of 0.91 m.

3.1.3 Comparison Without Synchronization

In order to have a better understanding regarding the accuracy of the low-cost GPS receiver,

its position estimates are compared to those position estimates provided by a commercial and a

professional GNSS receiver.

The methodology implemented in Section 3.1.2 proved to be effective, nevertheless, it requires a

reference path with sufficient and distinguishable changes in the direction of the user while traveling,

in order to perform the presented synchronization. In the case that the desired reference path cannot

comply with these conditions, for example, due to the lack of recognizable landmarks in the image,

or pedestrian accessibility (forcing the user to follow a different route), synchronization as previously

introduced cannot be accomplished.

An alternative, is to perform the accuracy estimation by calculating, epoch-wise, the minimum

Euclidean distance between all points in the reference path, and the position estimates of the receiver.

In contrast with the previously demonstrated method, this procedures calculates the distance between

each data point of the receiver and the closest data point in the reference path, and not with respect
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Fig. 3.4. Error considering the minimum distance between the reference path and the estimated
position of the low-cost NEO-6M receiver and the commercial eTrex 10 receiver (no synchronization
required).

to the location where the user should have been when the position was estimated by the receiver.

The accuracy of the low-cost and the commercial receivers, calculated as the minimum distance

with respect to the reference path, is presented in Fig. 3.4. The accuracy of the low-cost NEO-6M

receiver was found to be at the meter level, with a mean error value of 1.28 m and a standard deviation

of 0.90 m, while the solutions from the commercial eTrex 10 receiver exhibit a mean error value of

1.39 m, and a standard deviation of 1.16 m.

It is important to keep in mind that the accuracy obtained by this method will always be too

optimistic, since it is based on a minimum distance calculation between the position estimation of

a receiver and the reference path, regardless of the true position of the user along the trajectory.

On the other hand, this method has the advantage of being simpler in terms of its implementation,

independent of the shape of the reference path, and still provides a reasonable order of magnitude

of the accuracy of the receivers. The difference in the mean error values between the two shown

methods (synchronized vs. unsynchronized trajectories) amounts to only 0.8 m for the NEO-6M

GPS receiver.

Finally, the pair of georeferenced coordinates obtained by a professional Trimble DGPS receiver

is compared with the position estimates of the other two receivers. The reference path was designed

to cross over these coordinates, so that the accuracy in stepping over them can be assessed.

According to the topographic survey of the Trimble DGPS receiver, the landmarks (five-pointed

stars in Fig. 3.1) correspond to the Universal Transverse Mercator (UTM) coordinates 13 N (105 W)

664 871.906 m E, 2 279 421.928 m N (left star), and 664 931.437 m E, 2 279 420.771 m N (right
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star), respectively.

Following the same minimum distance criterion, the NEO-6M receiver missed by 1.02 m the

right star, and by 1.03 m the left star. In the same manner, the eTrex 10 receiver missed by 3.65 m

the right star and by 3.72 m the left star. These results suggest that the low-cost NEO-6M receiver is

slightly more accurate than the commercial eTrex 10 receiver for the application intended in this

experiment, both in comparison to the reference path and to the Trimble DGPS coordinates.

3.2. Pedestrian Trajectory Estimation

The objective is to estimate as close as possible a navigation trajectory, given discrete position

estimates of a low-cost GPS receiver contaminated by measurement errors, under the hypothesis

that additional information is known about the followed trajectory. For most of the cases in any

navigation scenario, there is knowledge of the expected behavior. For example, it can be known

with a specific uncertainty that a vehicle is traveling in a straight line at constant velocity, or that

the vehicle navigated over a recognizable landmark as a sidewalk, an intersection, a light pole, etc.

This information, along with its determination errors or uncertainties, can be incorporated into an

estimation scheme to improve the resulting trajectory.

To achieve this, two steps are followed. Firstly, a discrete Kalman filter is designed in a total

state-space formulation, based on assumed dynamics of the vehicle, to get a first estimate of the

trajectory. Secondly, information regarding identifiable landmarks in an aerial image is incorporated

into the Kalman filter as measurements with known covariance, in an error state-space formulation.

Our proposal prioritizes simplicity so that it can be used in low-cost applications. Consequently, the

motion of the vehicle is approximated by a linear model.

A kinematic model of the user is assumed with constant acceleration, due to the slow pedestrian

dynamics

~xk = ~xk−1 + ~̇xk−1δt+ ~̈xk−1δt
2/2 (3.2)

where the vector state ~x at epoch k represents the user position, as a consequence of being subjected

to a constant acceleration for δt seconds (from k − 1 to k).

Since only position measurements are available, the velocity and acceleration of the user are
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estimated as the change in position and velocity of previous epochs respectively as

~̇xk = ~̇xk−1 + ~̈xk−1δt (3.3)

~̈xk−1 = (~̇xk−1 − ~̇xk−2)/δtk−1 (3.4)

where δtk−1 represents the elapsed time from epoch k − 2 to k − 1.

3.2.1 Kalman Filter Model

Following a total state-space Kalman filter formulation as described in Chapter 2, the motion of

the user as modeled in (3.2) and (3.3) can be rewritten as

xk = [x y z ẋ ẏ ż]Tk (3.5)

F =




1 0 0 δt+ δt2

2δtk−1
0 0

0 1 0 0 δt+ δt2

2δtk−1
0

0 0 1 0 0 δt+ δt2

2δtk−1

0 0 0 1 + δt
δtk−1

0 0

0 0 0 0 1 + δt
δtk−1

0

0 0 0 0 0 1 + δt
δtk−1




(3.6)

G =




− δt2

2δk−1
0 0

0 − δt2

2δk−1
0

0 0 − δt2

2δk−1

− δt
δtk−1

0 0

0 − δt
δtk−1

0

0 0 − δt
δtk−1




(3.7)

uk = ˆ̇xk−2 = [ẋ ẏ ż]Tk−2. (3.8)

While there is no control input interpreted as an actuator, there is a constant acceleration

assumption that modifies the states, interpreted as the change in velocity between the second-last

(k− 2) and the last (k− 1) epoch. The observation matrixH provides the relation between the state
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vector and the measurements, reflecting the fact that only position measurements are available

H =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


 . (3.9)

The process noise covariance matrix is determined using the autocorrelation function Q =

Gσ2GT with variance σ2 = [10 10 5 4 4 2]T given in m2 and m2/s2 respectively, obtained by tuning.

The measurement noise covariance matrix Rz is determined using as reference the accuracy of the

low-cost GPS receiver according to Section 3.1.2.

Rzk =




1.82 0 0

0 1.82 0

0 0 3.62


 (m2). (3.10)

Since the sampling rate of the GPS receiver is set to be constant (1 Hz), matrices F , G, and Q

will remain constant and can be computed beforehand, reducing significantly the operations to be

performed. In the following, additional knowledge on the trajectory is incorporated into the Kalman

filter to enhance the estimation process.

3.2.2 Landmarks for Estimates Improvement

Additional information of the trajectory followed by the user can be incorporated into the

estimation process by modifying the previously developed Kalman filter, correcting the estimates

with an error state-space formulation.

This information can be a known location where we have high confidence that the user passed

by while walking. For example, we know that the user stepped over a recognizable landmark

with a horizontal uncertainty of 0.62 m2, and that the user followed a straight line while walking

over a certain part of the reference path. Knowledge on the behavior of the user while acquiring

measurements from the GPS receiver, can be incorporated to the Kalman filter. This can be achieved

by locating these landmarks in an aerial image and then correcting the position estimate.

The error state-space formulation of the Kalman filter modifies the a-posteriori state estimate x̂k
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with the weighted difference between the measurement and the prediction.

δx̂k = Kk

(
yk −Hx̂−k

)
(3.11)

x̂k = x̂−k + δx̂k. (3.12)

The measurement yk corresponds to the position of the landmark that is known with high

confidence, therefore, the measurement covariance matrix Ry must be defined accordingly for each

landmark. For example

Ryk =




0.62 0 0

0 0.62 0

0 0 32


 (m2). (3.13)

The complete algorithm, including the total and error state-space formulations, is executed as

follows:

1. Time update: The current state is estimated based on the motion model and the previous best

estimate (2.3), and the error covariance is propagated (2.4), by substituting (3.6)–(3.8).

2. GPS measurement update: Once a GPS measurement z is received, the Kalman gain (2.5) is

computed using the measurement covariance Rz (3.10). The a-posteriori state (2.6) and error

covariance (2.8) are determined.

3. Correction: When the user is closest to a landmark, the position of the landmark is used as a

measurement y. This measurement, together with its covarianceRy (3.13), is used to calculate

the Kalman gain (2.5) and the correction δx̂k (3.11). Finally, the improved estimate of x̂k
(3.12) is computed.

3.2.3 Analysis of Results

The proposed total and error state-space formulations were implemented using real measurements

according to the trajectories described in Section 3.1.1 (Fig. 3.1), following the execution steps

described at the end of Section 3.2.2. The results are presented in Fig. 3.5, where it can be observed

how once the user is closest to a landmark, information with higher confidence is incorporated into

23



3. Performance of Low-Cost GPS Receiver for Pedestrian Navigation

0 1 5 10 m

Direction

of motion

Reference

NEO-6M

Kalman

Landmark

Direction of motion

Fig. 3.5. Estimated navigation trajectory. The reference path, NEO-6M GPS measurements,
Kalman filter estimates, and landmarks are presented for selected segments of the total trajectory
followed by the user. It can be observed how once the user is closest to a landmark, the estimation
process is improved by the correction determined by the error state-space formulation, bringing
closer the estimated trajectory to the reference path. Plotted data points: top segment 50–184,
bottom segment 1327–1398.

the estimation, bringing closer the estimated trajectory to the reference path due to the correction

obtained by the error state-space formulation.

The error between the NEO-6M receiver and the reference path, together with the error between

the Kalman filter estimates and the reference path, is presented in Fig. 3.6. This error is calculated as

the minimum Euclidean distance between the GPS measurements or Kalman filter estimates and the

reference path respectively. The NEO-6M receiver presented a mean error of 1.3 m and a standard

deviation of 0.9 m on its position estimates with respect to the reference path. On the other hand,

the estimates of the Kalman filter showed a mean error of 0.8 m with a standard deviation of 0.6 m.

The reference path consists of 2 km of a pedestrian trajectory, in which 1509 measurement

samples (data points) of the NEO-6M receiver were obtained. Even when the trajectory was chosen

so that it could be identifiable in an orthophoto, small segments were not recognizable in the image

due to the canopy of the trees or short passages under buildings. Those untraceable segments

represent approximately 25 % of the total trajectory and were disregarded from this study, leading to

the small data gaps presented in Fig. 3.6.
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Fig. 3.6. Estimation error between the reference path and the measurements of the NEO-6M
receiver, and the Kalman filter estimates respectively.

3.3. Conclusion

The accuracy of a low-cost GPS receiver was evaluated following a methodology based only on

the receiver position estimates and aerial images. By defining a reference path with recognizable

landmarks on the aerial images, and changes in the direction of motion of the user, the accuracy of

an u-blox NEO-6M GPS receiver was found to be at the 1 m level, with respect to the true position of

the user, as well as in the meter level in comparison to a commercial eTrex 10 receiver, and relative

to coordinates obtained by a professional Trimble DGPS receiver. The proposed methodology was

proved to be effective, and simpler than other procedures exposed in related works, however, requires

very precise navigation of the user over a carefully selected reference path in order to ensure a

submeter accuracy as true position, as well as the availability of high-resolution aerial images.

A linear motion model for pedestrian systems is proposed together with a total state-space

formulation of a discrete Kalman filter, to estimate the navigation trajectory of users tracking their

position with a low-cost GPS receiver. Additional information regarding identifiable landmarks in

an aerial image, incorporated into the Kalman filter as measurements with low uncertainty in an

error state-space formulation, proved to be an effective way of enhancing the trajectory estimation

process for low-cost applications.

The applicability of this methodology on vehicles with different dynamics needs to be further

investigated. While this method has demonstrated to be effective, it does require the availability

of aerial images and well-known landmarks. This makes it difficult to be applied in unsupervised

scenarios, where no additional navigation information is available to enhance the estimation process.

The tests using real data of the proposed methodology suggest the possibility of bias mitigation,
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by correlating high confidence information based on the aerial image.
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The state estimation process based on the fusion of dynamic models and measurements obtained

from different sensors is commonly and efficiently performed through a model-based Kalman filter.

Whether a total state-space formulation of a Kalman filter is used; an error state-space, either with a

feedforward or feedback implementation; an extended Kalman filter; an unscented Kalman filter; or

any of modern developed variants, the Kalman filter is one of the most used algorithms for sensor

fusion, particularly in navigation applications [Sabatini-11; Quinchia-13; Yang-20; Farhangian-20].

The type of Kalman filter implementation strongly depends on the intended application, the dynamics

of the process to estimate, the required accuracy, and the computational capabilities at disposal.

According to a study performed by Zhang et al. [Zhang-19], in which the performance of

a Kalman filter, an extended Kalman filter, an unscented Kalman filter, and variations of these

types of filters were compared for inertial navigation systems, the best accuracy is obtained by

the unscented Kalman filter for their experiments. However, the unscented Kalman filter is the

algorithm that demands the most computational effort among their comparison. On the other hand,

the computational time required for the Kalman filter (not extended nor unscented) showed to be the

lowest, 3 to 10 times smaller than the extended or unscented Kalman filter implementation, at the

cost of having 6 to 8 times smaller accuracy in the estimates.

Following the current development needs of PADSs, particularly for the micro-lightweight

category, as well as the goals established by the AGAS program, in which the improvements of

low-cost systems are prioritized even at the expense of decreasing the landing accuracy, a total

state-space formulation of a Kalman filter is adopted for the estimation scheme proposed in this

investigation. This type of implementation enables the use of low-cost, small, and lightweight

sensors and processing units, requiring a linear model that represents the flight dynamics of the

system.

The purpose of the estimation scheme is the determination of the position and attitude of PADSs,

given the availability of onboard sensors as an Inertial Measurement Unit (IMU) and a GNSS

receiver, together with a model that represents the flight dynamics of the parafoil-payload system.
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Fig. 4.1. Proposed estimation scheme.

The estimation scheme developed and implemented in this research is presented in Fig. 4.1.

The estimation process begins with the control inputs u(t), which are executed by the actuators

of the PADS as brake deflections that modify the shape of the canopy, steering the system towards

the desired landing target. The control inputs are initially processed through an Analog-to-Digital

Converter (ADC), to be incorporated into a discrete linear model representative of the flight dynamics

of the system, with process noise W. The complete description of the linear models developed for

this implementation is detailed in Sections 5.4 and 5.5.

The epoch-wise output states of the linear model x̂−k are combined with themeasurements zk from

the IMU and GNSS receiver, contaminated with measurement noise V, through the implementation

of a total state-space Kalman filter, providing the best estimate x̂k of the position and attitude of

the system, together with its error covariance Pk. A detailed explanation of the filter formulation is

presented in Chapter 2.

The estimation process is performed every time a set of measurements is received from the

sensors, depending on the sampling rate defined for the system represented by the delay block. A

comprehensive description of the sampling rate and the characteristics of the sensors used is presented

in the following Section 4.1. In addition, the impact of the sampling rate on the performance of the
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TABLE 4.1. SENSORS STATISTICAL PARAMETERS

Sensor Measurement Standard Deviation

GNSS (xy) 1.8 m

GNSS (z) 5 m

Magnetometer 0.5 deg

Gyroscope 0.1 deg/s

Accelerometer 0.12 m/s2

estimation is presented in Section 6.1.1.

The a posteriori estimates of the filter (x̂k, Pk) are used to predict the new a priori estimates (x̂−k ,

P−k ), completing the recursive prediction-correction nature of the filter.

4.1. Sensors Characterization

The hardware under consideration must comply with the requirements of a lightweight mission,

where the allocated volume and weight for the low-cost sensors are very limited. Since this estimation

scheme is intended to be used in low-cost applications.

To evaluate the performance of the estimation scheme, simulated measurements are generated at

5 Hz sampling rate, based on the state variables of the reference model and the statistical character-

istics of the sensors acquiring this information in practice. This characterization is obtained through

experimentation with real flight data from similar vehicles. Specifically, measurements from a

GNSS receiver, a magnetometer, a gyroscope, and an accelerometer, are simulated by corrupting

the position, angular position, angular velocity, and linear acceleration, of the reference model with

white Gaussian noise, according to the statistical parameters reported in Table 4.1.

The obtained deviation values from experimentation are similar in comparison to the noise and

bias values reported in similar experiments. For example, Slegers and Yakimenko [Slegers-11b]

present a bias in GPS measurements of 2 m, plus noise of 0.5 m; 2 deg bias and 1 deg noise for the

angular position; and finally, 1 deg/s bias and 1 deg/s noise for the angular velocity. In their study,

they also draw upon a linearization process of the flight dynamics with a sampling rate of 2 Hz,
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assuming constant aerodynamic velocity. Cacan et al. [Cacan-15] report 4 Hz sampling rate for their

guidance, navigation, and control algorithm, of a micro-lightweight PADS. Ward et al. [Ward-10]

report noise with a standard deviation of 2 m in positioning measurements, and a standard deviation

of 10 deg and 2 deg for the heading measurement bias and noise respectively, using 4 Hz sampling

rate.

The sampling rate of 5 Hz for our investigation was chosen according to the processing capabili-

ties of typical low-end microprocessors and sensors. For example, low-cost GNSS receivers as the

u-blox NEO-6M or NEO-M8N can provide navigation information up to 1 Hz to 5 Hz, limiting the

measurement availability [u-blox-13; u-blox-20].

Typical performance of processing units for this lightweight and low-cost application range

from a microprocessor with 8-bit, 20 MHz capabilities, as the ATmega328 chip [Atmel-18]; 32-bit,

216 MHz as the STM32F765 chip [STMicroelectronics-17]; up to 64-bit, 1.5 GHz as the BCM2711

chip [Broadcom-20].
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This chapter presents the derivation of the equations of motion that govern the flight dynamics

of a parafoil-payload system, suitable for lightweight low-cost applications of PADSs. These

equations are described in the body reference frame with a North-East-Down (NED) coordinate

system, accounting for 6-DOF corresponding to the linear (v) and angular (ω) velocity vectors, with

components (u, v, w) and (p, q, r), respectively. The first part of this chapters introduces a nonlinear

6-DOF dynamic model, and then the development of two linear alternatives: a linearized version of

the nonlinear 6-DOF model, and a double integrator model.

To validate the accuracy of the models proposed in this research, and for comparison purposes,

the 6-DOF model developed and tested by Ward et al. [Ward-12] is adopted as reference (henceforth

denoted as the reference model). This model is based on the system identification of a series of flight

tests, using a micro-lightweight PADS with a total mass of 2.37 kg and a canopy with a wingspan of

1.77 m, fitting the objective of this investigation. It captures the nonlinearities of the flight dynamics

of the parafoil-payload system, therefore, it will serve as a reference to evaluate the performance of

the linear models developed in this study.

5.1. Kinematic Equations of Motion

The kinematic equations provide the relation between the components of the linear velocity

(u, v, w) and angular velocity (p, q, r) vectors in the body reference frame, to the components of the

inertial velocity (ẋ, ẏ, ż) and angular velocity (φ̇, θ̇, ψ̇) vectors:




ẋ

ẏ

ż


 = TBI




u

v

w


 (5.1)




φ̇

θ̇

ψ̇


 = SBI




p

q

r


 (5.2)

31



5. Modeling the Flight Dynamics of PADSs

whereTBI andSBI are the rotationmatrices that transform the linear and angular velocity components

from the body to the inertial reference frame:

TBI =




cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


 (5.3)

SBI =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


 (5.4)

where the shorthand notation c∗, s∗, and t∗ denotes cos (∗), sin (∗), and tan (∗), respectively.

5.2. Dynamic Equations of Motion

The equations of motion of the reference model are derived from Newtonian mechanics, consid-

ering the parafoil-payload system as a rigid body, i.e., without relative motion between the parafoil

and the payload. The dynamic equations are obtained by relating the time derivative of the linear

and angular momentum to the sum of forces and moments, about the Center of Gravity (CG) in the

body reference frame:

L̇ =
∑

F (5.5)

Ḣ =
∑

M cg . (5.6)

The forces under consideration include the aerodynamic forces that act on each element of the

canopy (F A,i). The canopy is discretized in seven elements, allowing for brake deflections only in

the outermost elements. The deflection of the left (δL) and right (δR) brakes provide steerability to

the system, by changing the lift and drag coefficients of the corresponding element of the canopy.

Additionally, the aerodynamic forces acting on the payload (F A,P ), and the weight of the parafoil-

payload system (FW ) are included. Finally, apparent mass forces and moments, caused by the

acceleration of the fluid through which the vehicle moves, are considered according to [Lissaman-93].

Since the dynamic equations are obtained in a rotating reference frame (non-inertial), fictitious forces
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(F F ) and moments (MF ) emerge in the equations for the change of linear and angular momentum.

For a detailed explanation on the system identification for the parafoil-payload system, refer to Ward

et al. [Ward-10; Ward-12].

Incorporating the aforementioned forces into (5.5) and (5.6), results in the dynamic equations of

the reference model, representing the change of the state vector as the change in linear and angular

velocity in the body reference frame ẋ = (u̇, v̇, ẇ, ṗ, q̇, ṙ)T :

m







u̇

v̇

ẇ


+ SBω




u

v

w





 = FW + F AM + F A,P +

∑

i

F A,i (5.7)

IT




ṗ

q̇

ṙ


+ SBω IT




p

q

r


 = MAM + SBcg,MF AM + SBcg,PF A,P +

∑

i

SBcg,iF A,i (5.8)

where the skew-symmetric matrix SBX is used to express the cross product of two vectors:

SBω =




0 −r q

r 0 −p

−q p 0


 (5.9)

SBcg,M =




0 −zAM yAM

zAM 0 −xAM
−yAM xAM 0


 (5.10)

SBcg,P =




0 −zP yP

zP 0 −xP
−yP xP 0


 (5.11)

SBcg,i =




0 −zi yi

zi 0 −xi
−yi xi 0


 . (5.12)

The subscript represents the vector to operate the cross product, whereas the superscript rep-
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resents the reference frame where the vectors are express. For example, SBcg,PF A,P represents the

cross product of the position vector of the payload, with components (xP , yP , zP ) expressed in the

body reference frame (superscript B) from the center of gravity (subscript cg), and the aerodynamic

force vector of the payload F A,P .

The vectors used to compute the cross products correspond to the angular velocity (ω), the

position vector from the CG to the reference frame of each canopy element SBcg,i, the position vector

from the CG to the center of pressure of the canopy for the apparent mass effect SBcg,M , and the

position vector from the CG to the center of mass of the payload SBcg,P . Finally, IT represents the

inertia matrix of the complete system:

IT =




IXX IXY IXZ

IXY IY Y IY Z

IXZ IY Z IZZ


 . (5.13)

In the following, the nonlinear equations of each of the forces and moments acting in the parafoil-

payload system are presented, with physical properties according to the system identification of

Ward et al. [Ward-10; Ward-12]. As part of the proposed methodology developed in this research,

these nonlinear equations will be further linearized to be incorporated in the estimation scheme.

5.2.1 Weight (W)

The force caused by the mass of the parafoil-payload system, located at the CG, is expressed as:

FW =




XW

YW

ZW


 = mg




−sθ
sφcθ
cφ


 (5.14)

where m accounts for the total mass of the system (2.37 kg), and g represents the gravitational

constant (9.81 m/s2).

It is relevant to notice that the weight force does not depend directly on the states variables (u, v,

w, p, q, r) nor on the control inputs (δL, δR).
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5.2.2 Apparent Mass Force (AM)

The motion of an object through a fluid, sets the fluid around the object in motion, introducing

forces and moments acting on the system. These effects are denominated Apparent Mass (AM)

effects. For a detailed description on the history, development and modeling of apparent masses in

the context of parachute aerodynamics, refer to Cockrell [Cockrell-91].

The magnitude of the apparent mass effect relates to the mass ratio between the total mass of the

vehicle and the displaced air mass while flying. While for heavy aircraft these effects are negligible,

for light parafoil-payload systems these are significant and must be taken into account. For the

application under study, these effects are described according to the models introduced by Lissaman

[Lissaman-93], quantifying the resultant force and moment exerted on the vehicle as:

F AM =




XAM

YAM

ZAM


 = −IAM







u̇

v̇

ẇ


− S

B
cg,M




ṗ

q̇

ṙ





 (5.15)

MAM =




LAM

MAM

NAM


 = −IAI




ṗ

q̇

ṙ


 (5.16)

with apparent mass (IAM ) and inertia (IAI) tensors, according to the properties of the parafoil-payload

system:

IAM =




A 0 0

0 B 0

0 0 C


 =




0.02 0 0

0 0.13 0

0 0 0.64


 (kg) (5.17)

IAI =




P 0 0

0 Q 0

0 0 R


 =




0.011 0 0

0 0.013 0

0 0 0.006


 (kg ·m2) . (5.18)

The results presented by Ward et al. [Ward-12] from the system identification of the vehicle do

not report the position vector from the CG to the respective centroid where the apparent mass and
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moments are applied. Consequently, these values are assumed according to the definitions of the

model presented by Lissaman, where the elements of the position vector correspond the distance

from the center of mass of the parafoil-payload system, to the centroid of the enclosed volume by the

canopy. Assuming a symmetric assembly of the parafoil with respect to the payload, the estimated

components of the position vector of the CG to the centroid where the apparent mass force and

moment are applied are:

(xAM , yAM , zAM)T = (0, 0,−1.1)T (m) . (5.19)

5.2.3 Aerodynamic Forces - Canopy (A,i)

The aerodynamic forces in the canopy are function of the relative velocity of the elements of

the canopy with respect to the air through which it navigates. The relative velocity, also denoted

aerodynamic velocity, of the ith element of the canopy is expressed as:




ũi

ṽi

w̃i


 = TB,i







u

v

w


− S

B
cg,i




p

q

r


− TIB




VW,x

VW,y

VW,z





 (5.20)

where VW,x, VW,y, and VW,z correspond to the components of the external wind vector λ. The

aerodynamic forces are function of the aerodynamic velocity, and are expressed in terms of the Lift

(L) and Drag (D) components:

FA,i =




XA,i

YA,i

ZA,i


 =

1

2
ρSi [TB,i]

T


CL,i

√
ũ2
i + w̃2

i




w̃i

0

−ũi


− CD,i

√
ũ2
i + ṽ2

i + w̃2
i




ũi

ṽi

w̃i







(5.21)

where ρ represents the density of the air with standard value of 1.225 kg/m3, which is assumed to

remain constant throughout the entire flight. Additionally, TB,i represents the transformation matrix
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TABLE 5.1. CANOPY AERODYNAMIC COEFFICIENTS

Element CLA CDA2 CD0 CDB CDB3

1 1.4 2 0.11 0.03 0.1

2 2.32 2 0.11 0.03 0.1

3 2.54 2 0.11 0.03 0.1

4 2.32 2 0.11 0.03 0.1

5 1.4 2 0.11 0.03 0.1

6 0 2 0.11 0.03 0.1

7 0 2 0.11 0.03 0.1

from the body reference frame to a reference frame attached to the ith element of the canopy:

TB,i = RφiRθi =




cθ 0 −sθ
sφsθ cφ sφcθ
cφsθ −sφ cφcθ



i

. (5.22)

The lift and drag coefficients are obtained from the system characterization of the vehicle, for

each of the elements of the canopy:

CL,i = CLA,i αi (5.23)

CD,i = CD0,i + CDA2,i α
2
i + CDB,i δi + CDB3,i δ

3
i (5.24)

where each aerodynamic coefficient is reported in Table 5.1.

The brake deflections δi are applied only in the outermost elements. Consequently, the brake

deflections of the first through the fifth element are zero (δ1 = δ2 = δ3 = δ4 = δ5 = 0), whereas

the brake deflection of the sixth element is denoted as the left brake deflection (δ6 = δL), and the

brake deflection of the seventh element is denoted as the right brake deflection (δ7 = δR). The left

and right deflections are normalized and can take any value from −1 to 1 (dimensionless).

Both, drag and lift formulations, are functions of the angle of attack of each of the canopy
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TABLE 5.2. CANOPY GEOMETRIC PROPERTIES

Size (m2) Orientation (deg) Distance from CG (m)

Element S φ θ xAM yAM zAM

1 0.28 35 −18 0 0.44 −1.11

2 0.28 17.5 −18 0 0.22 −1.18

3 0.28 0 −18 0 0 −1.2

4 0.28 −17.5 −18 0 −0.22 −1.18

5 0.28 −35 −18 0 −0.44 −1.11

6 0.1 90 0 −0.5 0.8 −1

7 0.1 −90 0 −0.5 −0.8 −1

elements, expressed as:

αi = tan−1

(
w̃i
ũi

)
. (5.25)

Finally, the moments caused by the aerodynamic forces acting on the canopy, are computed

as the cross product between the position vector of each canopy element and its corresponding

aerodynamic vector force:

MA,i = SBcg,iF A,i . (5.26)

The geometric properties of the elements that constitute the canopy are detailed in Table 5.2.

5.2.4 Aerodynamic Force - Payload (A,P)

The relative velocity of the payload (ũP , ṽP , w̃P )T is computed in the same manner as the

relative velocity for the ith element of the canopy (ũi, ṽi, w̃i)
T in (5.20), without the need of the

transformation from the body frame to the canopy frame TB,i, equivalent to setting TB,i as the

identity matrix I:




ũP

ṽP

w̃P


 = I







u

v

w


− S

B
cg,P




p

q

r


− TIB




VW,x

VW,y

VW,z





 . (5.27)
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The corresponding aerodynamic force in the payload is only composed by the drag component,

since it is considered that the payload has no contribution from the lift component:

F A,P =




XA,P

YA,P

ZA,P


 = −1

2
ρSPCD,P

√
ũ2
P + ṽ2

P + w̃2
P




ũP

ṽP

w̃P


 (5.28)

with reference area Sp = 0.0325 m2, and drag coefficient CD,P = 0.3 [Ward-10; Ward-12].

The location of the center of mass of the payload is not reported by the system identification

process, and therefore is assumed. The geometry of the payload is assumed as a right rectangular

cuboid, approximating the inertia of the complete parafoil-payload system (5.13):

IT =




IXX IXY IXZ

IXY IY Y IY Z

IXZ IY Z IZZ


 =




0.423 0 0.0298

0 0.401 0

0.0298 0 0.0529


 (kg ·m2) (5.29)

resulting in the following components of the position vector, with respect to the CG of the parafoil-

payload system

(xP , yP , zP )T = (0.018, 0, 0.10)T (m) . (5.30)

The moment caused by the aerodynamic forces acting in the payload, is computed as the cross

product between the position vector of the payload and the aerodynamic force of the payload:

MA,P = SBcg,PF A,P . (5.31)

5.2.5 Fictitious Force (F)

The equations of motion of the parafoil-payload system are derived in the body reference frame.

This frame is attached to the vehicle, therefore rotating and translating accordingly. Since the

equations of motion are derived in a non-inertial reference frame, fictitious forces emerge in the

formulation.

The derivation of the fictitious forces and moments is a well known procedure from Newtonian

mechanics, emerging from the calculation of the total derivative of a rotating vector. From the
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rotational part of the change in linear and angular momentum, the fictitious forces and moments are

calculated as:

F F = −mSBω v = −m




0 −r q

r 0 −p

−q p 0







u

v

w


 = −m




−rv + qw

ru− pw

−qu+ pv


 (5.32)

MF = −SBω ITω = −




0 −r q

r 0 −p

−q p 0







IXX 0 IXZ

0 IY Y 0

IXZ 0 IZZ







p

q

r




=




−pqIXZ − qr(IZZ − IY Y )

−pr(IXX − IZZ) + p2IXZ − r2IXZ

−pq(IY Y − IXX) + rqIXZ


 (5.33)

where the elements IXY and IY Z , of the inertial matrix, have been substituted according to the

values in (5.29).

5.3. State-Space Representation

This section presents the derivation of the state-space representation for the dynamic equations of

motion. This representation is useful for the analysis of the equations in terms of their components,

the incorporation of the dynamic models into the Kalman filter, and for comparison purposes

with respect to other models. The chosen states to represent the dynamics of the system are the

components of the linear and angular velocities, u, v, w, p, q, and r, in the body reference frame.

The derivation of the state-space representation of the equations of motion as a linear system is

shown in the following section of this chapter.

As mentioned in Section 5.2, the dynamic equations are obtained by relating the time derivative

of the linear and angular momentum to the sum of forces and moments, about the CG in the body

reference frame:

L̇ =
∑

F (5.5 revisited)
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Ḣ =
∑

M cg . (5.6 revisited)

The time derivative of the linear and angular momentum for a rigid body are defined as:

L̇ = m (v̇ + ω × v) = mv̇ +mSBω v (5.34)

Ṁ = IT ω̇ + ω × ITω = IT ω̇ + SBω ITω (5.35)

which incorporated into the conservation equations for linear and angular momentum, together with

the described forces and moments presented in Section 5.2.1 to Section 5.2.4, result in the dynamic

equations of motion (5.5) and (5.6), rewritten in compact form:

mv̇ +mSBω v = FW + F AM + F A,P +
∑

i

F A,i (5.36)

IT ω̇ + SBω ITω = MAM + SBcg,MF AM + SBcg,PF A,P +
∑

i

SBcg,iF A,i . (5.37)

Expanding the apparent mass force and moment:

mv̇ +mSBω v = FW − IAM v̇ + IAMS
B
cg,M ω̇ + F A,P +

∑
i F A,i (5.38)

IT ω̇ + SBω ITω = −IAIω̇ − SBcg,MIAM v̇ + SBcg,MIAMS
B
cg,M ω̇ + SBcg,PF A,P +

∑
i S

B
cg,iF A,i . (5.39)

Solving for the derivative of the states, expressed in vector form as v̇ and ω̇ respectively:

mv̇ + IAM v̇ − IAMSBcg,M ω̇ = −mSBω v + FW + F A,P +
∑

i F A,i (5.40)

IT ω̇ + IAIω̇ + SBcg,MIAM v̇ − SBcg,MIAMS
B
cg,M ω̇ = −SBω ITω + SBcg,PF A,P +

∑
i S

B
cg,iF A,i . (5.41)

Grouping common terms, and substituting the definition of the fictitious force and moment, as

well as the payload and canopy aerodynamic moments:

(m+ IAM) v̇ − IAMSBcg,M ω̇ = F F + FW + F A,P +
∑

i F A,i (5.42)

SBcg,MIAM v̇ +
(
IT + IAI − SBcg,MIAMS

B
cg,M

)
ω̇ = MF +MA,P +

∑
iMA,i . (5.43)
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Rearranging in matrix form, and expanding the linear and angular velocity vectors into their

respective components, to display the derivative of the states u̇, v̇, ẇ, ṗ, q̇, ṙ:



mI + IAM −IAMSBcg,M

SBcg,MIAM IT + IAI − SBcg,MIAMS
B
cg,M







u̇

v̇

ẇ

ṗ

q̇

ṙ




=



F F + FW + F A,P +

∑
i F A,i

MF +MA,P +
∑

iMA,i




(5.44)

where I represents the identity matrix.

Solving for the derivative of the states (ẋ), the equations of motion can be expressed in compact

form as:

ẋ = [GM ]−1


F F + FW + F A,P +

∑
i F A,i

MF +MA,P +
∑

iMA,i


 (5.45)

where the matrixGM incorporates the geometry, mass, and inertial properties of the parafoil-payload

system of the reference model.

As it can be noted from the formulation of each of the components of (5.45), the resulting

equations of motion that govern the flight dynamics of the parafoil-payload system are nonlinear.

While this is expected due to the complex nature of the forces and moments acting on the vehicle, this

has important consequences for the estimation of the states, based on low-cost sensors and a discrete

Kalman filter, as described in detail in Chapter 4. Consequently, a linear model that captures the

flight dynamics of the parafoil-payload system is to be developed, to implement a discrete Kalman

filter suitable for low-cost applications, with weight restrictions and limited computational resources.

In the following sections, the linearization of each of the forces and moments is presented, where

the mathematical formulation for the partial derivatives of the forces and moments with respect to

each of the state variables and control inputs are derived. Notice that the weight does not depend on

the state variables, nor on the control inputs, therefore a linearization is not derived for this force.
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5.4. Linearization of the Equations of Motion

The linear approximation of the equations of motion is computed as the first-order Taylor series,

evaluated around stable points of the states and inputs (xs,us). Considering the general form of the

Taylor series:

f(x) =
∞∑

n=0

fn(a)

n!
(x− a)n (5.46)

where fn(a) represents the nth derivative of the function f(x) evaluated at a, adopting the conven-

tions f 0(x) = f(x) and 0! = 1.

For the multivariable case under study f(x,u) = f(u, v, w, p, q, r, δL, δR), each of the forces

and moments that the system experiences can be expressed as a power series representation in the

form:

f(x,u) = f(xs,us) +
∂f

∂u

∣∣∣∣
xs,us

(u− us) +
∂f

∂v

∣∣∣∣
xs,us

(v − vs) +
∂f

∂w

∣∣∣∣
xs,us

(w − ws)

+
∂f

∂p

∣∣∣∣
xs,us

(p− ps) +
∂f

∂q

∣∣∣∣
xs,us

(q − qs) +
∂f

∂r

∣∣∣∣
xs,us

(r − rs)

+
∂f

∂δL

∣∣∣∣
xs,us

(δL − δLs) +
∂f

∂δR

∣∣∣∣
xs,us

(δR − δRs) +O (5.47)

where O represent higher order terms of the Taylor series, neglected for the linearization.

Since the rigging of the parafoil-payload system is fixed, any given control inputs result in a

unique trim condition. In addition to the control inputs, defining initial conditions in the nonlinear

model, results in stable states (xs, us), since no wind nor other perturbations are considered. The

stabilization period for the vehicle under analysis is approximately 10 s, depending on the magnitude

of the maneuver. The stable states and stable control inputs are denoted:

xs = (us, vs, ws, ps, qs, rs)
T (5.48)

us = (δLs , δRs)
T . (5.49)

Applying this linearization method to the equation of motion (5.44) around the stable points

(5.48) and (5.49), and grouping common terms, results in the equation of motion of the linearized
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6-DOF model:

ẋ = [GM ]−1






F s

M s


+



∂F
∂u

∂F
∂v

∂F
∂w

∂F
∂p

∂F
∂q

∂F
∂r

∂M
∂u

∂M
∂v

∂M
∂w

∂M
∂p

∂M
∂q

∂M
∂r







u−us

v−vs

w−ws

p−ps

q−qs

r−rs




+



∂F
∂δL

∂F
∂δR

∂M
∂δL

∂M
∂δR






δL−δLs

δR−δRs







(5.50)

where F s andM s represent the forces and moments evaluated at the stable points.

The linearized equations of motion (5.50) can be expressed in compact form as:

ẋ = [GM ]−1




F s

M s


+ Jx(x− xs) + Ju(u− us)


 (5.51)

where Jx and Ju represent the corresponding Jacobian matrices.

In the following, the derivation of the elements of the Jacobian matrices is presented, by obtaining

the linearized form of the forces and moments present in the equation of motion (5.45). The

linearization is performed with respect to the state variables (u, v, w, p, q, r) and control inputs

(δL, δR), by evaluating the nonlinear equations at the stable state points (xs) and stable control inputs

(us), according to the truncated Taylor series expansion (5.47).

5.4.1 Linearized Aerodynamic Forces - Canopy (A,i)

Assuming there is no external wind vector (λ = 0), the components of the relative velocity

vector in (5.20) can be expressed in terms of the linear and angular velocity components of the
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parafoil-payload system, represented in the body reference frame:




ũi

ṽi

w̃i


 = [TB,i]







u

v

w


− S

B
cg,i




p

q

r


− [TIB]

�
�
�
�
�
�
��7

0


VW,x

VW,y

VW,z







= [TB,i]







u

v

w


−




0 −zi yi

zi 0 −xi
−yi xi 0







p

q

r







=




cθ 0 −sθ
sφsθ cφ sφcθ
cφsθ −sφ cφcθ







u+ ziq − yir

v − zip+ xir

w + yip− xiq


 =




c1 ��>
0

c2 c3

c4 c5 c6

c7 c8 c9







u+ ziq − yir

v − zip+ xir

w + yip− xiq







ũi

ṽi

w̃i


 =




uc1 + vc2 + wc3 + p(c3yi − c2zi) + q(c1zi − c3xi) + ri(c2xi − c1yi)

uc4 + vc5 + wc6 + p(c6yi − c5zi) + q(c4zi − c6xi) + ri(c5xi − c4yi)

uc7 + vc8 + wc9 + p(c9yi − c8zi) + q(c7zi − c9xi) + ri(c8xi − c7yi)


 (5.52)

where the coefficient cj represents the jth element of the rotation matrix TB,i.

Recalling the aerodynamic force equation (5.21):

F A,i =




XA,i

YA,i

ZA,i


 =

1

2
ρSi [TB,i]

T


CL,i

√
ũ2
i + w̃2

i




w̃i

0

−ũi


− CD,i

√
ũ2
i + ṽ2

i + w̃2
i




ũi

ṽi

w̃i







(5.21 revisited)

the inverse transformation of the components of the relative velocity vector, from the reference

frame attached to the ith element of the canopy, to the body reference frame, is computed as:

[TB,i]
T




w̃i

0

−ũi


 =




c1 c4 c7

0 c5 c8

c3 c6 c9







w̃i

0

−ũi


 =




c1w̃i − c7ũi

−c8ũi

c3w̃i − c9ũi


 = vR,L,i (5.53)
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[TB,i]
T




ũi

ṽi

w̃i


 = ���

���
�:I

[TB,i]
T [TB,i]




u+ ziq − yir

v − zip+ xir

w + yip− xiq


 = vR,D,i (5.54)

where the notation vR,L,i and vR,D,i is adopted, corresponding to the relative (R) velocity vector in

the lift (L) and drag (D) direction, respectively, for each ith element.

Rewriting the aerodynamic force equation in short-hand notation:

F A,i = kiCL,iAivR,L,i − kiCD,iBivR,D,i (5.55)

where ki = 1
2
ρSi, Ai =

√
ũ2
i + w̃2

i , and Bi =
√
ũ2
i + ṽ2

i + w̃2
i .

The partial derivative of the canopy aerodynamic force (5.55), is written using the dot notation

to represent the derivative of a variable with respect to each of the state variables and control inputs:

∂F A,i

∂(u, v, w, p, q, r, δL, δR)
=

∂F A,i

∂(x,u)
= ki

[
ĊL,iAivR,L,i + CL,i

(
ȦivR,L,i + Aiv̇R,L,i

)]

− ki
[
ĊD,iBivR,D,i + CD,i

(
ḂivR,D,i +Biv̇R,D,i

)]
. (5.56)

In the following, the partial derivatives of each term of (5.56) are presented:

Ai =
√
ũ2
i + w̃2

i (5.57)

∂Ai
∂u

=
ũic1 + w̃ic7

Ai
(5.58)

∂Ai
∂v

=
ũic2 + w̃ic8

Ai
(5.59)

∂Ai
∂w

=
ũic3 + w̃ic9

Ai
(5.60)

∂Ai
∂p

=
ũi(c3yi − c2zi) + w̃i(c9yi − c8zi)

Ai
(5.61)

∂Ai
∂q

=
ũi(c1zi − c3xi) + w̃i(c7zi − c9xi)

Ai
(5.62)

∂Ai
∂r

=
ũi(c2xi − c1yi) + w̃i(c8xi − c7yi)

Ai
(5.63)
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∂Ai
∂δi

= 0 (5.64)

Bi =
√
ũ2
i + ṽ2

i + w̃2
i (5.65)

∂Bi

∂u
=
ũic1 + ṽic4 + w̃ic7

Bi

(5.66)

∂Bi

∂v
=
ũic2 + ṽic5 + w̃ic8

Bi

(5.67)

∂Bi

∂w
=
ũic3 + ṽic6 + w̃ic9

Bi

(5.68)

∂Bi

∂p
=
ũi(c3yi − c2zi) + ṽi(c6yi − c5zi) + w̃i(c9yi − c8zi)

Bi

(5.69)

∂Bi

∂q
=
ũi(c1zi − c3xi) + ṽi(c4zi − c6xi) + w̃i(c7zi − c9xi)

Bi

(5.70)

∂Bi

∂r
=
ũi(c2xi − c1yi) + ṽi(c5xi − c4yi) + w̃i(c8xi − c7yi)

Bi

(5.71)

∂Bi

∂δi
= 0 (5.72)

CL,i = CLA,iαi (5.23 revisited)

CD,i = CD0,i + CDA2,i α
2
i + CDB,i δi + CDB3,i δ

3
i (5.24 revisited)

α = tan−1

(
w̃i
ũi

)
(5.25 revisited)

∂CL,i
∂(u, v, w, p, q, r)

= CLA,i α̇i (5.73)

∂CL,i
∂δi

= 0 (5.74)

∂CD,i
∂(u, v, w, p, q, r)

= 2CDA2,i αi α̇i (5.75)
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∂CD,i
∂δi

= CDB,i + 3CDB3,i δ
2
i (5.76)

∂

∂u

(
w̃i
ũi

)
=
ũic7 − w̃ic1

ũ2
i

(5.77)

∂

∂v

(
w̃i
ũi

)
=
ũic8 − w̃ic2

ũ2
i

(5.78)

∂

∂w

(
w̃i
ũi

)
=
ũic9 − w̃ic3

ũ2
i

(5.79)

∂

∂p

(
w̃i
ũi

)
=
ũi(c9yi − c8zi)− w̃i(c3yi − c2zi)

ũ2
i

(5.80)

∂

∂q

(
w̃i
ũi

)
=
ũi(c7zi − c9xi)− w̃i(c1zi − c3xi)

ũ2
i

(5.81)

∂

∂r

(
w̃i
ũi

)
=
ũi(c8xi − c7yi)− w̃i(c2xi − c1yi)

ũ2
i

(5.82)

∂αi
∂u

=
ũic7 − w̃ic1

ũ2
i + w̃2

i

(5.83)

∂αi
∂v

=
ũic8 − w̃ic2

ũ2
i + w̃2

i

(5.84)

∂αi
∂w

=
ũic9 − w̃ic3

ũ2
i + w̃2

i

(5.85)

∂αi
∂p

=
ũi(c9yi − c8zi)− w̃i(c3yi − c2zi)

ũ2
i + w̃2

i

(5.86)

∂αi
∂q

=
ũi(c7zi − c9xi)− w̃i(c1zi − c3xi)

ũ2
i + w̃2

i

(5.87)

∂αi
∂r

=
ũi(c8xi − c7yi)− w̃i(c2xi − c1yi)

ũ2
i + w̃2

i

(5.88)

∂αi
∂δi

= 0 (5.89)
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vR,L,i =




c1w̃i − c7ũi

−c8ũi

c3w̃i − c9ũi


 (5.53 revisited)

∂vR,L,i
∂u

=




0

−c8c1

−(c1c9 − c3c7)


 (5.90)

∂vR,L,i
∂v

=




c1c8

0

c3c8


 (5.91)

∂vR,L,i
∂w

=




c1c9 − c3c7

−c8c3

0


 (5.92)

∂vR,L,i
∂p

=




yi(c1c9 − c3c7)− zic1c8

−yic3c8

−zic3c8


 (5.93)

∂vR,L,i
∂q

=




−xi(c1c9 − c3c7)

xic3c8 − zic1c8

−zi(c1c9 − c3c7)


 (5.94)

∂vR,L,i
∂r

=




xic1c8

yic1c8

xic3c8 + yi(c1c9 − c3c7)


 (5.95)

∂vR,L,i
∂δi

= 0 (5.96)
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vR,D,i =




u+ ziq − yir

v − zip+ xir

w + yip− xiq


 (5.54 revisited)

∂vR,D,i
∂u

=




1

0

0


 (5.97)

∂vR,D,i
∂v

=




0

1

0


 (5.98)

∂vR,D,i
∂w

=




0

0

1


 (5.99)

∂vR,D,i
∂p

=




0

−zi
yi


 (5.100)

∂vR,D,i
∂q

=




zi

0

−xi


 (5.101)

∂vR,D,i
∂r

=




−yi
xi

0


 (5.102)

∂vR,D,i
∂δi

= 0 . (5.103)

The aerodynamic moments on the canopy are calculated as the cross product between the position
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vector from the CG of the reference frame of each canopy element and the aerodynamic force vector:

MA,i = SBcg,iF A,i = kiCL,iAiS
B
cg,ivR,L,i − kiCD,iBiS

B
cg,ivR,D,i . (5.104)

To evaluate the partial derivatives, it is convenient to compute the cross products SBcg,ivR,L,i and

SBcg,ivR,D,i:

SBcg,ivR,L,i =




0 −zi yi

zi 0 −xi
−yi xi 0







c1w̃i − c7ũi

−c8ũi

c3w̃i − c9ũi


 (5.105)

=




ũi(c8zi − c9yi) + w̃ic3yi

ũi(c9xi − c7zi) + w̃i(c1zi − c3xi)

ũi(c7yi − c8xi)− w̃ic1yi


 = MR,L,i (5.106)

SBcg,ivR,D,i =




0 −zi yi

zi 0 −xi
−yi xi 0







u+ ziq − yir

v − zip+ xir

w + yip− xiq


 (5.107)

=




−zivi + yiwi + (y2
i + z2

i )pi − yixiqi − zixiri
ziui − xiwi − xiyipi + (z2

i + x2
i )qi − ziyiri

−yiui + xivi − xizipi − yiziqi + (y2
i + x2

i )ri


 = MR,D,i . (5.108)

Rewriting the canopy aerodynamic moment equation in compact form, leads to:

MA,i = kiCL,iAiMR,L,i − kiCD,iBiMR,D,i (5.109)

from which the partial derivative with respect to each of the state variables and control inputs is

obtained:

∂MA,i

∂(x,u)
= ki

[
ĊL,iAiMR,L,i + CL,i

(
ȦiMR,L,i + AiṀR,L,i

)]
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− ki
[
ĊD,iBiMR,D,i + CD,i

(
ḂMR,D,i +BMR,D,i

)]
. (5.110)

In the following, the partial derivatives of each remaining term of (5.110) are presented:

∂MR,L,i

∂u
=




−yi(c1c9 − c3c7) + zic1c8

xi(c1c9 − c3c7)

−xic1c8


 (5.111)

∂MR,L,i

∂v
=




yic8c3

zic8c1 − xic8c3

−yic8c1


 (5.112)

∂MR,L,i

∂w
=




zic3c8

zi(c1c9 − c3c7)

−xic3c8 − yi(c1c9 − c3c7)


 (5.113)

∂MR,L,i

∂p
=




0

yizi(c1c9 − c3c7) + xizic3c8 − z2
i c1c8

−xiyic3c8 − y2
i (c1c9 − c3c7) + yizic1c8


 (5.114)

∂MR,L,i

∂q
=




−yizi(c1c9 − c3c7)− xizic3c8 + z2
i c1c8

0

xiyi(c1c9 − c3c7)− xizic1c8 + x2
i c3c8


 (5.115)

∂MR,L,i

∂r
=




xiyic3c8 − yizic1c8 + y2
i (c1c9 − c3c7)

−xiyi(c1c9 − c3c7) + xizic1c8 − x2
i c3c8

0


 (5.116)

∂MR,L,i

∂δi
= 0 (5.117)
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∂MR,D,i

∂u
=




0

zi

−yi


 (5.118)

∂MR,D,i

∂v
=




−zi
0

xi


 (5.119)

∂MR,D,i

∂w
=




yi

−xi
0


 (5.120)

∂MR,D,i

∂p
=




y2
i + z2

i

−xiyi
−xizi


 (5.121)

∂MR,D,i

∂q
=




−xiyi
x2
i + z2

i

−yizi


 (5.122)

∂MR,D,i

∂r
=




−xizi
−yizi
x2
i + y2

i


 (5.123)

(5.124)

∂MR,D,i

∂δi
= 0 . (5.125)
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5.4.2 Linearized Aerodynamic Force - Payload (A,P)

Considering the aerodynamic force equation for the payload (5.28)

F A,P =




XA,P

YA,P

ZA,P


 = −1

2
ρSPCD,P

√
ũ2
P + ṽ2

P + w̃2
P




ũP

ṽP

w̃P


 (5.28 revisited)

where the relative velocity vector for the payload is computed according to (5.27), without considering

any external wind vector:




ũP

ṽP

w̃P


 =







u

v

w


−




0 −zP ��*
0yP

zP 0 −xP
−��* 0yP xP 0







p

q

r





 =




u+ qzP

v − pzP + rxP

w − qxP


 = vR,D,P (5.126)

where the geometry of the parafoil-payload system is assumed to be perfectly symmetrical with

respect to its x-z plane. Consequently, the position of the CG of the payload is located in symmetry

plane, leading to yp = 0. The notation vR,D,P is adopted, corresponding to the relative (R) velocity

vector, for the drag (D) component of the payload (P ).

Rewriting the aerodynamic force equation for the payload, in short notation:

F A,P = kPEvR,D,P (5.127)

where kP = −1
2
ρSPCD,P and E =

√
ũ2
P + ṽ2

P + w̃2
P .

The partial derivative of the payload aerodynamic force (5.127) with respect to each of the state

variables and control inputs, is expressed in compact form as:

∂F A,P

∂(x,u)
= kP

(
ĖvR,D,P + Ev̇R,D,P

)
. (5.128)

In the following, the partial derivatives of each term of (5.128) is presented:

E =
√
ũ2
P + ṽ2

P + w̃2
P (5.129)
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∂E

∂u
=
ũP
E

(5.130)

∂E

∂v
=
ṽP
E

(5.131)

∂E

∂w
=
w̃P
E

(5.132)

∂E

∂p
= − ṽP zP

E
(5.133)

∂E

∂q
=
ũP zP − w̃PxP

E
(5.134)

∂E

∂r
=
ṽPxP
E

(5.135)

∂E

∂δi
= 0 (5.136)

∂vR,D,P
∂u

=




1

0

0


 (5.137)

∂vR,D,P
∂v

=




0

1

0


 (5.138)

∂vR,D,P
∂w

=




0

0

1


 (5.139)

∂vR,D,P
∂p

=




0

−zp
0


 (5.140)
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∂vR,D,P
∂q

=




zp

0

−xp


 (5.141)

∂vR,D,P
∂r

=




0

xp

0


 (5.142)

∂vR,D,P
∂δi

= 0 . (5.143)

The payload aerodynamic moments are calculated as the cross product between the position

vector from the CG to the center of mass of the payload, and the payload aerodynamic force vector:

MA,P = SBcg,PF A,P = kPES
B
cg,PvR,D,P . (5.144)

To facilitate the evaluation of the partial derivatives of the moment equation, it is convenient to

compute the cross product SBcg,PvR,D,P :

SBcg,PvR,D,P =




0 −zP 0

zP 0 −xP
0 xP 0







ũP

ṽP

w̃P


 (5.145)

=




0 −zP 0

zP 0 −xP
0 xP 0







u+ qzP

v − pzP + rxP

w − qxP


 (5.146)

SBcg,PvR,D,P =




−vzP + pz2
P − rzPxP

uzP − wxP + q(z2
P + x2

P )

vxP − pzPxP + rx2
P


 = MR,D,P . (5.147)

Rewriting the payload aerodynamic moment equation in compact form:

MA,P = kPEMR,D,P . (5.148)
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The partial derivative of the moments equation with respect to each of the state variables and

control inputs is obtained in compact form as:

∂MA,P

∂(x,u)
= kP

(
ĖMR,D,P + EṀR,D,P

)
(5.149)

where the remaining partial derivative of (5.149) correspond to:

∂MR,D,P

∂u
=




0

zP

0


 (5.150)

∂MR,D,P

∂v
=




−zP
0

xP


 (5.151)

∂MR,D,P

∂w
=




0

−xP
0


 (5.152)

∂MR,D,P

∂p
=




z2
P

0

−zPxP


 (5.153)

∂MR,D,P

∂q
=




0

z2
P + x2

P

0


 (5.154)

∂MR,D,P

∂r
=




−zPxP
0

x2
P


 (5.155)

∂MR,D,P

∂δi
= 0 . (5.156)

57



5. Modeling the Flight Dynamics of PADSs

5.4.3 Linearized Fictitious Force (F)

Considering the nonlinear equations for the fictitious force and moments:

F F = −mSBω v = −m




−rv + qw

ru− pw

−qu+ pv


 (5.32 revisited)

MF = −SBω ITω =




−pqIXZ − qr(IZZ − IY Y )

−pr(IXX − IZZ) + p2IXZ − r2IXZ

−pq(IY Y − IXX) + rqIXZ


 (5.33 revisited)

the partial derivative with respect to each of the state variables and control inputs are:

∂F F

∂u
= −m




0

r

−q


 (5.157)

∂F F

∂v
= −m




−r

0

p


 (5.158)

∂F F

∂w
= −m




q

−p

0


 (5.159)

∂F F

∂p
= −m




0

−w

v


 (5.160)

∂F F

∂q
= −m




w

0

−u


 (5.161)
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∂F F

∂r
= −m




−v

u

0


 (5.162)

∂F F

∂δi
= 0 (5.163)

∂MF

∂(u, v, w)
= 0 (5.164)

∂MF

∂p
=




−qIXZ
−r(IXX − IZZ) + 2pIXZ

−q(IY Y − IXX)


 (5.165)

∂MF

∂q
=




−pIXZ − r(IZZ − IY Y )

0

−p(IY Y − IXX) + rIXZ


 (5.166)

∂MF

∂r
=




−q(IZZ − IY Y )

−p(IXX − IZZ)− 2rIXZ

qIXZ


 (5.167)

∂MF

∂δi
= 0 . (5.168)

5.4.4 State Extrapolation

Recalling the linearized equation of motion expressed in compact form:

ẋ = [GM ]−1




F s

M s


+ Jx(x− xs) + Ju(u− us)


 (5.51 revisited)
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distributing the products and renaming constant terms leads to a state-space representation of the

linear model as:

ẋ = [GM ]−1 Jxx + [GM ]−1 Juu + [GM ]−1




F s

M s


− Jxxs − Juus


 (5.169)

ẋ = Ax +Bu + ε (5.170)

where:

A = [GM ]−1 [Jx] (5.171)

B = [GM ]−1 [Ju] (5.172)

ε = [GM ]−1




F s

M s


− Jxxs − Juus


 . (5.173)

Notice that matricesA andB are constant as long as the control inputs remain fixed, considerably

simplifying the number of computations to be performed during flight. Similarly, all components of

the vector ε are constant under the same condition, except for the components of the force produced

by the weight of the vehicle (FW ), which depend on its attitude.

Matrices A and B, as well as vector ε, evaluated at the stable points for each maneuver segment,

are given in Appendix C.

The complete description of the position and attitude of the PADS in the inertial reference

frame, as well as the linear and angular velocity in the body reference frame, can be expressed in a

concise form by combining the kinematic and dynamic equations of motion in a single state-space

representation:




ṗ

Ω̇

v̇

ω̇




=




0 0 TBI 0

0 0 0 SBI

0 0 A11 A12

0 0 A21 A22







p

Ω

v

ω




+




0 0

0 0

B11 B11

B21 B22





δL
δR


+




0

0

ε1

ε2




(5.174)

where matrices A and B, as well as the vector ε are distributed in components Aij , Bij , and εi
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respectively, to accommodate for an adequate state-space representation. Additionally, TBI and SBI
are the rotation matrices that transform the linear and angular velocity components from the body to

the inertial reference frame, already presented in (5.3) and (5.4).

Rewriting (5.174) leads to a compact equation, where the superscript Li is used to indicate that

an element corresponds to the linearized model:

ẋLi = ALixLi +BLiuLi + εLi. (5.175)

While (5.175) represents a time-continuous model, information from the onboard sensors arrive

at discrete times. Solving the differential equation for the state vector using Euler’s method, with

time step ∆t, a time-discrete model is obtained as:

xLik =
(
ALi∆t+ I

)
xLik−1 +BLi∆tuLik−1 + εLik−1∆t

xLik = FLixLik−1 +GLiuLik−1 + εLik−1 (5.176)

where I represents the identity matrix. It is relevant to observe that (5.176) describes 12 components

in total, three for each vector: the position vector p = (x, y, z)T and the angular position vector

Ω = (φ, θ, ψ)T , expressed in the inertial reference frame, with the latter corresponding to the Euler

orientation angles (roll, pitch, yaw); and the linear velocity vector v = (u, v, w)T and angular

velocity vector ω = (p, q, r)T , expressed in the body reference frame.

5.5. Double Integrator Dynamic Model

The development of an alternative linear model is achieved by exploiting the properties of

the flight dynamics of PADSs. Since these are vehicles navigating in an underactuated controlled

descent flight, typically without propulsion, and subject only to variations in the wind profiles,

the flight dynamics are normally smooth, i.e., without sudden changes in the state variables of the

parafoil-payload system, except for the voluntary control inputs exerted on the vehicle. Taking this

into consideration, a double integrator model is proposed, based on the assumption that between

consecutive measurements of the sensors acquiring information regarding the position and attitude of

the vehicle, the linear (p̈) and angular (Ω̈) accelerations remain constant for ∆t seconds. Integrating
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twice these accelerations with respect to time leads to the following equations of motion for the

position and attitude, in the inertial reference frame:

pk = pk−1 + ṗk−1∆t+ p̈k−1∆t2/2 (5.177)

Ωk = Ωk−1 + Ω̇k−1∆t+ Ω̈k−1∆t2/2 (5.178)

which can be expressed in compact form as:




p

ṗ

Ω

Ω̇



k

=




1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1







p

ṗ

Ω

Ω̇



k−1

+




∆t2

2
0

∆t 0

0 ∆t2

2

0 ∆t





 p̈

Ω̈



k−1

(5.179)

xDk = FDxDk−1 +GDuDk−1 (5.180)

where the superscript D is used to indicate that an element corresponds to the double integrator

model. Notice that (5.180) also describes 12 components in total, corresponding to the position,

linear velocity, angular position, and angular velocity vectors, in the inertial reference frame. The

position and angular position vectors can be directly compared with the analogous components of the

nonlinear and linearized models (5.176). Contrarily, the linear and angular velocity vectors obtained

from the double integrator model cannot be directly compared with the similar components from

the nonlinear or linearized models, since they are expressed in different reference frames. To be able

to compare them, the linear and angular velocity vectors obtained from the double integrator model

are transformed to the body reference frame with the rotation matrices T−1
BI and S−1

BI , respectively.
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Typically, PADSs are equipped with a GNSS receiver and an IMU, that provide information at

discrete times about the position and attitude of the vehicle during its flight. The objective of any

guidance, navigation, and control scheme is to process the incoming information from the sensors,

in order to estimate the state variables of the system, to plan the most suitable trajectory towards the

landing target while managing the energy budget.

This chapter presents the development, implementation, and comparison of a sensor fusion

algorithm and estimation scheme for the position and attitude of PADSs, employing a Kalman filter

based on two proposed 6-DOF dynamic models, suitable for lightweight low-cost applications.

The implementation is based on the proposed estimation scheme described in Chapter 4, where

in Section 4.1 the required sensors and their characteristics suitable to perform the position and

attitude estimation were presented. This implementation makes use of the dynamic models that

characterize the flight of the parafoil-payload system, presented in Chapter 5, firstly introducing a

nonlinear 6-DOF dynamic model, and then the development of two linear alternatives: a linearized

version of the nonlinear 6-DOF model, and a double integrator model. The estimation scheme is

based on the Kalman filter algorithm, that incorporates the dynamic models and measurements from

different sensors, as explained in Chapter 2. The performance of the proposed estimation scheme is

evaluated through simulations in this chapter, including the discussion of the results.

By assigning initial conditions and control inputs, the nonlinear equation of motion (5.45) can be

solved, and the resulting components can be transformed to the inertial reference frame by rotating

according to the Euler orientation angles.

ẋ = [GM ]−1


F F + FW + F A,P +

∑
i F A,i

MF +MA,P +
∑

iMA,i


 (5.45 revisited)
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Fig. 6.1. Descent trajectory under study, followed by a Precision Aerial Delivery System (PADS)
navigating towards a landing target (parafoil-payload system not to scale). The trajectory corresponds
to the implementation of the 6-Degrees of Freedom (DOF) nonlinear reference model.


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


φ̇

θ̇

ψ̇


 = SBI




p

q

r


 (5.2 revisited)

Instead of adopting the start of the descent trajectory as the origin of the inertial z component,

this is translated to the intended point of landing to better represent visually the followed trajectory

of the PADS. Fig. 6.1 presents the trajectory under study, constructed by implementing the 6-DOF

nonlinear model (hereafter denoted as the reference model), executing the three maneuvers described

in Table 6.1 as constant control inputs. This trajectory will serve as a reference for the analysis of
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TABLE 6.1. CONTROL MANEUVER SEGMENTS

Maneuver Id. Start (s) δL δR

t1 0 0 0

t2 26 0.1 0

t3 80 0 −0.4

0 20 40 60 80 100
-0.6

-0.4

-0.2

0

0.2

Fig. 6.2. Control maneuver segments graphically represented. The brake deflections shown
correspond to the control segments reported in Table 6.1.

the linear models presented in the following sections of this work.1

The control inputs remain constant during the flight until the next maneuver is executed. For a

better visualization of the control inputs, Fig. 6.2 presents the maneuver execution as described in

Table 6.1.

For each of the three segments of constant inputs on the flight trajectory, a set of stable points is

determined from the reference model as the resulting state vector. The sable points obtained for

each maneuver segment, applying the brake deflections as stable control inputs δLs and δRs, are

listed in Table 6.2.

For the Kalman filter implementation, the process noise covariance matrix is estimated using

the autocorrelation function Q = Gσ2GT , with variance σ2
Li = 800 for the linearized model,

and variance σ2
D = 10 for the double integrator model, determined by tuning the filter during

its implementation. The simulated measurements are incorporated into the Kalman filter as the

measurement vector z, while the squared of the standard deviations of the characterized sensors

(Table 4.1) are used as the elements of the diagonal measurement noise covariance matrix R.

1A video showing the descent trajectory flight is available as supplementary material at the research article Garcia-
Huerta et al. Sensors 2020, 20, 5227 [Garcia-Huerta-20b].
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TABLE 6.2. STABLE POINTS

State Variable Maneuver Segment

xs t1 t2 t3

us (m/s) 7.49 7.49 7.59

vs (m/s) 0 0 −0.01

ws (m/s) 4.09 4.09 4.12

ps (deg/s) 0 0.06 0.50

qs (deg/s) 0 0.04 1.46

rs (deg/s) 0 1.67 10.55

The implementation of the filter using the linearized model is realized by executing the constant

brake deflections described in Table 6.1 as control inputs, fusing the simulated measurements

obtained by the sensors. On the other hand, the double integrator model requires linear and angular

accelerations as control inputs, which typically can be deduced from measurements employing on-

board sensors. These accelerations are also simulated based on the reference model, by transforming

the linear and angular acceleration from the body reference frame to the inertial reference frame,

and adding white Gaussian noise with standard deviations of 0.12 m/s2 and 2 deg/s2 respectively,

according to experimental data.

All the code developed for this implementation is openly available [Garcia-Huerta-20a]. This

comprehends the complete estimation scheme, including the implementation of the 6-DOF nonlinear

equations of motion (reference model), the linearized equation of motions, and the Kalman filter.

6.1. Simulation Results

Two separate implementations of the described discrete Kalman filter scheme were performed:

one using the linearized model and brake deflections as control inputs, and another using the double

integrator model and the simulated accelerations as control inputs. Both implementations were

performed using the same initial conditions and simulated measurements.

The Kalman filter estimates based on the proposed linearized model (x̂Li) and the double

integrator model (x̂D) are presented in Fig. 6.3–6.6, together with the reference model (xR) for
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Fig. 6.3. Kalman filter inertial position estimates based on the proposed linearized model (x̂Li)
and the double integrator model (x̂D), together with the components of the inertial position vector
from the reference model (xR).

comparison purposes. The different maneuver segments are presented in all figures with vertical

dashed lines at the time of execution, with the maneuver identifier displayed at the bottom to facilitate

the interpretation.

From Fig. 6.3, it can be observed that the Kalman filtering scheme based on each of the proposed

models was capable of reproducing the components of the inertial position of the vehicle, for any of

the flight scenarios corresponding to the maneuver segments. Due to the smooth evolution of each

of the components of the inertial position, both the linearized model and the double integrator model

were suitable for emulating the behavior of the position of the nonlinear reference model. This mild

progression of the inertial position of the PADS closely represented a real flight scenario. From

the beginning of the descent trajectory, after the full inflation of the canopy and stabilization of the

gliding flight, the only external perturbation experienced by the parafoil-payload system originated

from the wind. While strong wind profiles could substantially affect the flight dynamics of small

vehicles, a fuselage designed to reduce drag could be employed to mitigate this effect. Additionally,

the heavier the payload, the less prone it is to suffer abrupt changes in position due to its inertia.

The components of the linear velocity, presented in Fig. 6.5, demonstrate that the lateral compo-
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Fig. 6.4. Kalman filter angular position estimates based on the proposed linearized model (x̂Li)
and the double integrator model (x̂D), together with the components of the angular position vector
from the reference model (xR). These components are expressed in the inertial reference frame,
corresponding to the Euler orientation angles roll, pitch, and yaw, respectively.

nent of the velocity (v) was virtually zero along the complete descent trajectory. This reflects the

fact that there were no perturbations that modify the lateral movement of the vehicle aside from

the control inputs, and that the flight was dominated by its longitudinal dynamics. In the three

linear velocity components, it was distinctly recognizable that the estimations based on the double

integrator model strongly varied around the reference model, in comparison with the estimates from

the linearized model. While the bounded variation confirmed that the Kalman filter estimation

scheme converged towards the reference model, it was an indication that the Kalman gain was

favoring the measurements instead of the model.

Note that along the descent trajectory, the deflection brakes applied on each maneuver were held

constant until the next maneuver was reached, or the vehicle landed. Furthermore, the maneuvers

were applied instantaneously, as step functions. This means that the delayed response of the actuators,

and the elasticity of the lines used to apply the deflection brakes were not taken into account, which

would modify the transient response of the state variables. Despite the condition analyzed in

this investigation where the brake deflections were applied infinitely fast, the estimation process

based on the proposed linearized model was able to follow the dynamics of the reference model,

68



6. Sensor Fusion for Position and Attitude Estimation

0 20 40 60 80 100
4

6

8

10

12

0 20 40 60 80 100
-4

-2

0

2

4

0 20 40 60 80 100
0

2

4

6

8

Fig. 6.5. Kalman filter linear velocity estimates based on the proposed linearized model (x̂Li) and
the double integrator model (x̂D), together with the components of the linear velocity vector from
the reference model (xR). These components are expressed in the body reference frame.

suggesting that for smoother executions of the maneuvers, the performance only could improve.

In real applications, the maneuvers cannot be applied instantaneously, but gradually, leading to a

smoother response on the state variables. The consequence of this abrupt change in the maneuver

segments can be observed, for example, in the angular velocity components (p, q, r) in Fig. 6.6,

especially when the last maneuver (t3) is applied.

While Fig. 6.3–6.6 provide valuable information about the 12 components of the state vector

estimated by virtue of the proposed Kalman filter scheme, it is difficult to appreciate the shape and

magnitude of the error with respect to the reference model. The error was computed as the difference

between the reference model xR and the Kalman filter state estimates based on the linearized model

x̂Li and the double integrator model x̂D, respectively. This error is denoted as xLi and xD for each

implementation.

To obtain a better understanding of how closely the estimation scheme followed the reference

model for the inertial position, the error in the magnitude of the position vector obtained with the

reference model and the magnitude of the Kalman filter position vector estimates are presented in

Fig. 6.7, denoted as ‖p‖. It can be appreciated that both models were capable of representing the
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Fig. 6.6. Kalman filter angular velocity estimates based on the proposed linearized model (x̂Li)
and the double integrator model (x̂D), together with the components of the angular velocity vector
from the reference model (xR). These components are expressed in the body reference frame.

tridimensional position of the vehicle during the different flight segments since in general, the error

oscillated around zero. In contrast, the filter estimates based on the linearized model presented a

smoother variation, with an error magnitude approximately two times smaller.

To evaluate the performance in estimating the attitude of the PADS, Fig. 6.8 presents the error

between the Euler angles of the reference model and the Kalman filter estimates using each of

the proposed models. Notice that during the first and second maneuver segments (t1 and t2),

corresponding to a straight flight and a wide turn, the two models captured the same behavior as the

reference model. Nevertheless, the double integrator model presented a larger and consistent error

for roll (φ) and pitch (θ) angles, and a smaller but still noticeable constant error for the yaw angle

(ψ), after the third maneuver was applied (t3), where the flight trajectory with a narrower turn was

followed. This is a consequence of the higher rate of change in the angular position that the vehicle

experienced during the last flight segment, where a −0.4 right brake deflection was being applied.

The double integrator model relied on the assumption that the parafoil-payload system experienced

epoch-wise constant inertial acceleration during the integration period. Consequently, the higher

the body-fixed angular velocity, the less this assumption was fulfilled, as can be verified from the
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Fig. 6.7. Error in the magnitude of the inertial position vector between the reference model and
the Kalman filter estimates from the linearized model (xLi) and the double integrator model (xD).

error in the angular velocity components presented in Fig. 6.9.

The achievable turn rate for any PADS has a practical limit, since a steep turn rate could induce

spiral divergence. For a vehicle with similar characteristics as the simulated in this study, Ward

et al. [Ward-11; Ward-14] report maximum turn rates from 15 deg/s up to 25 deg/s, depending on

the flight mode and control scheme. For the case of larger parafoil-payload vehicles, Lingard reports

a maximum constant turn rate of 11.5 deg/s for a canopy with 30 m of wingspan [Lingard-95].

6.1.1 Sampling rate analysis

The selected 5 Hz sampling rate for the analysis of the proposed estimation scheme, as mentioned

in Section 4.1, was chosen according to the processing capabilities of typical low-end micropro-

cessors and suitable sensors. To evaluate the impact that the sampling rate has on the performance

of the overall state estimation process, the previously presented implementation procedure was

repeated varying the sampling rate from 0.5 Hz up to 5 Hz, with sampling period increments of

0.1 s.

For each iteration, the errors xLi and xD were calculated, together with the corresponding

standard deviations of the errors σLi and σD. This represents the calculation of one standard

deviation per model (Li and D), for each state variable, per sampling rate analyzed (19 in total).

To obtain comparable results between state variables, the standard deviations are normalized by

dividing by the taxicab norm as:

Γn =
σn∑
n|σn|

(6.1)
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Fig. 6.8. Error in the inertial angular position components between the reference model and the
Kalman filter estimates from the linearized model (xLi) and the double integrator model (xD).

where Γn correspond to the normalized standard deviation of the error for each state variable per

sampling rate. The numerator σn corresponds to the standard deviation of the nth frequency per

state variable. Finally, the denominator represents the taxicab norm (L1 norm) per state variable,

determined as the sum of standard deviations across all the frequencies.

Fig. 6.10 presents the normalized standard deviations for each of the linear models (ΓLin and

ΓDn ), per sampling rate. Any vertical column is the result of stacking the 12 normalized standard

deviations for each implementation. A relevant property of the normalization in (6.1) is that the sum

of all normalized standard deviation per state variable equals to 1, i.e., the sum of all elements of

same color (same state variable) across all frequencies, per linear model, equals to 1 (dimensionless),

making the deviations for all the variables comparable according to its size.

In general, the cumulative (stacked) normalized standard deviation from the estimation scheme

based on both, the linearized model (Li) and the double integrator model (D), is observed to grow

as the sampling rate decreases. This implies that the higher the sampling rate, the less dispersion is

present in the state estimates.

72



6. Sensor Fusion for Position and Attitude Estimation

0 20 40 60 80 100
-2

-1

0

1

2

0 20 40 60 80 100
-3

-2

-1

0

1

0 20 40 60 80 100

-1

0

1

Fig. 6.9. Error in the angular velocity components, expressed in the body reference frame, between
the reference model and the Kalman filter estimates from the linearized model (xLi) and the double
integrator model (xD).

6.2. Discussion

It is relevant to highlight some properties and prerequisites for the operation and deduction of

the linearized model and the double integrator model. The linearized model requires the calculation

of the Jacobian matrices, increasing the complexity of its deduction depending on the forces and

moments representing the interaction between the vehicle and its surroundings. This requires the

characterization of the parafoil-payload system, limiting the flexibility of this model to be applied in

any other vehicle with different properties. Moreover, the stable points need to be computed prior to

the descent trajectory. While this demands additional effort, it is important to note that this task

is performed on the ground, where typically more computational resources are available, without

increasing the real-time computational burden during the flight. Since the flight conditions variate

from flight to flight, it is required to calculate a set of stable points assuming the planned maneuvers

to reach the target. If the computed stable points differ greatly from the actual conditions during

flight, the performance would deteriorate.

In contrast, the double integrator model does not depend on the physical properties of the

parafoil-payload system, simplifying the implementation of this model on vehicles with different
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Fig. 6.10. Normalized standard deviation of the errors between the reference model and the Kalman
filter estimates from both linear models, for implementations of the estimation scheme utilizing
different sampling rates.

characteristics. As a consequence, this model does not directly relate the brake deflections to the

state variables, making it not suitable for a straightforward application of a control scheme for

guidance. While the implementation of this model is much simpler than the linearized model,

without requiring the computation of the stable points or other parameters before the flight, it heavily

depends on the sampling rate and quality of the measurements provided by the sensors.

The selected 5 Hz sampling rate for the measurements is a conservative choice that complies

with the capacities of any relatively modern low-cost processing unit and sensors for real-time

applications. The higher the capabilities of the sensors and the processing unit, the larger the

achievable sampling rate during flight. This might be desirable when fast maneuvers are required

or strong wind profiles modify the trajectory of the vehicle, although this implies higher costs

associated with instrumentation, energy storage, and a heavier payload, sometimes not feasible for

micro-lightweight PADSs.

In the case that exogenous forces are present during the flight as a consequence of strong winds,

which are not incorporated into the flight dynamic models as the external wind vectorλ, it is expected

that the predictions provided by the models would deteriorate. Another source of perturbations
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could be the effect of mismodeled interactions in the parafoil-payload system, due to the relative

motion of its components. Nevertheless, the overall performance of the proposed estimation scheme

would not be necessarily deteriorated proportionally to the magnitude of the perturbations, since

the Kalman gain would favor the measurements from the sensors or the predictions of the dynamic

models, attempting to compensate for these effects by minimizing the a posteriori error covariance.

6.3. Conclusion

Throughout this chapter, two models that represent the flight dynamics of micro-lightweight

PADSs were developed: a linearized version of a 6-DOF nonlinear model and a double integrator

model. Additionally, simulated measurements representative of sensors onboard the vehicle were

fused by implementing a Kalman filter algorithm based on the developed models, to estimate the

position and attitude of the parafoil-payload system.

The simulation results demonstrate that both models capture the flight dynamics of micro-

lightweight PADSs when incorporated into a Kalman filtering scheme for smooth flights. While the

double integrator model excels in simplicity, and it is independent of the physical properties of the

parafoil-payload system, it falls behind in precision capturing the flight dynamics, especially when

the vehicle is subject to intense accelerations. On the other hand, the linearized model is capable of

representing the flight dynamics of the vehicle more accurately and preserves precision even during

narrow maneuvers, but depends on the determination of stable points close to the operation point of

the vehicle. The performance of the proposed estimation scheme, when the control inputs and flight

dynamics deviate from the computed stable points of the linearized model, is to be assessed in a

follow-on research.

Further investigation is required on the inclusion of the proposed estimation scheme into a global

closed-loop control strategy for the vehicle. In particular, tracking of constant waypoints is usually

a control objective for this type of system. The utilization of the obtained linearized model could

be a solid starting point for the development of a model-based robust controller. The design of a

suitable control strategy, that includes the proposed estimation scheme, and its stability analysis is

left as future work.
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General Conclusions

This doctoral dissertation presented the development and implementation of an estimation scheme,

based on a Kalman filter, for the determination of the navigation states of vehicles, fusing measure-

ments from low-cost sensors.

The use of a low-cost GPS receiver, together with high-resolution aerial images, allowed to

estimate the accuracy of the positioning solution provided by the receiver, based on recognizable

landmarks in the aerial images and changes in the direction of motion of a pedestrian user. While

the methodology proposed proved to be effective for the positioning accuracy determination, it relies

on a carefully designed and well-known navigation trajectory in order to ensure a submeter accuracy

as true position.

The addition of supplementary information regarding identifiable landmarks in an aerial image,

incorporated into a Kalman filter as measurements with low uncertainty in an error state-space

formulation, proved to be an effective approach for enhancing the trajectory estimation process for

low-cost pedestrian applications. The applicability of this methodology on vehicles with different

navigation dynamics needs to be further investigated.

The proposed state estimation scheme was implemented for the determination of the position

and attitude of micro-lightweight Precision Aerial Delivery Systems (PADSs). For this, a 6-DOF

nonlinear model was implemented and adopted as reference. In addition, two models that represent

the flight dynamics of micro-lightweight PADSs were developed: a linearized version of a 6-DOF

nonlinear model and a double integrator model, both suitable for the proposed sensor fusion algorithm

as part of the state estimation scheme.

The implementation of the state estimation scheme proved to be effective in the determination

of the position and attitude of PADSs, when incorporating the linear models representing the flight

dynamics of the parafoil-payload system, with measurements from low-cost sensors. The use

of linear models for the state propagation, allows for the implementation of a total state-space

formulation of a discrete Kalman filter, demonstrating its adequacy for low-cost applications with

limited computational resources.
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The analysis and inclusion of exogenous forces in the equations of motions of PADSs is to be

investigated. Furthermore, the incorporation of the state estimation scheme into a suitable robust

control strategy is left as future work.

78



Conclusiones Generales

En este trabajo de tesis doctoral se presentó el desarrollo e implementación de un esquema de

estimación basado en un filtro de Kalman, para la determinación de los estados de navegación de

vehículos, fusionando mediciones provenientes de sensores de bajo costo.

El uso de receptores de GPS de bajo costo, junto con imágenes aéreas de alta calidad, permitió

estimar la exactitud de la solución de posicionamiento provista por el receptor, basado en puntos de

referencia reconocibles en las imágenes aéreas, así como cambios en la dirección de movimiento de

usuarios pedestres. Si bien la metodología propuesta probó ser efectiva para la determinación de

la exactitud del posicionamiento, esta depende de una trayectoria de navegación bien conocida y

diseñada para asegurar obtener una exactitud en un orden de magnitud menor a los metros como

posición verdadera.

La integración de información suplementaria respecto a puntos de referencia reconocibles en

imágenes aéreas, incorporada dentro del filtro de Kalman como mediciones con baja incertidumbre

en una formulación de error de espacio de estados, demostró ser una propuesta efectiva como método

de mejora de la estimación de la trayectoria de navegación para aplicaciones pedestres de bajo costo.

La aplicabilidad de esta metodología en vehículos con dinámicas de movimiento diferentes, debe de

ser investigada más a fondo.

El esquema de estimación de estados se implementó para la determinación de la posición y

orientación de un sistema de entrega aérea de precisión (PADS, por sus siglas en inglés). Para

esto, un modelo no lineal de seis grados de libertad se implementó y adoptó como referencia.

Adicionalmente, se desarrollaron dos modelos lineales que representan la dinámica de vuelo de

PADSs micro ligeros: una versión linealizada del modelo de seis grados de libertad, así como un

modelo basado en un doble integrador, ambos pertinentes para el algoritmo de fusión de sensores

propuesto como parte del esquema de estimación de estados.

La implementación del esquema de estimación de estados demostró ser efectiva en la determi-

nación de la posición y orientación de PADSs, al incorporar modelos lineales representativos de

la dinámica de vuelo del sistema campana-carga útil, con mediciones de sensores de bajo costo.
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El uso de modelos lineales para la propagación de estados, permite la implementación de un filtro

de Kalman discreto en su formulación total de espacio de estados, demostrando su idoneidad para

aplicaciones de bajo costo con recursos computacionales limitados.

Como trabajo futuro, es de interés el análisis e incorporación de fuerzas exógenas en las ecua-

ciones de movimiento de PADSs. También, la inclusión del esquema de estimación de estados en

una estrategia de control robusta se deja como posible trabajo futuro.

80



Appendix

81



A. List of Internal Research Reports
1) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez, “A study on

modeling the flight path of weather balloons,” Internal Report PhDEngScITESO-16-18-R,
ITESO, Tlaquepaque, Mexico, Dec. 2016.

2) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez, “Implementation
of a Kalman filter for UAV tracking,” Internal Report PhDEngScITESO-17-15-R, ITESO,
Tlaquepaque, Mexico, May 2017.

3) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez, “Review on the
modeling and validation of precision aerial delivery systems,” Internal Report PhDEngSc-
ITESO-17-58-R, ITESO, Tlaquepaque, Mexico, Dec 2017.

4) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, L. E. González-Jiménez, and G. Allende-Alba
“Accuracy estimation of a low-cost GPS receiver using landmarks on aerial images,” Internal
Report PhDEngScITESO-18-13-R, ITESO, Tlaquepaque, Mexico, May 2018.

5) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, L. E. González-Jiménez, and G. Allende-Alba
“Kalman filter-based trajectory estimation using a low-cost sensor and aerial images,” Internal
Report PhDEngScITESO-18-47-R, ITESO, Tlaquepaque, Mexico, Dec. 2018.

6) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “Review on the
application, classification, and modeling of precision aerial delivery systems,” Internal Report
PhDEngScITESO-18-58-R, ITESO, Tlaquepaque, Mexico, Dec. 2018.

7) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “State estimation
scheme for precision aerial delivery systems,” Internal Report PhDEngScITESO-19-40-R,
ITESO, Tlaquepaque, Mexico, Dec. 2019.

8) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “A 6-DOF
dynamics model for micro-lightweight parafoil-payload systems,” Internal Report PhDEngSc-
ITESO-19-41-R, ITESO, Tlaquepaque, Mexico, Dec. 2019.

9) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “State-space
representation of a 6-DOF dynamics model for parafoil-payload systems,” Internal Report
PhDEngScITESO-19-43-R, ITESO, Tlaquepaque, Mexico, Dec. 2019.

10) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “Linearization
of a 6-DOF dynamics model for PADS,” Internal Report PhDEngScITESO-20-12-R, ITESO,
Tlaquepaque, Mexico, Aug. 2020.

11) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “A double
integrator dynamic model for PADS,” Internal Report PhDEngScITESO-20-14-R, ITESO,
Tlaquepaque, Mexico, Aug. 2020.

12) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “Estimation
scheme for position and attitude of PADS,” Internal Report PhDEngScITESO-20-16-R, ITESO,
Tlaquepaque, Mexico, Aug. 2020.

82



13) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, and L. E. González-Jiménez “Error analysis
of the state estimation scheme of PADS,” Internal Report PhDEngScITESO-20-18-R, ITESO,
Tlaquepaque, Mexico, Aug. 2020.

83



B. List of Publications
B.1 Conference Papers

1) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, L. E. González-Jiménez and G. Allende-Alba,
“Accuracy estimation of a low-cost GPS receiver using landmarks on aerial images,” IGARSS
2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama,
Japan, 2019, pp. 9244–9247, doi: 10.1109/IGARSS.2019.8899767.

2) R. A. Garcia-Huerta, I. E. Villalon-Turrubiates, L. E. González-Jiménez and G. Allende-Alba,
“Kalman filter-based trajectory estimation using a low-cost sensor and aerial images,” IGARSS
2020 – 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa,
Hawaii, 2020, pp. 6400–6403.

B.2 Journal Papers

1) R. A. Garcia-Huerta, L. E. González-Jiménez, and I. E. Villalon-Turrubiates, “Sensor fusion
algorithm using a model-based Kalman filter for the position and attitude estimation of
precision aerial delivery systems,” Sensors, vol. 20, no. 18, p. 5227, Sep. 2020, doi:
10.3390/s20185227.

84

https://doi.org/10.1109/IGARSS.2019.8899767
https://doi.org/10.3390/s20185227


C. Coefficients of the Linearized Flight Dynamic Model of Preci-
sion Aerial Delivery System

In the following, the components of matricesA andB, and vector ε, are presented, corresponding

to each of the maneuver segments for the linearized model. These values are obtained by evaluating

the forces, moments, and Jacobian matrices at the stable points reported in Table 6.2 for the state

variables xs, and the brake deflections reported in Table 6.1 as control inputs us. Consequently,

their values remain constant throughout each of the control segments. The only elements that are

not constant are the components of the force vector caused by the weight of the parafoil-payload

system (FW ), which depend on the instant attitude and need to be calculated epoch-wise. Recalling:

A = [GM ]−1 [Jx] (5.171 revisited)

B = [GM ]−1 [Ju] (5.172 revisited)

ε = [GM ]−1




F s

M s


− Jxxs − Juus


 . (5.173 revisited)

The matrix GM incorporates information regarding the geometry, mass, and inertia of the

parafoil-payload system (5.44). These attributes are fixed, since the vehicle is considered a rigid

body, and therefore this matrix remains constant throughout the descent trajectory:

[GM ]−1 =




0.42 0 0 0 0.02 0

0 0.41 0 −0.1 0 0.05

0 0 0.33 0 0 0

0 −0.1 0 1.76 0 −0.89

0.02 0 0 0 2.28 0

0 0.05 0 −0.89 0 17.43



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Maneuver segment 1:

A =




−0.97 0 1.61 0 −2.99 0

0 −1.09 0 3.19 0 −7.14

0.54 0 −4.76 0 5.24 0

0 −4.23 0 −5.18 0 2.34

6.11 0 −11.2 0 −7.32 0

0 8.74 0 7.26 0 −6.68




B =




−0.047 −0.047

0.01 −0.01

−0.021 −0.021

−0.174 0.174

0.193 0.193

1.683 −1.683




ε = [GM ]−1




FWx

FWy

FWz

0

0

0




+




0.35

0

7.721

0

0.018

0




Maneuver segment 2:

A =




−0.97 0.03 1.61 0 −2.99 0

−0.03 −1.1 0 3.19 0 −7.14

0.54 0 −4.76 0 5.23 0

0.01 −4.24 −0.01 −5.19 0.01 2.35

6.11 −0.01 −11.19 −0.04 −7.32 0

0.01 8.75 0.02 7.28 0 −6.72



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B =




−0.052 −0.048

0.011 −0.01

−0.023 −0.021

−0.19 0.175

0.21 0.194

1.838 −1.693




ε = [GM ]−1




FWx

FWy

FWz

0

0

0




+




0.359

0.201

7.721

−0.031

−0.003

−0.158




Maneuver segment 3:

A =




−0.98 0.21 1.6 0.02 −3.02 −0.02

−0.17 −1.1 0 3.21 −0.01 −7.24

0.57 0 −4.79 0.01 5.31 0

0.06 −4.24 −0.06 −5.18 0.08 2.36

6.13 −0.09 −11.27 −0.25 −7.35 0

0.05 8.72 0.13 7.19 0.02 −6.51




B =




−0.047 −0.13

0.01 −0.026

−0.021 −0.057

−0.17 0.48

0.188 0.532

1.645 −4.65



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ε = [GM ]−1




FWx

FWy

FWz

0

0

0




+




0.4

1.279

7.622

−0.128

0.235

−1.698



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