
Instituto Tecnológico
y de Estudios Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial
15018, publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Department of Mathematics and Physics
Master in Data Science

A Generalized Lagrange Multiplier Method Support for Vector
Regression Based

THESIS to obtain the DEGREE of
MASTER IN DATA SCIENCE

A thesis presented by: Sara Eugenia Rodríguez Reyes

Thesis Advisor: Dr. Juan Diego Sánchez Torres

Tlaquepaque, Jalisco, May, 2021





A Generalized Lagrange Multiplier Method Support for Vector
Regression Based

Sara Eugenia Rodríguez Reyes

Abstract
This paper presents an approach to support vector regression based on the Lε

1 and Lε
2 formulations. Besides,

unlike the standard architectures, we explore a new formulation where the dual optimization problem results
from formulating an extended Lagrangian function, introducing additional terms to include a weighted elastic
net regularization structure. Also, this paper shows the differences and similarities of this proposal with
the classical support vector regression and the LASSO regression, aiming to compare with standard models.
Finally, to demonstrate the capabilities of this approach, the document includes examples of predicting some
benchmark functions.
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1 Introduction

The underlying idea of this paper is to introduce a new type of Support
Vector Regression model. We improve the ε-SVR adding an Elastic
net regularization term based on the Generalized Lagrange Multiplier
Method, which enables us to perform predictor selection and also
reduce the influence of correlated predictors at once.





2 Support Vector Regression and Reg-
ularization
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2.1 Regression and Regularization

For the case of the support vector machines for regression (in short
support vector regression or SVR), let the set D = (x1, y1), ..., (xN , yN),
where xk ∈ Rn and yk ∈ R. Let ϕ : X → F be the function that makes
each input point x correspond a point in the feature space F , where
F is a Hilbert space. This feature space can be of high dimension or
even infinite. However, is common to define X = Rn and F = Rm. In
this form, the approximating function, namely the model, has the form
ŷk = f (xk) = wT ϕ(xk) + b with w ∈ Rm and b ∈ R.
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2.1.1 p-Norms

Given a vector space V over a subfield J of the complex numbers C,
a norm on V is a real-valued function p : V → R with the following
properties, where |s| denotes the usual absolute value of a scalar s:

1. Subadditivity/Triangle inequality: p(x + y) ≤ p(x) + p(y) for all
x, y ∈ V

2. Absolute homogeneity: p(sx) = |s|p(x) for all x ∈ V and all scalars
s.

3. Positive definiteness/Point-separating: for all x ∈ V , if p(x) = 0
then x = 0.

Because property 2. implies p(0) = 0, some authors replace property 3.
with the equivalent condition: for all x ∈ V , p(x) = 0 if only if x = 0.

Considering p ∈ N, p ≥ 1, the pth root of the sum (or integral) of
the pth-powers of the absolute values of the vector components gives
the p-norm on suitable real vector spaces, defined as follows.1 1 Also called `p-norm

‖x‖p :=

(
n

∑
k=1
|xk|p

)1/p

(2.1)

For p = 1, the p-norm is the Absolute-value norm, which is a norm
on the one-dimensional vector spaces formed by the real or complex
numbers.

‖x‖1 :=
n

∑
k=1
|xk| (2.2)

For p = 2, the p-norm is the standard Euclidean norm, which gives
the ordinary distance from the origin to the point x.2 2 The Euclidean norm is also called the

L2 norm.

‖x‖2 :=

(
n

∑
k=1
|xk|2

)1/2

(2.3)

2.1.2 Multiple Regression

Linear regression is a statistical method that attempts to model the rela-
tionship between a continuous variable and one or more independent
variables by fitting a linear equation.

In most linear regression models, the objective is to minimize the
sum of squared errors.

n

∑
k=1

(
yk − wT ϕ(xk)− b

)2
(2.4)
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where yk is a continuous target, w is the coefficient, xk is the predic-
tor and ϕ(·) : Rn → Rm.

Three of the limitations that appear in practice when trying to use
this type of model are:

• They are adversely affected by the incorporation of correlated
predictors.

• They do not select predictors; all predictors are incorporated into
the model even if they do not provide relevant information.

• They cannot be adjusted when the number of predictors is greater
than the number of observations.

One way to reduce the impact of these problems is to use regular-
ization strategies such as Ridge, LASSO, or Elastic net, which force
the coefficients of the model to tend to zero, thus minimizing the risk
of overfitting, reducing variance, attenuating the effect of correlation
between predictors and reducing the influence on the model of the less
relevant predictors.

2.1.3 L2 Regularization

Rigde regularization admits the following representation,

min
w

n

∑
k=1

(
yk − wT ϕ(xk)− b

)2
− λ

2

m

∑
k=1

w2
k (2.5)

Or in terms of the Euclidean norm

min
w

n

∑
k=1

(
yk − wT ϕ(xk)− b

)2
− λ

2
‖w‖2

2 (2.6)

Which is equivalent to the following representation in terms of the
internal product:

min
w

n

∑
k=1

(
yk − wT ϕ(xk)− b

)2
− λ

2
wTw (2.7)

The above equations show different forms to represent Ridge regres-
sion, all composed of two expressions. The first one uses the square
norm notation, and the second term is the regularization L2 accom-
panied by the shrinkage quantity. The coefficients are estimated by
minimizing this function.

Ridge regularization penalizes the sum of the squared coefficients.
This penalty is known as L2 and has the effect of proportionally re-
ducing the value of all the coefficients in the model, but without them
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reaching zero. 3 3 The λ, is the tuning parameter that
decides how much we want to penalize
the flexibility of the model.

The main advantage of applying Ridge is the variance reduction
without hardly increasing the bias, thus achieving a lower total error.
The downside of the Ridge method is that the final model includes
all the predictors. This is so because, although the penalty forces
the coefficients to tend to zero, they never become precisely zero.
This method manages to minimize the influence on the model of the
predictors less related to the response variable, but, in the final model,
they will continue to appear. Although this is not a problem for the
accuracy of the model, it is for its interpretation.

2.1.4 L1 Regularization

LASSO regularization admits the following representation,

n

∑
k=1

(
yk − wT ϕ(xk)− b

)2
− λ

m

∑
k=1
|wk| (2.8)

Or in terms of the Taxicab norm

n

∑
k=1

(
yk − wT ϕ(xk)− b

)2
− λ‖w‖1 (2.9)

LASSO is another regularization variation where it only penalizes
the high coefficients. It only uses |wk| (modulus) instead of squares of
w, as its penalty, this is known as the L1 norm and it has the effect of
forcing the coefficients of the predictors to tend to zero.

2.1.5 Elastic net Regularization

Elastic net includes a regularization that combines the L1 and the L2

penalization σλ‖w‖1 +
1
2 (1− σ)‖w‖2

2 With 0 < σ < 1. The combination
of both penalties usually leads to good results. A frequently used
strategy is to assign almost all the weight to the L1 penalty to be able to
select predictors and a little to the L2 to give some stability in the case
that some predictors are correlated.

2.2 Lε
1 Formulation of the Support Vector Regression

Commonly, the first approach for solving the SVR is the Lε
1 formulation.

The following problem statement considers such a regression problem
as a convex optimization problem.
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2.2.1 Problem Statement

The L1 SVR admits the following optimization problem:

min
w,b,ξ,ξ∗

Pε (w, b, ξ, ξ∗) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

s.t. yk − wT ϕ (xk)− b ≤ ε + ξk, k = 1, . . . , N

wT ϕ (xk) + b− yk ≤ ε + ξ∗k , k = 1, . . . , N

ξk, ξ∗k ≥ 0, k = 1, . . . , N
(2.10)

where ϕ(·) : Rn → Rm and the regularization parameter C > 0
determines the balance between the regularity of f and the quantity
up to which we tolerate deviations more significant than ε 4. We will 4 A very large value of the constant C,

in the case where C(→ ∞) we would
be considering that the set perfectly
represents our hyperplane predictor
ξk → 0. By cons, too small a number
for C would allow high values of ξk , that
is, admitting a number very high number
of poorly represented examples.

consider ξk and ξ∗k as slack variables that control the error between the
prediction ŷk and the k-th sample yk.

2.2.2 KKT Optimality Conditions and Dual Formulation

We proceed to pose the dual problem associated after obtaining the
primal problem. The idea is to build a Lagrange function with the
objective function and the corresponding constraints by introducing a
set of dual variables. This function has a saddle point concerning the
variables of the primal.

Let the Lagrangian function for the problem (2.10)

L(w, b, ξk, ξ∗k ; αk,α∗k , ηk, η∗k ) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

−
N

∑
k=1

αk

(
ε + ξk − yk + wT ϕ(xk) + b

)
−

N

∑
i=k

α∗k

(
ε + ξ∗k + yk − wT ϕ(xk)− b

)
−

N

∑
k=1

ηkξk −
N

∑
i=k

η∗k ξ∗k

(2.11)

where w, b, ξ, ξ∗ are the primal variables of the problem and the
Lagrange Multipliers α, α∗, η, η∗ are the dual variables associated with
the constraints.

First Order Conditions: For a nonlinear programming solution to be
optimal, we use the KKT first-order necessary conditions, provided
that some regularity conditions are satisfied. As the dual variables
are positive, it follows from the saddle point condition that the partial
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derivatives concerning the primal variables should be canceled for the
optimal.

• The first order condition on the parameter w,∇wL(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies w = ∑N
k=1(αk − α∗k )ϕ(xk).

• The first order condition on the parameter b, ∂
∂bL(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies ∑N
k=1(α

∗
k − αk) = 0.

• The first order condition on the parameter ξk, ∂
∂ξk
L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies αk + ηk = C

• The first order condition on the parameter ξ∗k , ∂
∂ξ∗k
L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies α∗k + η∗k = C

Replacing in the Lagrangian:

L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

−
N

∑
k=1

αk

(
ε + ξk − yk +

N

∑
l=1

(αl − α∗l )ϕT(xl)ϕ(xk) + b

)

−
N

∑
k=1

α∗k

(
ε + ξ∗k + yk −

N

∑
l=1

(αl − α∗l )ϕT(xl)ϕ(xk)− b

)

−
N

∑
k=1

(C + αk)ξk −
N

∑
i=k

(C + α∗k )ξ
∗
k

(2.12)

Grouping variables:

L(w, b, ξk, ξ∗k ; αk,α∗k , ηk, η∗k ) =

− 1
2

N

∑
l=1

(αl − α∗l )ϕT(xl)
N

∑
k=1

(αk − α∗k )ϕ(xk)

− ε
N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − αk∗)

−
N

∑
l=1

(αl − α∗l )ϕT(xl)
N

∑
k=1

(αk − α∗k )ϕ(xk)

(2.13)

Reducing terms:

L(w, b, ξk, ξ∗k ; αk,α∗k , ηk, η∗k ) =

− 1
2

N

∑
l=1

(αl − α∗l )ϕT(xl)
N

∑
k=1

(αk − α∗k )ϕ(xk)

− ε
N

∑
k=1

(αk + α∗k ) + yk

N

∑
k=1

(αk − α∗k )

(2.14)
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Primal Feasibility Conditions: Recalling the primal constraints

yk − wT ϕ(xk)− b ≤ ε + ξk, k = 1, . . . , N

wT ϕ(xk) + b− yk ≤ ε + ξ∗k , k = 1, . . . , N

ξk ≥ 0, ξ∗k ≥ 0

(2.15)

Dual Feasibility Conditions: Due to the Non-Negative Lagrange
Multipliers, we find the following deductions:

αk ≥ 0, k = 1, . . . , N

α∗k ≥ 0, k = 1, . . . , N

ηk ≥ 0, k = 1, . . . , N

η∗k ≥ 0, k = 1, . . . , N

It follows

C− αk = ηk ≥ 0 → C− αk ≥ 0 Therefore 0 ≤ αk ≤ C

C− α∗k = η∗k ≥ 0 → C− α∗k ≥ 0 Therefore 0 ≤ α∗k ≤ C

(2.16)

We obtain the following dual problem:

max
α,α∗
− 1

2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

− ε
N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )

s.t.
N

∑
k=1

(αk − α∗k ) = 0

0 ≤ αk ≤ C, k = 1, . . . , N

0 ≤ α∗k ≤ C, k = 1, . . . , N

(2.17)

Complementary Slackness Conditions: The Duality Theorem implies
a relationship between the primal and dual that is known as
complementary slackness. The number of variables in the dual is
equal to the number of constraints in the primal, and the number
of constraints in the dual is equal to the number of variables in the
primal. This correspondence suggests that variables in one problem are
complementary to constraints in the other.

For an inequality constraint, the constraint has slack if the slack
variable is positive. For a variable constrained to be non-negative, there
is slack if the variable is positive. The term complementary slackness
refers to a relationship between the slackness in a primal constraint and
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the slackness (positivity) of the associated dual variable.

The optimal solution must satisfy the KKT Complementary Slackness
Condition:

αk

(
ε + ξk − yk + wT ϕ(xk) + b

)
= 0 (2.18)

α∗k

(
ε + ξ∗k + yk − wT ϕ(xk)− b

)
= 0 (2.19)

ηkξk = (C− αk)ξk = 0 (2.20)

η∗k ξ∗k = (C− α∗k )ξ
∗
k = 0 (2.21)

Analyzing the possible values for αk:

1. For the case αk = 0, from (2.18) we have yk−wT ϕ(xk)− b− ε− ξk ≤
0. Besides, from ηk = C and ηkξk = 0, it follows ξk = 0.
Therefore, yk − wT ϕ(xk) − b − ε ≤ 0. In conclusion, when αk is
zero, |yk − f (xk)| < ε is satisfied.

2. For the case 0 < αk < C, we have yk − wT ϕ(xk)− b− ε− ξk = 0.
From the first order condition on the parameter ξk, where ηk =

C− αk, therefore ηk > 0. Besides, from ηkξk = 0, then ξk = 0 holds.
When it is satisfied, in (2.18) the equation in the parenthesis vanishes
and the following equation holds: yk − wT ϕ(xk)− b− ε = 0

3. For the case αk = C, we have yk−wT ϕ(xk)− b− ε− ξk = 0. Besides,
from ηk = C − αk, where αk = C and ηk = 0 and ηkξk = 0, then
ηk = 0 and ξk ≥ 0 holds. In conclusion, when αk = C, the following
equation holds: yk − wT ϕ(xk)− b ≤ ε + ξk

On the other hand, analyzing the possible values for α∗k :

1. For the case α∗k = 0, from (2.19) we have wT ϕ(xk)+ b− yk− ε− ξ∗k ≤
0. Besides, from η∗k = C and η∗k ξ∗k = 0, it follows ξ∗k = 0.
Therefore, wT ϕ(xk) + b − yk − ε ≤ 0. In conclusion, when αk is
zero, |yk − f (xk)| < ε is satisfied.

2. For the case 0 < α∗k < C, we have wT ϕ(xk) + b− yk − ε− ξ∗k = 0.
From the first order condition on the parameter ξ∗k , where η∗k =

C− α∗k , therefore η∗k > 0. Besides, from η∗k ξ∗k = 0, then ξ∗k = 0 holds.
When it is satisfied, in (2.19) the equation in the parenthesis vanishes
and the following equation holds: wT ϕ(xk) + b− yk − ε = 0

3. For the case α∗k = C, we have wT ϕ(xk)+ b− yk− ε− ξ∗k = 0. Besides,
from η∗k = C − α∗k , where α∗k = C and η∗k = 0 and η∗k ξ∗k = 0, then
η∗k = 0 and ξ∗k ≥ 0 holds. In conclusion, when α∗k = C, the following
equation holds: wT ϕ(xk) + b− yk ≤ ε + ξ∗k
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Both αk and α∗k variables can not be larger than zero at the same time.

From (2.18) and (2.19). If 0 < αk < C, it follows yk − wT ϕ(xk)− b−
ε− ξk = 0, then ξk = 0.

Therefore, yk − wT ϕ(xk) − b = ε. Replacing in (2.19) we
get: α∗k

(
wT ϕ(xk) + b− yk + wT ϕ(xk) + b− yk − ξ∗k

)
= 0. Grouping

terms α∗k
(
2
[
wT ϕ(xk) + b− yk

]
− ξ∗k

)
= 0 and replacing the ε value

α∗k
(
−2ε− ξ∗k

)
= 0, then α∗k = 0 holds. Therefore

(
−2ε− ξ∗k

)
< 0

From these expressions, we would also be extracting an expression
of our prediction function 5: 5 Obtaining the desired function without

depending on the resolution of the
problem of the dimension in which our
examples of input variables are, it would
only depend on the support vectors.

f (x) = ∑N
k=1(αk − α∗k )ϕT(xk)ϕ(xl) + b

To complete the regression function, we should calculate b. Using the
slack complementary conditions, which say that the optimal solution of
the product between the slack variables and the dual constraints must
cancel out.

Deductions:

• αkα∗k = 0 the two dual variables associated with the same example
cannot be positive at the same time.

• Only the examples (xk, yk) that αk = 0 or α∗k = 0 would be inside
the ε tube. And these data do not contribute on constructing the
prediction function. Inside the ε tube, xk is not a support vector.

• In the cases where αk, α∗k ∈ (0, C) we would have that the correspond-
ing variable ξk, ξ∗k must be canceled. xk are not bounded support
vectors and the data sample is outside the ε-tube. αk, α∗k equals C
when the data sample is under the tube, so clearing the value of b

b = yk − wT ϕ(xk)− ε, such that

αk ∈ (0, C)

b = yk − wT ϕ(xk) + ε, such that

α∗k ∈ (0, C)

(2.22)

6 6 It is possible to calculate the value of b
for each support vector, (2.22). In order
to maintain numerical stability, b is the
average of the set of b’s associated with
the support values.

2.2.3 Reformulation of the Lε
1 Support Vector Regression

The solution of an SVR is globally optimal considering that a quadratic
optimization problem expresses it. Since we usually use nonlinear ker-
nels, we need to solve the dual optimization problem whose number of
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variables is twice the training data. Therefore, if the number of training
data is vast, training becomes difficult.

Looking at the dual formulation of the Lε
1 support vector regres-

sor (2.17). The non-negative variables αk and α∗k appear in the forms
of αk − α∗k and αk + α∗k . Since both αk and α∗k are not positive at the
same time, the number of variables can be reduced to half by replacing
αk − α∗k with βk and αk + α∗k with |βk|.

Demonstration:

• Having βk = αk − α∗k , where βk is defined on the interval I .
Defining P = {x ∈ I : βk ≥ 0} and N = {x ∈ I : βk ≤ 0}.
Then I = P ∪ N . On P we have that βk = αk and αk = 0 on N .
Furthermore, on N we have that βk = −α∗k and −α∗k = 0 on P . So
on all of I we define that βk = αk − α∗k .

• On the other hand, having |βk| = αk + α∗k , where βk is defined on
the interval I . Let βk be defined on I and let P and N be as above.
Then |βk| = αk on P and αk = 0 on N . Furthermore, |βk| = α∗k on
N and α∗k = 0 on P . So on all of I we have that |βk| = αk + α∗k .

Rewriting the Lε
1 support vector regressor:

max
β
− 1

2

N

∑
k,l=1

βkβl ϕ
T(xk)ϕ(xl)− ε

N

∑
k=1
|βk|+

N

∑
k=1

ykβk

s.t.
N

∑
k=1

βk = 0

− C ≤ βk ≤ C, k = 1, . . . , N

(2.23)

Defining k(xk, xl) = ϕT(xk)ϕ(xl), β =
[

β1 . . . βN

]T
, x =[

x1 . . . xN

]T
, y =

[
y1 . . . yN

]T
and 1v =

[
1 . . . 1

]T
.

K =


k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2) . . . k(x2, xN)
...

...
. . .

...
k(xN , x1) k(xN , x2) . . . k(xN , xN)


We can write the (2.23) formulation in a matrix form:

max
β
− 1

2
βTKβ− ε‖β‖1 + yT β

s.t. βT1v = 0

C � |β|

(2.24)
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Or equivalently,

min
β

1
2

βTKβ + ε‖β‖1 − yT β

s.t. βT1v = 0

C � |β|

(2.25)

In this expression the Hessian is K. Since the Hessian is positive
semi-definite, the problem is convex and therefore the solution is global.

Additionally, we show in (2.25) the connection between the LASSO
and the Lε

1-SVR due to the appearance of a term with the L1 norm. This
is enough for us to show that the Lε

1-SVR is in nature a LASSO problem.
7 7 In the feature space, the LASSO selects

features. Likewise, the ε-SVR selects
training samples as support vectors in
the observation space. To put it another
way, solving in the same way that LASSO
selects features, the ε-SVR selects support
vectors using an L1-norm.

The KKT complementary conditions become:

βk

(
ε + ξk − yk + wT ϕ(xk) + b

)
= 0

βk

(
ε + ξk + yk − wT ϕ(xk)− b

)
= 0

ηkξk = (C− |βk|) ξk = 0

(2.26)

The b is obtained by:

b = yk − wT ϕ(xk)− ε, for C > βk > 0

b = yk − wT ϕ(xk) + ε, for − C < βk < 0
(2.27)

By the reformulation in terms of β, the number of variables is
reduced from 2N to N, and the obtained support vector regressors
are very similar to support vector machines.

2.3 Lε
2 Formulation of the Support Vector Regression

In the same way that we derived the dual problem of the Lε
1 support

vector regressor, we will do it for the Lε
2 case.

2.3.1 Problem Statement

Lε
2 SVR use the square sum of the slack variables ξk in the objective

function instead of the linear sum of the slack variables. Thus the Lε
2

SVR admits the following optimization problem:
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min
w,b,ξ,ξ∗

Pε (w, b, ξ, ξ∗) =
1
2

wTw +
C
2

N

∑
k=1

(
ξ2

k + ξ∗2k

)
s.t. yk − wT ϕ (xk)− b ≤ ε + ξk, k = 1, . . . , N

wT ϕ (xk) + b− yk ≤ ε + ξ∗k , k = 1, . . . , N
(2.28)

where ϕ(·) : RN → Rm. 8 8 For the Lε
2 SVR, the positivity con-

straints on the slack variables ξk and
ξ∗k are not necessary since by squaring
the terms they preserve the positivity of
Pε (w, b, ξ, ξ∗)2.3.2 KKT Optimality Conditions and Dual Formulation

We proceed to pose the dual problem associated after obtaining the
primal problem.

Let the Lagrangian function for the problem (2.28)

L(w, b, ξk, ξ∗k ; αk,α∗k ) =
1
2

wTw +
C
2

N

∑
k=1

(
ξ2

k + ξ∗2k

)
−

N

∑
k=1

αk

(
ε + ξk − yk + wT ϕ(xk) + b

)
−

N

∑
k=1

α∗k

(
ε + ξ∗k + yk − wT ϕ(xk)− b

)
(2.29)

where w, b, ξ, ξ∗ are the primal variables of the problem and the
Lagrange Multipliers α, α∗ are the dual variables associated with the
constraints.

First Order Conditions: The solution of the constrained optimization
problem is determined by the saddle point of the Lagrangian function.
The partial derivatives for the variables of the primal should be canceled
for optimal.

• The first order condition on the parameter w,∇wL(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies w = ∑N
k=1(αk − α∗k )ϕ(xk).

• The first order condition on the parameter b, ∂
∂bL(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies ∑N
k=1(αk − α∗k ) = 0.

• The first order condition on the parameter ξk, ∂
∂ξk
L(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies Cξk − αk = 0

• The first order condition on the parameter ξ∗k , ∂
∂ξ∗k
L(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies Cξ∗k − α∗k = 0
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Replacing the first order conditions in the Lagrangian (2.29):

L (w, b, ξk, ξ∗k ; αk, α∗k ) =
1
2

wTw +
C
2

N

∑
k=1

(
α2

k
C2 +

α∗2k
C2

)

−
N

∑
k=1

αk

(
ε +

αk
C
− yk + wT ϕ(xk)

)
−

N

∑
k=1

α∗k

(
ε +

α∗k
C

+ yk − wT ϕ(xk)

)
−

N

∑
k=1

(αk − α∗k )b

(2.30)

Grouping Variables:

L(w, b, ξk, ξ∗k ; αk, α∗k ) =
1
2

wTw +
C
2

N

∑
k=1

(
α2

k
C2 +

α∗2k
C2

)

− ε
N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )

−
N

∑
k=1

(
α2

k
C

+
α∗2k
C

)
−

N

∑
k=1

(αk − α∗k )w
T ϕ(xk)

(2.31)

Simplifying the squared terms:

L(w, b, ξk, ξ∗k ; αk, α∗k ) =
1
2

wTw +
1

2C

N

∑
k=1

(
α2

k + α∗2k

)
− ε

N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )

−
N

∑
k=1

(
α2

k
C

+
α∗2k
C

)
−

N

∑
k=1

(αk − α∗k )w
T ϕ(xk)

(2.32)

Grouping squared terms:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

wTw− 1
2C

N

∑
k=1

(
α2

k + α∗2k

)
− ε

N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )

(2.33)

Replacing the w term:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k=l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

− 1
2C

N

∑
k=1

(
α2

k + α∗2k

)
− ε

N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )
(2.34)
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Considering the case where k = l:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k=1

(
α2

k + α∗2k

)
ϕT(xk)ϕ(xk)

− 1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

− 1
2C

N

∑
k=1

(
α2

k + α∗2k

)
− ε

N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )

(2.35)

Grouping terms:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k=1

(
α2

k + α∗2k

)(
ϕT(xk)ϕ(xk) +

1
C

)

− 1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

− ε
N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )

(2.36)

Rearranging terms

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )

[
ϕT(xk)ϕ(xl) +

δk,l

C

]

− ε
N

∑
k=1

(αk + α∗k ) +
N

∑
k=1

yk(αk − α∗k )

(2.37)

where δk,l is Kronecker’s delta function. This is a function of two
variables, usually just non-negative integers. The function is 1 if the
variables are equal, and 0 otherwise:

δkl =

1 if k = l

0 if k 6=l
(2.38)

Primal Feasibility Conditions: Recalling the Primal Constraints:

yk − wT ϕ(xk)− b ≤ ε + ξk, k = 1, . . . , N

wT ϕ(xk) + b− yk ≤ ε + ξ∗k , k = 1, . . . , N
(2.39)
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Dual Feasibility Conditions: Due to the Non-Negative Lagrange
Multipliers, we find the following deductions:

αk ≥ 0, k = 1, . . . , N

α∗k ≥ 0, k = 1, . . . , N

It follows

Cξk = αk

Cξ∗k = α∗k

(2.40)

We obtain the following dual problem:

max
α,α∗
− 1

2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )

(
ϕT(xk)ϕ(xl) +

δkl
C

)

− ε
N

∑
k=1

(αk + α∗k ) + yk

N

∑
k=1

(αk − α∗k )

s.t.
N

∑
k=1

(αk − α∗k ) = 0

αk ≥ 0, k = 1, . . . , N

α∗k ≥ 0, k = 1, . . . , N

(2.41)

Complementary Slackness Conditions: The optimal solution must
satisfy the following KKT Complementary Slackness Conditions:

αk

(
ε + ξk − yk + wT ϕ(xk) + b

)
= 0 (2.42)

α∗k

(
ε + ξ∗k + yk − wT ϕ(xk)− b

)
= 0 (2.43)

Cξk = αk, k = 1, . . . , N (2.44)

Cξ∗k = α∗k , k = 1, . . . , N (2.45)

Analyzing the possible values for αk:

1. For the case αk = 0, from (2.42) we have yk − wT ϕ(xk) − b − ε −
ξk ≤ 0. Besides, from Cξk = 0, it follows ξk = 0. Therefore,
yk − wT ϕ(xk)− b− ε ≤ 0.

2. For the case αk > 0, we have yk − wT ϕ(xk)− b− ε− ξk = 0. From
the first order condition on the parameter ξk, where Cξk − αk = 0,
therefore ξk ≥ 0. When it is satisfied, the following equation holds:
yk − wT ϕ(xk)− b ≤ ε + ξk

On the other hand, analyzing the possible values for α∗k :
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1. For the case α∗k = 0, from (2.43) we have yk − wT ϕ(xk) − b − ε −
ξ∗k ≤ 0. Besides, from Cξ∗k = 0, it follows ξ∗k = 0. Therefore,
yk − wT ϕ(xk)− b− ε ≤ 0.

2. For the case α∗k > 0, we have yk − wT ϕ(xk)− b− ε− ξ∗k = 0. From
the first order condition on the parameter ξ∗k , where Cξ∗k = α∗k ,
therefore ξ∗k ≥ 0. When it is satisfied, the following equation holds:
yk − wT ϕ(xk)− b ≤ ε + ξ∗k

Note that the Lε
2 support vector regression does not have bounded

support vectors.

Both αk and α∗k variables can not be larger than zero at the same time.

From (2.42) and (2.43). If αk > 0, it follows yk − wT ϕ(xk)− b− ε−
ξk = 0, then ξk = 0.

Therefore, yk − wT ϕ(xk) − b = ε. Replacing in (2.43) we
get: α∗k

(
wT ϕ(xk) + b− yk + wT ϕ(xk) + b− yk − ξ∗k

)
= 0. Grouping

terms α∗k
(
2
[
wT ϕ(xk) + b− yk

]
− ξ∗k

)
= 0 and replacing the ε value

α∗k
(
−2ε− ξ∗k

)
= 0, then α∗k = 0 holds. Therefore

(
−2ε− ξ∗k

)
< 0

From the first order condition on the parameter w, where w =

∑N
k=1(αk − α∗k )ϕ(xk), and using αk and α∗k , the prediction function f (x)

is expressed as:

f (x) =
N

∑
i=1

(αk − α∗k )ϕT(xk)ϕ(xl) + b (2.46)

Obtaining the desired function without depending on the resolution
of the problem of the dimension in which our examples of input vari-
ables are would only depend on the support vectors.

To complete the regression function, we should calculate b. Using the
slack complementary conditions. This says that the product’s optimal
solution between the slack variables and the dual constraints must
cancel out.

Deductions:

• Only the examples (xk, yk) that αk = 0 or α∗k = 0 would be outside
the ε tube

• αkα∗k = 0 the two dual variables associated with the same example
cannot be activated at the same time
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• Obtaining the value of b:

b = yk − wT ϕ(xk)− ε− αk
C

, for αk > 0

b = yk − wT ϕ(xk) + ε +
α∗k
C

, for α∗k > 0
(2.47)

9 9 It is possible to calculate the value of b
for each support vector (2.47). In order
to maintain numerical stability, b is the
average of the set of b’s associated with
the support values

2.3.3 Reformulation of the Lε
2 Support Vector Regression

Similarly, replacing αk − α∗k with βk and αk + α∗k with |βk| in 2.41, we
obtain the following dual problem for the Lε

2 SVR:

max
β
− 1

2

N

∑
k,l=1

βkβl

(
ϕT(xk)ϕ(xl) +

δkl
C

)
− ε

N

∑
k=1
|βk|+

N

∑
k=1

ykβk

s.t.
N

∑
k=1

βk = 0

(2.48)

Defining k(xk, xl) = ϕT(xk)ϕ(xl), β =
[

β1 . . . βN

]T
, x =[

x1 . . . xN

]T
, y =

[
y1 . . . yN

]T
and 1v =

[
1 . . . 1

]T
.

K =


k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2) . . . k(x2, xN)
...

...
. . .

...
k(xN , x1) k(xN , x2) . . . k(xN , xN)


We can write the (2.48) formulation in a matrix form:

max
β
− 1

2
βT
(

K +
1
C

I
)

β− ε‖β‖1 + yT β

s.t. βT1v = 0
(2.49)

Or equivalently:

min
β

1
2

βT
(

K +
1
C

I
)

β + ε‖β‖1 − yT β

s.t. βT1v = 0
(2.50)

In this expression, the Hessian is
(

K + 1
C I
)

, here the eigenvalues of
the matrix are positive. As the Hessian is positive definite, the problem
is strongly convex, and therefore the solution is global and unique.

We can express the formulation (2.50) as:
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min
β

1
2

βTKβ +
1

2C
‖β‖2

2 + ε‖β‖1 − yT β

s.t. βT1v = 0
(2.51)

We show in this expression the connection between the LASSO, the
Ridge and the Lε

2-SVR due to the appearance of a term with the L1

norm and a squared term with the L2 norm. 10 10 The Ridge regularization helps the
eigenvalues to be positive, making the
problem strictly convex and also it creates
an elastic net regularization structure.When the L1 and the L2 regularization appear together they are

known as Elastic Net regularization.11 11 The combination of both penalties
usually leads to good results. The L1
penalty helps to select predictors and a
the L2 gives some stability in the case
that some predictors are correlated.

The KKT complementary conditions become

βk

(
ε + ξk − yk + wT ϕ(xk) + b

)
= 0

βk

(
ε + ξk + yk − wT ϕ(xk)− b

)
= 0

Cξk = |βk|, k = 1, . . . , N

(2.52)

Therefore, b is obtained by

b = yk − wT ϕ(xk)− ε− βk
C

, for

βk > 0

b = yk − wT ϕ(xk) + ε− βk
C

, for

βk < 0

(2.53)

As in the case of the Lε
1 machine, with the reformulation in terms of

β, the number of variables are reduced from 2N to N.

If the value of ε is very small, almost all training data becomes
support vectors.
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3.1 Generalized Lagrange Multiplier Method

The Lagrange multiplier method helps to connect constrained optimiza-
tion and saddle-point problems since saddle points of Lagrangians
provide solutions to corresponding constrained optimization problems,
as in the case of the Support Vector Regression, which is based on this
saddle-point dynamics.

The Generalized Lagrange Multiplier Method (GLMM) 1 reduces 1 S. Boyd and L.Vandenberghe. Convex
Optimization. Cambridge University
Press, 2004. ISBN 978-0-521-83378-3

the duality gap between primal and dual problems for non-convex
optimization.

Considering a constrained optimization problem with one equality
and one inequality constraints

inf
x∈Rn

f (x)

s.t. g(x) ≤ 0, h(x) = 0
(3.1)

Denoting the feasibility set {x|g(x) ≤ 0, h(x) = 0} as F

Adopting the GLMM proposed in 2, 2 Mengmou Li. Generalized lagrange
multiplier method and kkt conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

L(x, τ, ν) = f (x) + G(τ, g(x)) +H(ν, h(x)) (3.2)
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where G(τ, g(x)) is a function of g(x) and τ, satisfying

1. Monotonically increasing with respect to g(x):

2. Concave with respect to λ, if g(x) ≤ 0:

3. supτ G(τ, g(x)) = 0, ∀g(x) ≤ 0, and supτ G(τ, g(x)) = +∞,
∀g(x) > 0;
similarly, H(ν, h(x)) is a function of h(x) and ν, satisfying

4. Concave with respect to ν, if h(x) = 0;

5. supνH(ν, 0) = 0, and supνH(ν, h(x)) = +∞, ∀h(x) 6= 0.

The concavity of τ is relaxed; G(0, g(x)), G(τ, 0) are not required to
be zero.
Assuming G(τ, g(x)) and H(ν, h(x)) are continuous and differentiable.

Theorem 1. Assume the constraints are strictly feasible. If a generalized
Lagrangian L(x, τ, ν) under conditions (1)-(5) is closed and proper, it satisfies
strong duality between primal and dual problems, i.e.,

inf
x

sup
τ,ν
L(x, τ, ν) = sup

τ,ν
inf

x
L(x, τ, ν) (3.3)

Proof The primal function is Lp(x) = supτ,ν L(x, τ, ν), the primal
problem infx Lp(x) is equivalent to the original problem (3.2) by
conditions (3) and (5),

inf
x
LP(x) = inf{ f (x),+∞} = inf

x
f (x), ∀x ∈ F (3.4)

Since L(x, τ, ν) is closed, there exists (x∗, τ∗, ν∗) as a solution to
(3.4). The dual function is LD(τ, ν) = infx L(x, τ, ν) = infx{ f (x) +
G(τ, g(x)) +H(ν, h(x))}. Since L(x, τ, ν) is proper, L(x, τ, ν) > −∞,
and x′ minimizes L(x, τ, ν) for fixed τ and ν, then its gradient
∇xL(x, τ, ν) vanishes at x′,

∇x f
(

x′
)
+∇xG

(
τ, g

(
x′
))

+∇xH
(
ν, h

(
x′
))

= 0n (3.5)

where x′(τ, ν) is a function of τ and ν. Equation (3.5) is guaranteed
to have solution for any feasible (τ, ν) including (τ∗, ν∗). Therefore by
(3.4) and (3.5),

inf
x

sup
τ,ν
L(x, τ, ν) = L

(
x′ (τ∗, ν∗) , τ∗, ν∗

)
(3.6)

and due to max-min inequality 3 3 S. Boyd and L.Vandenberghe. Convex
Optimization. Cambridge University
Press, 2004. ISBN 978-0-521-83378-3L

(
x′ (τ∗, ν∗) , τ∗, ν∗

)
≤ sup

τ,ν
LD(τ, ν) ≤ inf

x
sup
τ,ν
L(x, τ, ν) (3.7)

infx supτ,ν L(x, τ, ν) = supτ,ν infx L(x, τ, ν)
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Remark 1. Being closed and proper is a sufficient condition for strong
duality. Besides, one major difference between the classic and generalized
Lagrangians is that a dual function is concave with respect to its multipliers
in the classic Lagrange multiplier method, while a generalized LD(τ, ν) is not
necessarily concave with respect to (τ, ν) but a function with upper bound
according to the proof.

KKT Conditions for Generalized Lagrangians The generalized KKT
conditions of the GLMM for the optimization problem can be derived

g (x∗) ≤ 0 (3.8)

G (τ∗, g (x∗)) = 0 (3.9)

h (x∗) = 0 (3.10)

H (ν∗, h (x∗)) = 0 (3.11)

∇x f (x∗) +∇xG (τ∗, g (x∗)) +∇xH (x∗, g (x∗)) = 0n. (3.12)

3.2 A GLMM Reformulation for the Lε
1-SVR

We propose a new type of ε-SVR using a Generalized Lagrange
Multiplier Method, motivated by the interest of adding an Elastic
net regularization term to the Lε

1-SVR.

L(w, b, ξk, ξ∗k ; αk,α∗k , ηk, η∗k ) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

−
N

∑
k=1

αk

(
ξk − yk + wT ϕ(xk) + b

)
−

N

∑
i=k

α∗k

(
ξ∗k + yk − wT ϕ(xk)− b

)
−

N

∑
k=1

ηkξk −
N

∑
i=k

η∗k ξ∗k

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2
(αk + α∗k )

2

]

(3.13)

In order to continue with the development of this Lagrangian, we
first need to check if it meets the definition of GLMM. 4 4 Since there are no equality constraints,

only conditions (1)-(3) will be analyzed.



36

1. Monotonically Decreasing with respect to g(x) Defining:

• ga(x) =
[
ξk − yk + wT ϕ(xk) + b

]
• gb(x) =

[
ξ∗k + yk − wT ϕ(xk)− b

]
• gc(x) = ξk

• gd(x) = ξ∗k

• ge(x) = λ
[
(1− ε)∑N

k=1
(
αk + α∗k

)
+ ε

2 ∑N
k=1

(
αk + α∗k

)2
]

As:

g(x) = 〈ga(x), gb(x), gc(x), gd(x), ge(x)〉

And,

∇g(x)G(τ, g(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣

∇ga(x)G(τ, g(x))
∇gb(x)G(τ, g(x))
∇gc(x)G(τ, g(x))
∇gd(x)G(τ, g(x))
∇ge(x)G(τ, g(x))

∣∣∣∣∣∣∣∣∣∣∣∣
(3.14)

Partially deriving each expression against their respective Lagrange
multiplier:

• αga(x) = −αk
[
ε + ξk − yk + wT ϕ(xk) + b

]
∇ga(x)G(α, g(x)) = −αk

• α∗gb(x) = −α∗k
[
ε + ξ∗k + yk − wT ϕ(xk)− b

]
∇gb(x)G(α∗, g(x)) = −α∗k

• ηgc(x) = −ηkξk

∇gc(x)G(η, g(x)) = −ηk

• η∗gd(x) = −η∗k ξ∗k
∇gd(x)G(η∗, g(x)) = −η∗k

All Lagrange multipliers are negative, therefore the condition of
monotonically decreasing with respect to g(x) holds.

2. Concave with respect to α, α∗, η, η∗, if g(x) ≤ 0 Obtaining the
second partial derivative for each expression:

• αgi(x) = −αk
[
ε + ξk − yk + wT ϕ(xk) + b

]
∇2

αG(α, g(x)) = 0
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• α∗gj(x) = −α∗k
[
ε + ξ∗k + yk − wT ϕ(xk)− b

]
∇2

α∗G(α∗, g(x)) = 0

• αgm(x) = −λ
[
(1− ε)

(
αk + α∗k

)
+ ε

2
(
αk + α∗k

)2
]

∇2
αG(α, g(x)) =

(
∂gm(x)

∂αk

)
= −λε

• α∗gm(x) = −λ
[
(1− ε)

(
αk + α∗k

)
+ ε

2
(
αk + α∗k

)2
]

∇2
α∗G(α∗, g(x)) =

(
∂gm(x)

∂α∗k

)
= −λε

• ηgl(x) = −ηkξk

∇2
ηG(η, g(x)) = 0

• η∗gk(x) = −η∗k ξ∗k
∇2

η∗G(η∗, g(x)) = 0

Since the results are either negative or zero, we can conclude that
the equation is concave with respect to α, α∗, η, η∗, if g(x) ≤ 0.

3. supτ G(τ, g(x)) = 0, ∀g(x) ≤ 0, and supτ G(τ, g(x)) = ∞, ∀g(x) > 0

• supτ G(τ, g(x)) = 0, ∀g(x) ≤ 0
Having g(x) ≤ 0 and since Lagrange multipliers are non-negative, it
is set bounded by zero. Therefore, the supτ G(τ, g(x)) = 0.

• supτ G(τ, g(x)) = ∞, ∀g(x) > 0
Having g(x) > 0 and since Lagrange multipliers are non-negative,
the set has no upper bound. Therefore, the supλ G(τ, g(x)) = ∞.

Now that we have proved that the new Lagrangian proposal for the ε-
SVR adding an Elastic net regularization term meets the characteristics
of a GLMM, we continue to solve the optimization problem.

First Order Conditions:

• The first order condition on the parameter w,∇wL(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies w = ∑N
k=1(αk − α∗k )ϕ(xk).

• The first order condition on the parameter b, ∂
∂bL(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies ∑N
k=1(αk − α∗k ) = 0.

• The first order condition on the parameter ξk, ∂
∂ξk
L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies αk + ηk = C

• The first order condition on the parameter ξ∗k , ∂
∂ξ∗k
L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =

0, implies α∗k + η∗k = C

Replacing in the Lagrangian:
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L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗k ) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

−
N

∑
k=1

αk

(
ξk − yk +

N

∑
k,l=1

(αk − α∗k )ϕT(xk)ϕ(xl) + b

)

−
N

∑
k=1

α∗k

(
ξ∗k + yk −

N

∑
k,l=1

(αk − α∗k )ϕT(xk)ϕ(xl)− b

)

−
N

∑
k=1

(C− αk)ξk −
N

∑
k=1

(C− α∗k )ξ
∗
k

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.15)

Grouping variables:

L(w, b, ξk, ξ∗k ; αk,α∗k , ηk, η∗k ) =

− 1
2

N

∑
k=1

(αk − α∗k )ϕT(xk)
N

∑
l=1

(αl − α∗l )ϕ(xl)

+ C
N

∑
k=1

ξk + C
N

∑
k=1

ξ∗k −
N

∑
k=1

αkξk +
N

∑
k=1

αkyk

− b
N

∑
k=1

αk −
N

∑
k=1

α∗k ξ∗k −
N

∑
k=1

α∗k yk + b
N

∑
k=1

α∗k

− C
N

∑
k=1

ξk +
N

∑
k=1

αkξk − C
N

∑
k=1

ξ∗k +
N

∑
k=1

α∗k ξ∗k

−
N

∑
k=1

(αk − α∗k )ϕT(xk)
N

∑
l=1

(αl − α∗l )ϕ(xl)

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]

(3.16)

Reducing terms:

L(w, b, ξk, ξ∗k ; αk,α∗k , ηk, η∗k ) =

− 1
2

N

∑
k=1

(αk − α∗k )ϕT(xk)
N

∑
l=1

(αl − α∗l )ϕ(xl)

+ yk

N

∑
k=1

(αk − α∗k )

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.17)
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Primal Feasibility Conditions: Recalling the primal constraints

yk − wT ϕ(xk)− b ≤ ε + ξk, k = 1, . . . , N

wT ϕ(xk) + b− yk ≤ ε + ξ∗k , k = 1, . . . , N

ξk ≥ 0, ξ∗k ≥ 0

(3.18)

Dual Feasibility Conditions: Due to the Non-Negative Lagrange
Multipliers, we find the following deductions:

αk ≥ 0, k = 1, . . . , N

α∗k ≥ 0, k = 1, . . . , N

ηk ≥ 0, k = 1, . . . , N

η∗k ≥ 0, k = 1, . . . , N

It follows

C− αk = ηk ≥ 0 → C− αk ≥ 0 Therefore 0 ≤ αk ≤ C

C− α∗k = η∗k ≥ 0 → C− α∗k ≥ 0 Therefore 0 ≤ α∗k ≤ C

(3.19)

We obtain the following dual problem:

max
α,α∗
− 1

2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

+
N

∑
k=1

yk(αk − α∗k )

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]

s.t.
N

∑
k=1

(αk − α∗k ) = 0

0 ≤ αk ≤ C, k = 1, . . . , N

0 ≤ α∗k ≤ C, k = 1, . . . , N

(3.20)

Complementary Slackness Conditions: The optimal solution must
satisfy the KKT Complementary Slackness Condition:

αk

(
ε + ξk − yk + wT ϕ(xk) + b

)
= 0 (3.21)

α∗k

(
ε + ξ∗k + yk − wT ϕ(xk)− b

)
= 0 (3.22)

ηkξk = (C− αk)ξk = 0 (3.23)

η∗k ξ∗k = (C− α∗k )ξ
∗
k = 0 (3.24)
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To complete the regression function, we should calculate b. Using
the slack complementary conditions.

b = yk − wT ϕ(xk)− ε, such that

αk ∈ (0, C)

b = yk − wT ϕ(xk) + ε, such that

α∗k ∈ (0, C)

(3.25)

3.2.1 Reformulation of the GLMM Lε
1 SVR

Rewriting the GLMM-Lε
1 support vector regressor from (3.20):

max
β
− 1

2

N

∑
k,l=1

βkβl ϕ
T(xk)ϕ(xl) +

N

∑
k=1

ykβk

− λ

[
(1− ε)

N

∑
k=1
|βk|+

ε

2

N

∑
k=1

β2
k

]

s.t.
N

∑
k=1

βk = 0

− C ≤ βk ≤ C, k = 1, . . . , N

(3.26)

Defining k(xk, xl) = ϕT(xk)ϕ(xl), β =
[

β1 . . . βN

]T
, x =[

x1 . . . xN

]T
, y =

[
y1 . . . yN

]T
and 1v =

[
1 . . . 1

]T
.

K =


k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2) . . . k(x2, xN)
...

...
. . .

...
k(xN , x1) k(xN , x2) . . . k(xN , xN)



We can write the (3.26) formulation in a matrix form:

max
β
− 1

2
βTKβ + yT β− λ

[
(1− ε)‖β‖1 +

ε

2
‖β‖2

2

]
s.t.

βT1v = 0

|β| � C

(3.27)

Or equivalently,
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min
β

1
2

βTKβ− yT β + λ
[
(1− ε)‖β‖1 +

ε

2
‖β‖2

2

]
s.t.

βT1v = 0

|β| � C

(3.28)

Conclusion We can observe that this new proposal of ε-SVR based
on the Lε

1-SVR offers a new structure that proposes an Elastic net
regularization keeping the box constraints where 0 ≤ αk, α∗k ≤ C which
makes easier to calculate the b parameter.

3.3 A GLMM Reformulation for the Lε
2-SVR

In the same way, we proposed a new type of ε-SVR using a Generalized
Lagrange Multiplier Method based on the Lε

1-SVR: we propose a new
type of ε-SVR based on the structure of the Lε

2-SVR keeping in mind
that the original Lε

2-SVR already has an Elastic net regularization term
in the dual form. The motivation of this new proposal is to see if we
can keep the same Elastic net structure but adding the box constraints
where 0 ≤ αk, α∗k ≤ C.

L(w, b, ξk, ξ∗k ; αk,α∗k ) =
1
2

wTw +
C
2

N

∑
k=1

(
ξ2

k + ξ∗2k

)
−

N

∑
k=1

αk

(
ε + ξk − yk + wT ϕ(xk) + b

)
−

N

∑
k=1

α∗k

(
ε + ξ∗k + yk − wT ϕ(xk)− b

)
− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.29)

In order to continue with the development of this Lagrangian we
first need to check if it meets the definition of GLMM. 5 5 Since there are no equality constraints,

only conditions (1)-(3) will be analyzed.

1. Monotonically Decreasing with respect to g(x) Defining:

• ga(x) =
[
ξk − yk + wT ϕ(xk) + b

]
• gb(x) =

[
ξ∗k + yk − wT ϕ(xk)− b

]
• gc(x) = λ

[
(1− ε)∑N

k=1
(
αk + α∗k

)
+ ε

2 ∑N
k=1

(
αk + α∗k

)2
]
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As:

g(x) = 〈ga(x), gb(x), gc(x)〉

And,

∇g(x)G(τ, g(x)) =

∣∣∣∣∣∣∣
∇ga(x)G(τ, g(x))
∇gb(x)G(τ, g(x))
∇gc(x)G(τ, g(x))

∣∣∣∣∣∣∣ (3.30)

Partially deriving each expression against their respective Lagrange
multiplier:

• αga(x) = −αk
[
ε + ξk − yk + wT ϕ(xk) + b

]
∇ga(x)G(α, g(x)) = −αk

• α∗gb(x) = −α∗k
[
ε + ξ∗k + yk − wT ϕ(xk)− b

]
∇gb(x)G(α∗, g(x)) = −α∗k

All Lagrange multipliers are negative, therefore the condition of
monotonically decreasing with respect to g(x) holds.

2. Concave with respect to τ, respectively, if g(x) ≤ 0 Obtaining the
second partial derivative for each expression:

• αgi(x) = −αk
[
ε + ξk − yk + wT ϕ(xk) + b

]
∇2

αG(α, g(x)) = 0

• α∗gj(x) = −α∗k
[
ε + ξ∗k + yk − wT ϕ(xk)− b

]
∇2

α∗G(α∗, g(x)) = 0

• αgm(x) = λ
[
(1− ε)∑N

k=1
(
αk + α∗k

)
+ ε

2 ∑N
k=1

(
αk + α∗k

)2
]

∇2
αG(α, g(x)) = ∂gm(x)

∂αk
= −λε

• α∗gm(x) = λ
[
(1− ε)∑N

k=1
(
αk + α∗k

)
+ ε

2 ∑N
k=1

(
αk + α∗k

)2
]

∇2
α∗G(α, g(x)) = ∂gm(x)

∂α∗k
= −λε

Since the results are either negative or zero, we can conclude that
the equation is concave with respect to τ, if g(x) ≤ 0.

3. supλ G(λ, g(x)) = 0, ∀g(x) ≤ 0, and supλ G(λ, g(x)) = ∞, ∀g(x) > 0

• supτ G(τ, g(x)) = 0, ∀g(x) ≤ 0
Having g(x) ≤ 0 and since Lagrange multipliers are non-negative, it
is set bounded by zero. Therefore, the supτ G(τ, g(x)) = 0.
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• supτ G(τ, g(x)) = ∞, ∀g(x) > 0
Having g(x) > 0 and since Lagrange multipliers are non-negative,
the set has no upper bound. Therefore, the supτ G(τ, g(x)) = ∞.

Now that we have proved that the new Lagrangian proposal for the ε-
SVR adding an Elastic net regularization term meets the characteristics
of a GLMM, we continue to solve the optimization problem.

First Order Conditions:

• The first order condition on the parameter w,∇wL(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies w = ∑N
k=1(αk − α∗k )ϕ(xk).

• The first order condition on the parameter b, ∂
∂bL(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies ∑N
k=1(αk − α∗k ) = 0.

• The first order condition on the parameter ξk, ∂
∂ξk
L(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies Cξk − αk = 0

• The first order condition on the parameter ξ∗k , ∂
∂ξ∗k
L(w, b, ξk, ξ∗k ; αk, α∗k ) =

0, implies Cξ∗k − α∗k = 0

Replacing the first order conditions in the Lagrangian (3.29):

L (w, b, ξk, ξ∗k ; αk, α∗k =
1
2

wTw +
C
2

N

∑
k=1

(
α2

k
C2 +

α∗2k
C2

)

−
N

∑
k=1

αk

(αk
C
− yk + wT ϕ(xk)

)
−

N

∑
k=1

α∗k

(
α∗k
C

+ yk − wT ϕ(xk)

)
−

N

∑
k=1

(αk − α∗k )b

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.31)

Grouping variables:

L(w, b, ξk, ξ∗k ; αk, α∗k ) =
1
2

wTw +
C
2

N

∑
k=1

(
α2

k
C2 +

α∗2k
C2

)

+
N

∑
k=1

yk(αk − α∗k )

−
N

∑
k=1

(
α2

k
C

+
α∗2k
C

)
−

N

∑
k=1

(αk − α∗k )w
T ϕ(xk)

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.32)
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Simplifying the squared terms:

L(w, b, ξk, ξ∗k ; αk, α∗k ) =
1
2

wTw +
1

2C

N

∑
k=1

(
α2

k + α∗2k

)
+

N

∑
k=1

yk(αk − α∗k )

−
N

∑
k=1

(
α2

k
C

+
α∗2k
C

)
−

N

∑
k=1

(αk − α∗k )w
T ϕ(xk)

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.33)

Grouping squared terms:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

wTw− 1
2C

N

∑
k=1

(
α2

k + α∗2k

)
+

N

∑
k=1

yk(αk − α∗k )

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

] (3.34)

Replacing the w term:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k=l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

− 1
2C

N

∑
k=1

(
α2

k + α∗2k

)
+

N

∑
k=1

yk(αk − α∗k )

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

] (3.35)

Considering the case where k = l:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k=1

(
α2

k + α∗2k

)
ϕT(xk)ϕ(xk)

− 1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

− 1
2C

N

∑
k=1

(
α2

k + α∗2k

)
+

N

∑
k=1

yk(αk − α∗k )

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.36)
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Grouping terms:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k=1

(
α2

k + α∗2k

)(
ϕT(xk)ϕ(xk) +

1
C

)

− 1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )ϕT(xk)ϕ(xl)

+
N

∑
k=1

yk(αk − α∗k )

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.37)

Rearranging terms:

L(w, b, ξk, ξ∗k ; αk, α∗k ) = −
1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )

[
ϕT(xk)ϕ(xl) +

δk,l

C

]

+
N

∑
k=1

yk(αk − α∗k )

− λ

[
(1− ε)

N

∑
k=1

(αk + α∗k ) +
ε

2

N

∑
k=1

(αk + α∗k )
2

]
(3.38)

where δk,l is Kronecker’s delta function.

Primal Feasibility Conditions: Recalling the primal constraints

yk − wT ϕ(xk)− b ≤ ε + ξk, k = 1, . . . , N

wT ϕ(xk) + b− yk ≤ ε + ξ∗k , k = 1, . . . , N
(3.39)

Dual Feasibility Conditions: Due to the Non-Negative Lagrange
Multipliers, we find the following deductions:

αk ≥ 0, k = 1, . . . , N

α∗k ≥ 0, k = 1, . . . , N

It follows

Cξk = αk

Cξ∗k = α∗k

(3.40)

We obtain the following dual problem:
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max
α,α∗
− 1

2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )

[
ϕT(xk)ϕ(xl) + δk,l

(
1
C
− λε

2

)]

+
N

∑
k=1

yk(αk − α∗k )− λ(1− ε)
N

∑
k=1

(αk + α∗k )

s.t.
N

∑
k=1

(αk − α∗k ) = 0

αk ≥ 0, k = 1, . . . , N

α∗k ≥ 0, k = 1, . . . , N
(3.41)

Complementary Slackness Conditions: The optimal solution must
satisfy the KKT Complementary Slackness Condition:

αk

(
ε + ξk − yk + wT ϕ(xk) + b

)
= 0 (3.42)

α∗k

(
ε + ξ∗k + yk − wT ϕ(xk)− b

)
= 0 (3.43)

Cξk = αk, k = 1, . . . , N (3.44)

Cξ∗k = α∗k , k = 1, . . . , N (3.45)

To complete the regression function, we should calculate b. Using
the slack complementary conditions.

b = yk − wT ϕ(xk)− ε− αk
C

, for αk > 0

b = yk − wT ϕ(xk) + ε +
α∗k
C

, for α∗k > 0
(3.46)

3.3.1 Reformulation of the GLMM Lε
2 SVR

Rewriting the Lε
2 support vector regressor from (3.41):

max
β
− 1

2

N

∑
k,l=1

βkβl

(
ϕT(xk)ϕ(xl) +

δkl
C

)
+

N

∑
k=1

ykβk

− λ

[
(1− ε)

N

∑
k=1
|βk|+

ε

2

N

∑
k=1
‖βk‖2

]

s.t.
N

∑
k=1

βk = 0

(3.47)

Defining k(xk, xl) = ϕT(xk)ϕ(xl), β =
[

β1 . . . βN

]T
, x =[

x1 . . . xN

]T
, y =

[
y1 . . . yN

]T
and 1v =

[
1 . . . 1

]T
.
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K =


k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2) . . . k(x2, xN)
...

...
. . .

...
k(xN , x1) k(xN , x2) . . . k(xN , xN)


We can write the (3.47) formulation in a matrix form:

max
β
− 1

2
βT
(

K +
1
C

I
)

β + yT β

s.t. βT1v = 0
(3.48)

Or equivalently,

min
β

1
2

βT
(

K +
1
C

I
)

β− yT β

s.t. βT1v = 0
(3.49)

Conclusion We can observe that this new proposal of ε-SVR based on
the Lε

2-SVR does not offer a new structure since it is another Lε
2 with

the same Elastic net regularization and without the box constraints.
Therefore, we will not use this new SVR proposal for further study.
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4.1 Types of Kernels

Kernel functions are helpful in various situations because they provide
a simple bridge from linearity to non-linearity for algorithms that can
be represented as dot products.

Kernel methods map data into higher-dimensional spaces to be eas-
ier to separate or better structure it in this higher-dimensional space.
There are no constraints on the form of this mapping, which means it
could lead to infinite-dimensional spaces.

The choice of a Kernel depends on the problem because it depends
on what we are trying to model. For example, a polynomial kernel
allows us to model feature conjunctions up to the polynomial’s order.
Radial basis functions allows to pick out circles (or hyper-spheres) – in
contrast with the Linear kernel, which allow only to pick outlines (or
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hyper-planes).

A few kernel functions will be mentioned, along with some of their
properties.

4.1.1 Linear Kernel

This one is the simplest kernel function. It is given by the inner product
〈x, y〉 plus an optional constant c.

k(x, y) = xTy + c (4.1)

4.1.2 Polynomial Kernel

The Polynomial kernel is a non-stationary kernel. These are well suited
for problems where all the training data is normalized.

Adjustable parameters are the slope α, the constant term c and the
polynomial degree d.

k(x, y) =
(

αxTy + c
)d

(4.2)

4.1.3 Gaussian Kernel

The Gaussian kernel is an example of a radial basis function kernel.
Where the adjustable parameter sigma has a significant impact on the
kernel’s efficiency and should be fine-tuned to the specific problem at
hand. When the exponential is overestimated, it behaves almost linearly,
and the higher-dimensional projection loses its non-linear power. On
the other hand, if the function is undervalued, it will lack regularization,
and the decision boundary will be extremely sensitive.

k(x, y) = exp
(
−‖x− y‖2

2σ2

)
(4.3)

4.1.4 Exponential Kernel

The exponential kernel is very similar to the Gaussian kernel, except for
the square of the norm. It is also a kernel with a radial basis function.

k(x, y) = exp
(
−‖x− y‖

2σ2

)
(4.4)
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4.1.5 Laplacian Kernel

Except for being less sensitive to changes in the sigma parameter, the
Laplace Kernel is identical to the exponential kernel. It is also a radial
basis function kernel.

k(x, y) = exp
(
−‖x− y‖

σ

)
(4.5)

4.1.6 Hyperbolic Tangent (Sigmoid) Kernel

The Hyperbolic Tangent Kernel is also known as the Sigmoid Kernel
and as the Multilayer Perceptron (MLP) kernel. The Sigmoid Kernel is
derived from Neural Networks, where the bipolar sigmoid function is
often used as an artificial neuron activation function.

k(x, y) = tanh
(

αxTy + c
)

(4.6)

It is worth noting that a sigmoid kernel function SVM model is
similar to a two-layer perceptron neural network. It has also been
discovered that it performs well in practice despite being only condi-
tionally positive definite.

The slope alpha and the intercept constant c are two customizable
parameters in the sigmoid kernel. 1/N, where N is the data dimension,
is a common value for alpha.

4.1.7 Kernel Implementation

Linear (4.1) and Gaussian (4.3) Kernels will be implemented in this
paper in Python, where the free parameter in the model is sigma.

1 import numpy as np

2

3 def kernel(x,xt,sigma=0.1,t=’rbf’):

4 if t == ’linear’:

5 return (np.dot(x, xt.T))

6 else:

7 n =x.shape[0]

8 nt = xt.shape[0]

9 K = np.zeros((n,nt))

10 for i in range(n):

11 for j in range(nt):

12 K[i,j] = np.exp(-np.linalg.norm(x[i,:]-xt[j,:])**2 /(2*sigma

**2))

13 return (K)

4.2 Implementation Issues L1-SVR

Proceeding with the Lε
1-SVR Python implementation using the β refor-

mulation in (2.25).
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The ε, c and σ free hyper-parameters can be tuned using multiple
optimization algorithms.

1 #Parameters

2 e = 0.8

3 c = 10

4 sigma = 2

5 n_train = x_train.shape[0]

6 onev = np.ones((n_train,1))

7 Ev = onev*e

8 error = 1E-5

9 K = kernel(x_train,x_train,sigma,’rbf’)

10 #Dual Problem

11 beta = cp.Variable((n_train,1))

12 problem = cp.Problem(cp.Minimize((1/2)*cp.quad_form(beta, K) + (Ev.T) @ (cp

.atoms.elementwise.abs.abs(beta)) - y_train.T @ (beta)), [onev.T @ (

beta) == 0, beta >= -c, beta <= c])

13 problem.solve(solver=’ECOS’)

14 beta = np.matrix(beta.value)

15

16 #Support Vectors

17 sv = abs(beta) > error

18 beta_sv = beta[sv].T

19 n_sv = beta_sv.shape[0]

20 x_sv = x_train[np.repeat(sv,x_train.shape[1],axis=1)].reshape(n_sv,x_train.

shape[1])

21 #Compute b

22 sb = np.logical_and (abs(beta)> error, abs(beta) < c)

23 beta_sb =beta[sb].T

24 n_sb = beta_sb.shape[0]

25 y_sb = y_train[sb].T

26 K_sb = K[sb*sb.T].reshape(n_sb,n_sb)

27 E_sb = np.sign(beta_sb)*e

28 b = np.mean(y_sb + E_sb - (K_sb*beta_sb))

29 #prediction model

30 K_pred_b1 = kernel(x_test,x_sv,sigma,’rbf’)

31 y_pred_b1= (sum(np.multiply(beta_sv,K_pred_b1.T))+b).T

Listing 4.1: Lε
1-SVR

4.3 Implementation Issues L2-SVR

Proceeding with the Lε
2-SVR Python implementation using the β refor-

mulation in (2.50).

The ε, c and σ free hyper-parameters can be tuned using multiple
optimization algorithms.

1 n_train = x_train.shape[0]

2 #Parameters

3 e = 0.8

4 c = 10

5 sigma = 2

6 onev = np.ones((n_train,1))

7 Ev = onev*e

8 error = 1E-5

9 K = kernel(x_train,x_train,sigma,’rbf’)
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10 #Dual Problem

11 beta = cp.Variable((n_train,1))

12 problem = cp.Problem(cp.Minimize((1/2)*cp.quad_form(beta, K+np.identity(

n_train)/c) + Ev.T @ (cp.atoms.elementwise.abs.abs(beta)) - y_train.T @

(beta)), [onev.T @ (beta) == 0])

13 problem.solve(solver=’ECOS’)

14 beta = np.matrix(beta.value)

15 #Support Vectors

16 alfa = alfa1 - alfa2

17 sv = abs(alfa) > error

18 alfa_sv = alfa[sv].T

19 n_sv = alfa_sv.shape[0]

20 x_sv = x_train[np.repeat(sv,x_train.shape[1],axis=1)].reshape(n_sv,x_train.

shape[1])

21 #Compute b

22 sb = abs(alfa)> error

23 #sb = np.logical_and (abs(alfa)> error)

24 alfa_sb =alfa[sb].T

25 n_sb = alfa_sb.shape[0]

26 y_sb = y_train[sb].T

27 K_sb = K[sb*sb.T].reshape(n_sb,n_sb)

28 E_sb = np.sign(alfa_sb)*e

29 b = np.mean(y_sb + E_sb - (K_sb*alfa_sb)+alfa_sb/c)

30 #prediction model

31 K_pred = kernel(x_test,x_sv,sigma,’rbf’)

32 y_pred= (sum(np.multiply(alfa_sv,K_pred.T))+b).T

Listing 4.2: Lε
2-SVR

4.4 Implementation Issues New SVR

Proceeding with the New GLMM SVR Python implementation using
the β reformulation in (3.28).

The free hyper-parameters ε, c, σ and the new parameter λ can be
tuned using multiple optimization algorithms.

1 n_train = x_train.shape[0]

2 #Parameters

3 e = 0.8

4 c = 10

5 sigma = 2

6 sigma = 2

7 lam = .2

8 onev = np.ones((n_train,1))

9 Ev = onev*e

10 error = 1E-5

11 K = kernel(x_train,x_train,sigma,’rbf’)

12 #Dual Problem

13 beta = cp.Variable((n_train,1))

14 problema = cp.Problem(cp.Minimize((1/2)*cp.quad_form(beta, K) +lam*((1-Ev.T)

@ (cp.atoms.elementwise.abs.abs(beta)) + (Ev.T)/2 @ (cp.atoms.

elementwise.abs.abs(beta))**2) - y_train.T @ (beta)), [onev.T @ (beta)

== 0, beta >= -c, beta <= c])

15 problema.solve(solver=’ECOS’)

16 beta = np.matrix(beta.value)

17 #SV

18 sv = abs(beta) > error
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19 beta_sv = beta[sv].T

20 n_sv = beta_sv.shape[0]

21 x_sv = x_train[np.repeat(sv,x_train.shape[1],axis=1)].reshape(n_sv,x_train.

shape[1])

22 #Compute b

23 sb = abs(beta)> error

24 beta_sb =beta[sb].T

25 n_sb = beta_sb.shape[0]

26 y_sb = y_train[sb].T

27 K_sb = K[sb*sb.T].reshape(n_sb,n_sb)

28 E_sb = np.sign(beta_sb)*e

29 b = np.mean(y_sb + E_sb - (K_sb*beta_sb)+beta_sb/c)

30 #prediction model

31 K_pred = kernel(x_test,x_sv,sigma,’rbf’)

32 y_pred= (sum(np.multiply(beta_sv,K_pred.T))+b).T

Listing 4.3: New-SVR

4.5 Hyper-parameter Tuning

It is a difficult task the selection of optimal hyper-parameter values,
e.g., C, ε and σ values for Radial Based Function (RBF) kernels and λ

for the regularization.

As it is a hyper-parameter, there is no way of knowing in advance
which value is appropriate. A Bayesian Optimization method has been
proposed for automatic parameter selection. With Python’s Bayesian
Optimization package, this can be achieved.1 1 This is a constrained global optimiza-

tion package built upon Bayesian infer-
ence and Gaussian process that attempts
to find the maximum value of an un-
known function in as few iterations as
possible. This technique is particularly
suited for optimization of high-cost func-
tions, situations where the balance be-
tween exploration and exploitation is im-
portant.

4.5.1 Bayesian Optimization

Bayesian optimization generates a posterior distribution of functions
(Gaussian process) that better describes the function we want to im-
prove. The posterior distribution improves as the number of observa-
tions increase, and the algorithm becomes more confident in determin-
ing which regions of parameter space are worth exploring and which
are not.

The algorithm balances its discovery and exploitation needs as we
iterate, considering what we know about the target feature. A Gaussian
Process is fitted to the known samples (points previously explored) at
each stage, and the posterior distribution is combined with an explo-
ration strategy (such as UCB (Upper Confidence Bound) or EI (Expected
Improvement)) to decide the next point to be explored.

This procedure is designed to reduce the number of steps taken to
find a parameter combination that is close to optimal. This approach
accomplishes this by employing a proxy optimization problem (finding
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the limit of the acquisition function), which, while still a complex
problem, is less expensive (in terms of computation) and can be solved
with common resources.

4.5.2 Hyper-parameter Tuning Implementation

We are implementing the Bayesian Optimization method in Python.
The first thing to do is to create a function that uses the previously
seen SVR models where the goal is to maximize the R2 metric. After
maximizing this metric, we apply the Bayesian Optimizer to fit and
extract the best hyper-parameters that maximize the goal function.

The free hyper-parameters ε, c, σ and the new parameter λ can be
now tuned.

1 #libraries

2 from bayes_opt import BayesianOptimization

3 import numpy as np

4 import pandas as pd

5 import cvxpy as cp

6 from sklearn.model_selection import train_test_split

7 from sklearn import metrics

8 from sklearn.svm import SVR

9 import time

10

11 def estimador(c,sigma, e, lam):

12 n_train = x_train.shape[0]

13 onev = np.ones((n_train,1))

14 Ev = onev*e

15 error = 1E-5

16 K = kernel(x_train,x_train,sigma,’rbf’)

17 #Dual Problem

18 alfa1 = cp.Variable((n_train,1))

19 alfa2 = cp.Variable((n_train,1))

20 problem = cp.Problem(cp.Minimize((1/2)*cp.quad_form(alfa1-alfa2, K) +lam

*((1-Ev.T) @ (alfa1+alfa2) + (Ev.T)/2 @ (alfa1+ alfa2)**2) - y_train.T

@ (alfa1 - alfa2)), [onev.T @ (alfa1-alfa2) == 0, alfa1 >= 0, alfa1 <=

c,alfa2 >= 0, alfa2 <= c])

21 problem.solve(solver=’ECOS’)

22 alfa1 = np.matrix(alfa1.value)

23 alfa2 = np.matrix(alfa2.value)

24 #Support vectors

25 alfa = alfa1 - alfa2

26 sv = abs(alfa) > error

27 alfa_sv = alfa[sv].T

28 n_sv = alfa_sv.shape[0]

29 x_sv = x_train[np.repeat(sv,x_train.shape[1],axis=1)].reshape(n_sv,

x_train.shape[1])

30 #Compute b

31 sb = np.logical_and (abs(alfa)> error, abs(alfa) < c)

32 alfa_sb =alfa[sb].T

33 n_sb = alfa_sb.shape[0]

34 y_sb = y_train[sb].T

35 K_sb = K[sb*sb.T].reshape(n_sb,n_sb)

36 E_sb = np.sign(alfa_sb)*e

37 b = np.mean(y_sb + E_sb - (K_sb*alfa_sb))

38 K_pred = kernel(x_train,x_sv,sigma,’rbf’)

39 y_pred1= (sum(np.multiply(alfa_sv,K_pred.T))+b).T
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40 return metrics.r2_score(y_train, y_pred1 )

41

42 #Hyper-parameters

43 hparams = {"c": (0.1, 10), "sigma": (0.001, 1), "e":(0.1, 1), "lam":(0.2,1)}

44

45 # give model and hyperparameter to optmizer

46 bayes_svr = BayesianOptimization(estimador, hparams)

47 # maximize means optimization

48 start_time = time.time()

49 bayes_svr.maximize(init_points=10, n_iter=10)

50 tiempo = time.time() - start_time

51 print(’Time’, tiempo)

52 c = bayes_svr.max[’params’][’c’]

53 sigma = bayes_svr.max[’params’][’sigma’]

54 e = bayes_svr.max[’params’][’e’]

55 lam=bayes_svr.max[’params’][’lam’]

Listing 4.4: Hyper-parameter tuning
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5.1 Linear Equation

Proposing the next equation:

y = 3x1 − 2x2 + 3x3 − 10 (5.1)

where x1 = 5ω, x2 = 10ω, x3 = 15ω, and n = 1000 records.

After using Bayesian Optimization to maximize the R2 and finding
the following hyper-parameters:

• Lε
1-SVR and Lε

1-SVR with Linear Kernel

– ε = 0.1

– c = 7.3439

– Time elapsed: t = 63.6536 minutes

• New GLMM SVR with Linear Kernel

– ε = 1

– c = 10

– λ = 0.2

– Time elapsed: t = 58.2876 minutes

• Lε
1-SVR and Lε

1-SVR with RBF Kernel

– ε = 0.1

– c = 8.83349

– σ = 7.8221
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– Time elapsed: t = 72.53 minutes

• New GLMM SVR with RBF Kernel

– ε = 1

– c = 3.1517

– σ = 8.7241

– λ = 0.2

– Time elapsed: t = 72.3878 minutes

Using different seeds to partition the data with a training set of 80%
and a test set of 20%, we obtain the following results.

Model/Metric New SVR RBF Lε
1 SVR RBF Lε

2 SVR RBF New SVR Linear Lε
1 SVR Linear Lε

2 SVR Linear

Avg. R2 Test 0.986111 0.985626 0.958656 0.996797 0.996587 0.996599

Avg. MSE Test 3.217 3.3159 9.8694 0.744273 0.746314 0.742797

Table 5.1: Metric Performance Comparison for Linear Equation

The new SVR proposal has the highest R2 metric. For this example,
since it is a linear equation, the Linear Kernel outperforms the other
models.

5.2 Bicycle Sharing Demand

Bike sharing systems are a form of bicycle rental service in which the
process of obtaining a membership, renting a bike, and returning the
bike is all automated via a network of kiosks located throughout a city.
People can rent a bike from one location and return it to a different
location as required using these systems. There are currently over 500

bike-sharing schemes operating around the world.

Since the length of flight, departure place, arrival location, and time
elapsed are all clearly documented by these systems, they are appealing
to researchers. As a result, bike-sharing networks serve as a sensor
network that can be used to research urban mobility.

The data set has daily rental data spanning two years, containing
731 records and 6 variables. 1 1 Data available in https://www.kaggle.

com/c/bike-sharing-demand

1. season: 1 = spring, 2 = summer, 3 = fall, 4 = winter

2. weather: 1: Clear, Few clouds, Partly cloudy, Partly cloudy
2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light

https://www.kaggle.com/c/bike-sharing-demand
https://www.kaggle.com/c/bike-sharing-demand
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Rain + Scattered clouds
4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

3. temp: temperature in Celsius

4. humidity: relative humidity

5. windspeed: wind speed

6. count: number of total rentals

After using Bayesian Optimization for hyper-parameter tuning
(maximize R2 metric), and standardizing the data, we predict how
many bikes will be rented on a daily basis using the following hyper-
parameters:

• Lε
1-SVR and Lε

1-SVR with Linear Kernel

– ε = 0.569195

– c = 8.1578

– Time elapsed: t = 23.46 seconds

• New GLMM SVR with Linear Kernel

– ε = 0.22799

– c = 3.94

– λ = 0.56670

– Time elapsed: t = 7.86 seconds

• Lε
1-SVR and Lε

1-SVR with RBF Kernel

– ε = 0.1

– c = 9.3374

– σ = 8.173

– Time elapsed: t = 11.06 minutes

• New GLMM SVR with RBF Kernel

– ε = 0.1

– c = 9.337443

– σ = 8.173

– λ = 0.4

– Time elapsed: t = 14.71 minutes
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Using different seeds to partition the data with a training set of 80%
and a test set of 20%, we obtain the following results.

Model/Metric New SVR RBF Lε
1 SVR RBF Lε

2 SVR RBF New SVR Linear Lε
1 SVR Linear Lε

2 SVR Linear

Avg. R2 Test 0.59382 0.582765 0.533532 0.529133 0.531920 0.525974

Avg. MSE Test 0.402037 0.431260 0.481244 0.486925 0.483891 0.490282

Table 5.2: Metric Performance Comparison for Bike Sharing Demand

The new SVR proposal with the RBF Kernel has the highest R2

metric. For this example, we can assume that the variables have a
non-linear relationship, therefore the RBF Kernel outperforms the other
models.

5.3 Dispersion Diagram

Setting the next equation:

y = 3x2 + 2x + 1 + N(0, γ) (5.2)

where x = 5ω, and n = 100 records.

Using the following hyper-parameters and the RBF Kernel:

• ε = 0.8

• c = 10

• σ = 2

• λ = 0.1

Partitioning the data with a training set of 80% and a test set of 20%,
we obtain the following results using different sizes of the standard
deviation for the random normal variable.

R2/γ 0 10 50 100 1000

Lε
1-SVR RBF 0.986816 0.832790 0.173668 -0.010470 -0.026809

Lε
2-SVR RBF 0.997083 0.842714 0.275697 -0.264729 -0.028

New SVR 0.985309 0.832647 0.169981 -0.213016 -0.024490

Scikit-Learn 0.989723 0.834180 0.166574 -0.310142 -0.019583

Table 5.3: Metric Performance Comparison with different Standard Deviance for
Quadratic Linear Equation

Since this is a quadratic equation, the Lε
2-SVR performs better than

the other models, even if the standard deviation increases.
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Figure 5.1: Metric performance comparison with different Standard Deviations





6 Conclusion

This paper has proposed a generalized Lagrange multiplier method
and derived generalized KKT conditions for support vector regression
based on the Lε

1 SVR formulation, which includes a weighted elastic
net regularization structure. We showed that the extended Lagrange
SVR models outperform the classic SVR models in predicting different
use cases. A disadvantage of this new model proposal would be the
increasing time of the optimization for the new hyper-parameter λ but
on the other side, the advantage is that this new elastic net structure
gives the possibility to reduce the number of support vectors used to
create the model.
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