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Multi-Dimensional Clustering of Roles in the NBA

Elijah Daniel Stutzman

Abstract
While in the National Basketball Association (NBA), players are often described by the position that they

play and not necessarily the role that they fill on the team. In this thesis, newly defined player roles have been
identified by applying multi-dimensional clustering techniques on thirty-eight variables for over ten thousand
player samples. These roles help to differentiate players that play the same traditional position, and will
allow for new comparisons between players to be produced. Using player statistics from nineteen seasons,
models were developed using three separate clustering techniques: Gaussian Mixtures, Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), and k-Means. After the models were developed a final
model was chosen that provided the best clusters that were used to identify the new roles. These new roles
are able to be used to identify replacements for certain players, signing a player that fulfills the same role, or
by drawing comparisons between new players in the NBA and the historical roles that other players have
fulfilled.



Multi-Dimensional Clustering of Roles in the NBA

Elijah Daniel Stutzman

Abstract
En la NBA, es comun que los jugadores se identifican por la posición que juegue, no necesariamente

el rol que toman en el equipo. En esta tesis, se define nuevos roles de jugadores aplicando tecnicas de
multi-dimensional clustering en base de treinta y ocho variables en más de diez mil muestras de jugadores.
Estos roles ayudan en diferenciar jugadores que juegan la misma posición tradicional, y ayudará en producir
nuevos comparaciones entre jugadores. Usando diecinueve temporadas de estadísticas de jugadores, modelos
fueron desarollados usando tres tecnicas de clustering: Gaussian Mixtures, DBSCAN, y k-Means. Después
del desarollo de todos los modelos, uno fue eligido que proporcionó los mejores clusters y fue utilizada
para identificar los nuevos roles. Estos nuevos roles se pueden ser utilizadas para identificar reemplazos
para ciertos jugadores, contratando a un jugador que realizan el mismo rol, o haciendo comparaciones entre
nuevos jugadores en el NBA y los roles historicós que otros jugadores han realizado.
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1.1 Motivation

In recent years, machine learning and data science have expanded into
world of sports, hoping to identify opportunities that teams or coaches
have in improving their chances of winning games. Additionally,
the realm of sports science is used to model player performances,
identifying areas where they excel or need to improve. This concept
of modeling player performances was the basis for this thesis, with a
focus on finding similarities between players, rather than identifying
areas where players perform well or need improvement. By identifying
where players are similar, comparisons between new players and old
players can be drawn in the hopes of developing better understandings.

1.2 Background

Basketball is one of the world’s largest sports, and generally one of the
simplest in scope. Two teams of five players each aim to score points by
putting a ball into a basket, and at the end of the game the team with
the highest number of points wins. This is the game in simplest terms.
There exist, however, several different ways to further understand how
the game is played, and there exist statistics abound that are collected
by the NBA that allow for further investigation.

One area in which investigation is done is into what are they key
statistics that allow for the better prediction of game outcomes. 1,2,3,4,5

1 Dragan Miljković, Ljubisa Gajić, Alek-
sandar Kovacevic, and Zora Konjovic.
The use of data mining for basketball
matches outcomes prediction. pages 309–
312, 09 2010. ISBN 978-1-4244-7394-6.
doi: 10.1109/SISY.2010.5647440

2 Kathleen Jean Shanahan. A model for
predicting the probability of a win in
basketball. Master’s thesis, University
of Iowa, 1984

3 Eftim Zdravevski and Andrea Kulakov.
System for Prediction of the Winner in a
Sports Game, pages 55–63. 01 2010. ISBN
978-3-642-10780-1. doi: 10.1007/978-3-
642-10781-87
4 Chenjie Cao. Sports data mining
technology used in basketball outcome
prediction. Master’s thesis, Technological
University Dublin, 2012

5 Bernard Loeffelholz, Earl Bednar, and
Kenneth Bauer. Predicting nba games
using neural networks. Journal of
Quantitative Analysis in Sports, 5:7–7, 02

2009. doi: 10.2202/1559-0410.1156
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By being able to identify what they key statistics are that are able
to predict game outcomes, NBA teams should be able to identify
areas in which they must perform better than their opponents. In
doing so, teams are able to perform better in the regular season, and
hopefully reach the NBA Championship at the end of the year. However,
identifying that a team needs to shoot more three-point shots or obtain
a higher number of offensive rebounds is not enough. Teams must
identify the players that best allow them to achieve those better statistics.
They have to be able to not only choose the five players that will start
the game, but also the players that come in off of the bench to relieve
the starters. A team’s coach must be able to identify the abilities of each
player, and how they are able to be used to achieve wins.

In general, there are five traditional positions in basketball 6: 6 Jr NBA. Basketball positions. https:

//jr.nba.com/basketball-positions/

Figure 1.1: Basketball positions

• Center: The center is the tallest player on each team, playing near
the basket. On offense, the center tries to score on close shots and
rebound. But on defense, the center tries to block opponents’ shots
and rebound their misses.

• Power Forward: The power forward does many of the things a center
does, playing near the basket while rebounding and defending taller
players. But power forwards also take longer shots than centers.

• Small Forward: The small forward plays against small and large
players. They roam all over on the court. Small forwards can score
from long shots and close ones.

• Shooting Guard: The shooting guard is usually the team’s best

https://jr.nba.com/basketball-positions/
https://jr.nba.com/basketball-positions/


introduction 17

shooter. The shooting guard can make shots from long distance and
also is a good dribbler.

• Point Guard: The point guard runs the offense and usually is
the team’s best dribbler and passer. The point guard defends the
opponent’s point guard and tries to steal the ball.

While these are the simplest way to define a player’s position, these
definitions cannot describe a player’s play style completely, or how
they are utilized in a team’s composition. Although three players might
all play the same position, their abilities on the basketball court can be
dramatically different. Being able to differentiate between two players
of the same traditional position is key for any basketball coach. This
differentiation helps describe the role that a player has beyond their
traditional position. We can see this differentiation by looking at the
statistics of the players in Table 1.1.7 7 Basketball-reference. https://www.ba

sketball-reference.com/

Name MP FG FGA 3P 3PA TRB AST STL BLK PTS

DeAndre Jordan 29.7 4.1 6.5 0.0 0.0 13.1 2.3 0.6 1.1 11.0
Joel Embiid 33.7 9.1 18.7 1.2 4.1 13.6 3.7 0.7 1.9 27.5
Jordan Bell 11.6 1.5 2.8 0.0 0.0 2.7 1.1 0.3 0.8 3.3

Table 1.1: Selected statistics of
three centers from the 2018-19

NBA regular season. Definitions
can be found in the glossary

While both DeAndre Jordan and Joel Embiid play a large portion
of the game’s 48 minutes, their offensive output is severely different.
Joel Embiid is tasked with shooting almost three times as many shots,
while still putting up comparable numbers in terms of total rebounds.
A player like Jordan Bell however, who rarely starts, is asked to put
in a different performance with his limited minutes. Even with those
limited minutes however, he still produces a comparable number of
blocks to DeAndre Jordan, showing that his presence as a rim defender
is still useful.

From this token example among three centers, it is clear their exist
differences even among players that play the same position for their
teams. Players are not solely defined by their positions, but also their
play styles, and the roles that they fulfill for their teams.

1.3 Objectives

1.3.1 Main Objective

This thesis will aim to show that the positions of players can be
further expanded using a multi-dimensional clustering analysis to
group similar players together. Instead of the traditional five positions,
a model will be developed to identify different classifications of players

https://www.basketball-reference.com/
https://www.basketball-reference.com/
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that can be used to divide said players based on their play style and
re-define the role that they serve on their teams.

1.3.2 Secondary Objective

In particular, three different multi-dimensional clustering techniques
will be used: DBSCAN, Gaussian Mixture, and K-Means. Models
will be developed using player statistics from the 2000-01 NBA season
through the 2018-19 NBA season, and comparisons will be done in
order to identify the model that provides the best results. Afterwards,
after choosing a model, the clusters in the chosen model will be used
to identify and define the roles that each clusters’ players fill for their
teams.

1.4 Previous Work

On the topic of clustering, work has been previously done by Patel 8 8 Riki Patel. Clustering professional bas-
ketball players by performance. Master’s
thesis, University of California, Los An-
geles, 2017

and Cheng 9. In both sets of work, the scope of the investigation was

9 Alex Cheng. Using machine learning
to find the 8 types of players in the nba.
https://medium.com/fastbreak-data/

classifying-the-modern-nba-player-

with-machine-learning-539da03bb824,
2017

limited to only a single season in the case of Patel (2016-17 regular
season) and two and a half seasons in the case of Cheng. Furthermore,
work by both Cheng and Patel used per-100-possessions statistics,
rather than raw statistics. The key difference between the two types
of statistics is that the per-100-possessions statistics aim to extrapolate
player performances onto a similar baseline, while the raw statistics
aim to show a true idea of how a player is used. Two players that share
similar per-100-possessions statistics might be viewed the same, but if
one player plays 36 minutes per game while the other plays 10, there is
a large difference.

These two pieces of work also reduced the dimension of the data
set using t-Distributed Stochastic Neighbor Embedding (t-SNE) and
Principal Component Analysis (PCA) in the case of Patel, and Linear
Discriminant Analysis (LDA) and PCA in the case of Cheng. This
facilitates the ability to visualize the different clusters clearly, but
information is lost in the reduction of dimension.

In contrast to these two pieces of work focus on per-100-possessions
statistics and the reduce the dimension of the resulting models, this
thesis uses raw statistics and maintains the dimension of the model. In
using raw statistics from 19 seasons of the NBA a more ‘pure’ model
is constructed and is reinforced through the use of more data. This
‘pureness’ is also produced in maintaining the dimensionality of the
data set, which allows for all of the information to be used in the
construction of the models.

https://medium.com/fastbreak-data/classifying-the-modern-nba-player-with-machine-learning-539da03bb824
https://medium.com/fastbreak-data/classifying-the-modern-nba-player-with-machine-learning-539da03bb824
https://medium.com/fastbreak-data/classifying-the-modern-nba-player-with-machine-learning-539da03bb824
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1.5 Thesis Structure

This thesis will start in Chapter 2 with a description on the mathematical
theory behind PCA and each of the three clustering techniques.
Afterwards follows, in Chapter 3, a description of the data set used and
the methods used to pre-process the data. Next, in Chapter 4 the three
clustering techniques are compared and the final model is described.
Finally in Chapter 5 conclusions of the thesis are reached, and future
work is proposed.





2 Mathematical Preliminaries

Contents
2.1 Principal Component Analysis . . . . . . . . . . 21

2.2 Density-Based Spatial Clustering of Applica-
tions with Noise . . . . . . . . . . . . . . . . . . 22

2.3 K-Means Modeling . . . . . . . . . . . . . . . . 22

2.4 Gaussian Mixture Modeling . . . . . . . . . . . 23

This chapter will detail the mathematical theory behind the
techniques used through this thesis. First is how the dimension of
a model can be reduced using PCA for the display of the models.
Afterwards, each of the three modeling techniques and the process
behind them is discussed.

2.1 Principal Component Analysis

PCA is one of the more widely used tools in a variety of fields due to its
simplicity in extracting relevant information from data sets filled with
noise. Although simple in its construction, PCA allows the noisy data
sets to be reduced to lower dimensions that can contain more important
information about how the structure of the data set.

Suppose their exists a data set represented by X, an m× n matrix,
with m variables, and n samples. In order to find the principal
components of X, an orthonormal matrix P in Y = PX must be found
such that ΣY = 1

n YYᵀ is a diagonal matrix. In finding such P, the
principal components of X can be found in the rows of said matrix.

The complete details on how this conclusion is reached can be found
in work by Shlens 1, however the idea is that by choosing to create P 1 Jonathon Shlens. A tutorial on principal

component analysis, 2014such that each row pi is an eigenvector of 1
n XXᵀ, it follows that ΣY

must be diagonal. Through ΣY it is also shown that the ith diagonal
value represents the variance of X in the ith principal component pi.

In practice, only the first k principal components are used in the
projection of the data set, and therefore P will be a k×m matrix, and
the projected data set Y can be found by resolving Y = PX.
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2.2 Density-Based Spatial Clustering of Applications with Noise

DBSCAN is one of the first density-based clustering algorithms, and is
useful in discovering clusters where data sets have arbitrary shape or
are of large size. This type of algorithm typically performs well when
the data set has dense regions separated by regions of low density.
DBSCAN in particular builds the clusters based on a connectivity
analysis.

DBSCAN is derived from the idea that each cluster must have a
minimum cardinality (MinPts) within a given radius ε. Both of these
are hyper-parameters given by the model creator. The neighborhood
for a point p is given by,

Nε(p) = {q ∈ X | dist(p, q) < ε}.

If the point P has cardinality greater than MinPts, that is |Nε(P)| >
MinPts, then P is considered a core point, and a cluster is developed
from that point. This process is repeated until all points in the data set
are classified in a cluster or as noise. Those points classified as noise
are done so because they are never within a distance ε of another point
in the data set that was assigned to a cluster.

For more information regarding the process of DBSCAN, or
improvements that have been made to the original algorithm refer
to work by Khan et al. 2 2 Kamran Khan, Saif Ur Rehman, Kamran

Aziz, Simon Fong, and S. Sarasvady. Db-
scan: Past, present and future. In The Fifth
International Conference on the Applications
of Digital Information and Web Technolo-
gies (ICADIWT 2014), pages 232–238, 2014.
doi: 10.1109/ICADIWT.2014.6814687

2.3 K-Means Modeling

K-Means is one of the most widely used clustering techniques due to
its ease of use and understanding. The general theory is to partition a
data set into k partitions. This is done through an iterative process:

1. Create k initial cluster centers (centroids) in the data space

2. Compute the distance from each data point xi to each cluster center
k j, and assign the point to the closest centroid

3. Recalculate the value for the cluster center by taking the mean of
each point assigned to the center k j

4. Repeat 2. and 3. until there is no more change in assignment

While the theory is simple to understand, there are some pitfalls
that can arise using k-Means. Due to the fact that the initial centers
are random, each iteration of the k-means model can result in different
results, but there do exist methodologies for refining the initial points
as shown in work by Bradley and Fayyad 3. There is also the question 3 Paul S. Bradley and Usama M.

Fayyad. Refining initial points for
k-means clustering. In Proceedings
of the Fifteenth International Conference
on Machine Learning, ICML ’98, page
91–99, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc. ISBN
1558605568

of the number of centers to be initialized, but this is easily resolved
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through hierarchical clustering or through simply trying multiple
values for k.

Further restrictions can be put on the k-Means algorithm by
constraining certain pairs of data points such that they are always
in the same cluster, or such that they are always in separate clusters. 4 4 Kiri Wagstaff, Claire Cardie, Seth

Rogers, and Stefan Schrödl. Constrained
k-means clustering with background
knowledge. In Proceedings of the
Eighteenth International Conference on
Machine Learning, ICML ’01, page
577–584, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc. ISBN
1558607781

2.4 Gaussian Mixture Modeling

Gaussian Mixture clustering, like k-Means aims to partition the data set
into a certain number of clusters, or components as they are referred
to within the context of Gaussian Mixtures. However, rather than just
finding the centers of each of the components, further attributes or
features are used to define the components.

The main objective of the Gaussian Mixture is to find an estimate of
Θ∗ = {α∗j , θ∗j }k∗

j=1, typically written as Θ = {αj, θj}k
j=1, where k is an

estimate of the true model order k∗. This usually done by solving the
following maximum likelihood (ML):

ΘML = arg max
Θ
{log p(XN |Θ)},

where N is the number of observations in the data set.
However, all of this is done assuming that the original distribution

of the data set is formed from a mixture of k∗ Gaussian components:

p(xt |Θ∗) =
k∗

∑
j=1

α∗j p(xt | θ∗j )

with

∗
∑
j=1

α∗j = 1 and ∀ 1 ≤ j ≤ k∗, α∗j > 0,

where each observation xt is a column vector of m-dimensional
features. Additionally, p(xt |Θ∗) is the jth Gaussian component with
θ∗j = {µ∗j , Σ∗j }, where µ∗j and Σ∗j are the mean vector and covariance

matrix of the jth component, respectively. α∗j is the true mixing

coefficient of the jth component.
Like k-Means, often the number of clusters must be pre-determined,

however there exist methodologies to determine the model order and
features at the same time 5. 5 Hong Zeng and Yiu-ming Cheung.

A new feature selection method for
gaussian mixture clustering. Pattern
Recognition, 42:243–250, 02 2009. doi:
10.1016/j.patcog.2008.05.030
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3.1 Source of Data

All of the data used in this paper was gathered from
BasektballReference.com 1 with use of the Python library Basketball 1 Basketball-reference. https://www.bask

etball-reference.com/Reference Web Scraper 2. Further code was developed to acquire data
2 Jae Bradley. Basketball reference web
scraper. https://github.com/jaebradle
y/basketball_reference_web_scraper

that was not available using the existing library.

3.2 Data Information

In order to build a data set based off of player performance, data for
players must be collected. The decision was made to treat a player’s
performance for separate seasons as unique data points. Furthermore,
if a player were to play for more than one team in a season due to a
trade or other reason, each individual team that a player played for in
a season would be treated as unique.

This was done for two purposes. First, to expand the number of data
points available to the model in hopes of getting better performance.

https://www.basketball-reference.com/
https://www.basketball-reference.com/
https://github.com/jaebradley/basketball_reference_web_scraper
https://github.com/jaebradley/basketball_reference_web_scraper
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Secondly, each time a player plays for a new team, or in a new season,
the role that that player will fill might change. A player in their rookie
season will not necessarily be expected to fill the same role as they
would as a five-year veteran. Furthermore, a player in the later stages
of their career will not have the same output as their younger years.
Additionally, a player might be a bench player with limited minutes,
but then after being traded might be expected to perform in a different
role.

As can be seen in Figure 3.1, over time the number of players
participating in a season has increased, and overall there are 10,010

players over the 19 seasons, for an average of around 527 players per
individual season.

Figure 3.1: Number of players
for each season in data set

As for the individual statistics that will be used to construct the
model, they come from three separate tables on Basketball-Reference.
They are the player’s totals, advanced, and shooting statistics. Examples
of these tables can be seen in Figure 3.2. Overall there were a total of
56 variables that were imported into the data set for each player.

3.3 Data Description

The 56 variables that were imported into the data set can be broken
down into five general categories: metadata, calculated statistics,
traditional statistics, adjusted statistics, and shooting statistics.
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(a)

(b)

(c)

Figure 3.2: Data tables for
Giannis Antetokounmpo. (a)
shows the totals table, (b) shows
the advanced statistics table, (c)
shows the shooting table

3.3.1 Metadata and Calculated Statistics

The variables in these two categories contain information relevant to
identifying the player (metadata) or metrics that were devised by other
parties (calculated statistics). In the end these variables were discarded
when building the clustering models due to being literal descriptors
in the case of the metadata or too abstract in the case of the calculated
statistics.

3.3.2 Traditional statistics

The variables in this category are those traditionally found in a standard
box score for a game. These include shooting statistics like attempted
field goals, attempted three point field goals, attempted free throws,
etc., along with other statistics such as points, total rebounds, steals,
blocks, turnovers, etc.

The key thing to note about these statistics is that they are all in the
raw totals for an entire season. Rather than use a per-36-minute or a
per-100-possession extrapolation, the raw totals were used as a way to
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give a true estimate as to what the player actually provided to the team
in terms of raw output. The only thing to note is that the stats were
averaged out on a per-game basis as will be discussed in Section 3.4.4.

A note about these statistics, there exists a large amount of linear
dependence in the data set. For example, in the data set there exist
three rebounding traditional statistics: offensive rebounds, defensive
rebounds, and total rebounds. Due to the simple nature of offensive and
defensive rebounds combining into total rebounds, it will be possible
to eliminate some variables.

With all of these being raw sums, the values for these variables are
all integers greater than or equal to 0, with no explicit upper bound.

3.3.3 Adjusted Statistics

In order to increase the interpretability of some of the traditional
statistics, some calculations were made, leading to the adjusted statistics.
Rather than just looking at the raw rebounding statistics for a player,
it might be interesting to look at how often the player is getting the
rebounds available to them. This leads to the calculation of the statistics
offensive rebound percentage, defensive rebound percentage, and total
rebound percentage. This same process is used for shooting leading to
true shooting percentage, steals and steal percentage, etc.

While there still exists linear dependence between these statistics,
there is enough of a difference in how they are calculated, due to
several using opponents’ statistics in their calculation, that they were
not thrown out.

Each of these adjusted statistics is seen as a percentage or rate, and
as such lie in a range from 0 to 1.

3.3.4 Shooting Statistics

The shooting statistics are interesting because they allow for the ability
to categorize players based off of where they are choosing to take their
shots, and how often they perform in those areas. There are three
different types of shooting statistics that are included.

The first is shot selection, from what distance a player is choosing
to take their shots. These are broken up into the 0-3ft, 3-10ft, 10-16ft,
16-xxft, and three-point ranges. The xxft represents the fact that the
three point arc on the basketball court is not equidistant from the hoop,
so the 16-xxft range is all two-point shots from a distance greater than
16 ft.

The second is shot making ability, how often a player makes a shot
taken in the previously mentioned ranges. This is where the data
set gets interesting with missing values. Due to the nature of these
statistics, if a player never takes a shot from three-point range, the



the data 29

percentage of shots made in that range is infinity. This comes from
dividing the total number of shots made in that range (0) by the total
number of shots attempted in that range (0), giving infinity due to
being unable to divide by 0. However, the data set just leaves these
entries as blank.

Finally are the miscellaneous shooting statistics that include how
often a player is being assisted on their baskets, and how often they
are dunking the basketball. Again, there are missing data points here
occurring when a player never takes a three-point shot, and therefore
are never assisted on their three-point shots.

All of these statistics are rates or percentages, and as such lie in a
range from 0 to 1. For each player, the sum of shot selection variables
will sum to 1, while the shooting percentages will vary. As a whole
though, the average shooting percentages drop as the distance increases.

Furthermore, there are a total of seven variables that have missing
data in this section. They are the five shooting percentage variables,
along with the two variables that measure how often a shot made by a
player is assisted.

3.4 Pre-Processing the Data

In order to use the data in the models, some pre-processing must be
done in order to have the models behave better.

3.4.1 Missing Values

The first question is what to do with the missing values that occur in
the shooting percentage variables. There are three options that were
considered: drop the variables that have missing data, set the missing
data equal to the mean value of the variable, or to set the missing data
equal to 0.

The first option was not implemented due to the fact that
information would be lost by removing the variables in question.
When considering the fact that the seven variables have interesting
information surrounding a player’s shooting style, it was best to find a
different method.

The second option of setting the value equal to the mean did not
make any logical sense. If a player does not have any shots from a
certain range, there are two possible explanations. Either the player
just overall does not have a large enough volume of shots or the player
knows that they are not skilled enough to make the shots consistently.
The first of these explanations is handled by Section 3.4.2. However
taking the second explanation into account, it does not make sense to
reward a player who chooses not to take shots from a specific region by
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boosting their percentages to the mean.
As such, the decision on how to handle the missing data fell to the

third option, setting the missing data equal to the value 0. This works
logically in the sense that a player who has not taken any shots from
a certain range is actually shooting 0% from that range. It also works
functionally because it allows for the models to run smoothly without
having to do any fancy imputations of the missing data.

3.4.2 Trimming Data

With the regular season of the NBA consisting of 82 games, the question
arises how many games is truly necessary in order to determine how
a player’s role is defined. With this question in mind, four different
values were selected to try: 5, 10, 15, and 20. The number of players
with at least the minimum requirement can be seen below.

Minimum Number of Games Number of Players

0 10010

5 9410

10 8826

15 8337

20 7871

Table 3.1: Number of players
satisfying the minimum number
of games played

3.4.3 Dropping Variables

While the metadata and calculated statistics as described in Section 3.3.1
have already been dropped, there are still a couple of variables that do
not really provide much information, or are superfluous.

The first of these are the games played and games started statistics.
While these are interesting in showing a player’s role on a team in
a season-wide view, they do not show any information on a game-
to-game view. However, the games played statistic will be useful in
helping with the standardizing of the raw traditional statistics.

Secondly, there is a duplicate variable in the data set. The variable
three point attempt rate, which shows up in the adjusted statistics is the
exact same value as variable in the shooting statistics which describes
how many shots a player makes from three-point range. Due to this
fact, only one of them is needed, and the variable three point attempt
rate was dropped.

Finally, due to the fact that total rebounds is simply the sum of
offensive and defensive rebounds, the variable total rebounds was
dropped.

After these variables have been dropped, 38 variables in total exist
for the use in modeling.
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3.4.4 Standardizing and Normalizing Variables

Due to the fact that a large amount of the variables is dealing with raw
sums, decisions were made on how to handle said variables, along with
how to treat all variables equally.

The first order of business was to take all of the traditional statistics
as referenced in Section 3.3.2 and standardize them to a game scale.
In order to do this each of the variables was divided by the number
of games played in the season, leaving the data with averages for the
whole season for each of our variables.

However, in order to combat the discrepancy in ranges for the
variables, and to treat each variable equally, a normalization process
had to be done. The chosen normalization was a min-max method with
the minimum value being set to 0 and the maximum being set to 1.

3.4.5 Dimensionality

When pre-processing the data, the question arose whether or not the
reduction of the dimension of the data set using PCA would be an
agreeable option. Tests were made and the ultimate conclusion was
decided not to use PCA to reduce the dimension in the creation of the
models, only for the visualization.

This was done due to the fact that with only two dimensions, the
explained variance by the two components was relatively low. The
hopes were that the explained variance with two components could be
at least 80%, but this was not the case. The actual explained variances
for the four minimum threshold of games is as follows:

Min No. Games Explained Var. Comp. 1 Explained Var. Comp. 2 Total Explained Var.

5 .3062 .2185 .5247

10 .3095 .2275 .5370

15 .3221 .2317 .5538

20 .3213 .2346 .5560

Table 3.2: Explained variance
of first two components of PCA
reduction on data sets
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In this chapter, the prospective modeling techniques will be
introduced, followed by the resulting output of each technique.
Afterwards, a further expansion on the results of the selected model
will be discussed.

4.1 Prospective Models

In order to determine the best methodology on which to build the
clustering model, three different algorithms were used. The first
DBSCAN, a density based algorithm where the number of clusters
outputted is determinant of some hyper-parameters chosen. Next is a
Gaussian Mixture model, which aims to partition the data set into a
determined number of clusters, but the assignment of each point in the
data set is probabilistic, and each cluster has the shape of a Gaussian
distribution. Finally is k-Means which like the Gaussian Mixture model
partitions the data into k clusters in which each point in the data set
belongs to the cluster with the nearest centroid, defined as the mean
point of that cluster.

4.2 Density-Based Spatial Clustering of Applications with Noise

There are two main hyper-parameters that are used in building a
DBSCAN model, the value epsilon which determines the radius around
which to search for other observations, and the minimum number of
samples in a neighborhood that must exist for a new cluster to be
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formed. For the purposes of this thesis, values of epsilon were tried
from 0.45 to 0.65, along with a minimum number of samples of either
2, 3, 4, or 5.

(a) Min games 5 (b) Min games 10

(c) Min games 15 (d) Min games 20

Figure 4.1: DBSCAN models
of different minimum games
played, epsilon = 0.55, min
samples = 5

In the above figure, the general behavior of the change in minimum
number of games is shown. As the minimum number of games played
increases, the behavior of the data set becomes less clustered, as can be
seen in Figure 4.2. As the minimum number of games played increases
from left to right, the silhouette score generally decreases, showing that
the clusters are becoming less well defined.

By counting the number of players that belong to each cluster in one
of the models shown in Figure 4.1, a problem becomes apparent with
DBSCAN when applied to this data set. Due to the nature of the way
that DBSCAN builds the clusters, if the data set is relatively condensed,
large clusters will form, and only those points which are far enough
away from the main cluster, but still close to other observations will
be put into separate clusters. What DBSCAN does perform well in is
identifying small clusters of players that perform similarly.

For instance, the seven players in Cluster 2 as detailed by Table 4.1
contain 5 seasons of Ben Wallace (2001, 2003, 2004, 2005, and 2007

seasons) along with 2 seasons of Marcus Camby (2008 and 2010 seasons).
While it is interesting to identify similar players in such a manner, for
the purposes of identifying overarching roles of players, DBSCAN does
not serve.
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Figure 4.2: Silhoutte index score
for DBSCAN models of different
minimum games played, epsilon
= 0.55, min samples = 5

Figure 4.3: DBSCAN model, min
games = 5, epsilon = 0.55, min
samples = 5

4.3 Gaussian Mixture

The Gaussian Mixture allows for the partitioning into a specific
number of clusters based off a hyper-parameter. In this thesis the
number of clusters tried ranged from 3 through 15. Also, the models
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Cluster No. Players

Noise 648

Cluster 1 8730

Cluster 2 7

Cluster 3 14

Cluster 4 5

Cluster 5 6

Table 4.1: Number of players
belonging to each cluster in
Figure 4.3

were developed as a ‘full’ mixture, wherein each cluster has its own
covariance matrix defining the distribution.

By looking at Figure 4.4 it is clear that there are some separate
clusters defined, and by looking at Table 4.2 the clusters seem to make
sense. Those in Cluster 3 seem to be the main shooters and ball
distributors as indicated by the large number of field goal attempts
(FGA) and assists (AST). Clusters 5 and 9 appear to be defensive
specialists that get a large amount of rebounds (ORB and DRB) along
with blocks (BLK), while those in Cluster 9 have more ability to shoot
from three-point range (3pFGA) when compared to those in Cluster
5. Then there are players like those in Cluster 2 who play limited
minutes (MP) while still being productive on the defensive end with
their rebounds.

Figure 4.4: Gaussian mixture
model with 9 clusters

The main issue with the Guassian Mixture models though is the
interpretability for a lay-person who would want to see what role a new
player would fit into. This is due to the fact that the calculations for the
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Cluster MP FGA 3pFGA ORB DRB AST BLK PTS

Cluster 1 12.12 3.82 1.67 0.44 1.37 1.18 0.18 4.39

Cluster 2 9.62 2.42 0.02 1.07 1.74 0.42 0.47 3.13

Cluster 3 33.48 15.34 4.18 0.99 3.79 4.77 0.41 19.29

Cluster 4 26.94 9.66 3.71 0.68 2.80 3.20 0.30 11.70

Cluster 5 22.67 7.08 0.03 2.32 4.49 1.18 1.03 9.32

Cluster 6 19.63 6.50 2.61 0.61 2.13 2.01 0.25 7.69

Cluster 7 16.55 4.79 0.36 1.26 2.47 1.31 0.50 5.93

Cluster 8 5.97 1.94 0.73 0.31 0.70 0.68 0.12 2.19

Cluster 9 29.20 11.49 1.09 2.10 5.25 2.49 1.01 14.59

Table 4.2: Selected statistics
for means of Gaussian Mixture
model with 9 clusters

probability of belonging to each cluster is not easily understood. The
idea of clustering players together based on their role is so that anybody
can understand where a player fits in, but if a player is actually 30%
likely of being role 2 and 35% likely of being role 5, the line between
the roles is less clear.

4.4 K-Means

Thankfully, with k-means it is clearly defined what the boundaries
are for each cluster, and there is no confusion of having players being
probabilistically assigned a role. Just like the Gaussian Mixture, there
is only one real hyper-parameter, the number of clusters chosen. In
this thesis, like with the Gaussian Mixture, the number of clusters tried
ranged from 3 through 15.

Similar to DBSCAN, the silhouette score of the models can be used
as an indicator of how well defined the clusters in the model are.
In Figure 4.5 each consecutive four points represents the increase in
minimum number of games from 5 to 20, and each set of four represents
an increase in the number of clusters. While the general trend is that
the number of clusters decreases how well defined the clusters are, in
general increasing the minimum number of games to 15 or 20 helps in
having the clusters better defined.

With this in mind in order to try and identify the best number of
clusters for a k-means model, a graph of the inertia of each model can
be developed like Figure 4.6. While there is easily identifiable elbow
that would indicate a clear candidate for the number of clusters, 9

clusters seems to be a point where the decrease in inertia slows.



38

Figure 4.5: Silhouette index
scores of k-means models

Figure 4.6: Inertia of k-means
models with min games = 20

4.5 The Model

Ultimately, the chosen model is the k-means model depicted in
Figure 4.7. This model provides the best all-around model of player
roles by having clearly defined boundaries, while also using a smaller
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Figure 4.7: k-Means model with
9 clusters, min games = 20

player pool in which players have had more games to have their roles
defined on their teams. The number of players in each of the clusters
can be seen in Table 4.3.

Cluster No. Players

Cluster 1 1502

Cluster 2 559

Cluster 3 652

Cluster 4 1200

Cluster 5 621

Cluster 6 775

Cluster 7 942

Cluster 8 924

Cluster 9 696

Table 4.3: Number of players
belonging to each cluster in
Figure 4.7

Those in cluster 1 can be defined as players who play low minutes
but shoot a large number of their shots from three-point range. They
also are less likely to get offensive rebounds due to playing on the wing
where their shots come from. A noticeable player would be Pat McCaw
who played for the Golden State Warriors in 2017 and 2018, and the
Toronto Raptors in 2019.

Those in cluster 2 are noticeable for their rebounding, with a large
amount of both offensive and defensive rebounds, showing that they
like to play inside more often than not. This is also exhibited by their
distinct lack of shots taken from three-point range. Ben Simmonds from
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the Philadelphia 76ers in 2018 and 2019 is a player in this role.
Those in cluster 3 are high usage players, shooting a lot and

distributing the ball relatively well. They also rebound well, showing
their versatility around the court. The players in this role include Joel
Embiid of the 76ers, Nikola Jokic of the Denver Nuggets, and Jusuf
Nurkic of the Portland Trail Blazers in the 2019 season.

Those in cluster 4 are three-point shooters who play a large
percentage of the game. They are overall well rounded, although not
an overbearing presence on the defensive end. Austin Rivers playing
for the Washington Wizards and Houston Rockets in 2019, along with
Kyle Kuzma playing for the Los Angeles Lakers in 2018 and 2019 fit
this role.

Cluster MP FGA ORB DRB AST BLK PTS Usage % % FGA 0-3ft % FGA 3pt

Cluster 1 11.22 3.59 0.34 1.14 1.09 0.14 4.07 0.13 0.21 0.40

Cluster 2 26.51 8.75 2.68 5.45 1.44 1.21 11.52 0.16 0.47 0.00

Cluster 3 30.21 12.44 2.13 5.63 2.37 1.00 15.87 0.19 0.34 0.12

Cluster 4 25.56 8.92 0.72 2.81 1.93 0.34 10.85 0.15 0.20 0.45

Cluster 5 11.16 3.29 0.91 1.68 0.72 0.36 3.81 0.13 0.34 0.02

Cluster 6 12.72 3.02 1.50 2.44 0.52 0.69 4.23 0.11 0.61 0.01

Cluster 7 23.11 8.11 0.49 1.99 4.07 0.17 9.49 0.16 0.24 0.29

Cluster 8 16.52 5.08 1.19 2.53 1.06 0.48 6.21 0.13 0.39 0.16

Cluster 9 33.41 15.58 0.88 3.58 5.53 0.37 19.84 0.23 0.26 0.27

Table 4.4: Selected statistics for
centroids of k-means model with
9 clusters, min games = 20

The role of those players in cluster 5 is a player who fills in where
needed, although not overly flashy. They will often choose to take mid-
range shots rather than those in three-point range, and will not have a
large output on the scoring end. Shaun Livingston of the Warriors in
2019 and 2018 exemplifies this role.

Cluster 6 is defined by the big man, with limited minutes who is
a presence around the rim. Even with limited minutes they put up
respectable numbers for rebounding, and more often than not will take
their shots from near the hoop. The Plumlee brothers Mason, Marshall,
and Miles all perform well in this role.

Players in cluster 7 are known for their ball distribution. Although
they might not always put up spectacular numbers, they are able
to facilitate their teammates by providing assists. Rajon Rondo over
several years has been known for his performances as this role.

Another role that is not necessarily flashy, but yet still does work
are those in cluster 8. They work for their team in provide in ways do
not always show up in the box score. Andre Iguodala for the Warriors
in 2018 and 2019 along with Giannis Antentokounmpo in his rookie
season in 2014 performed in this role.
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Finally, in cluster 9 are the leaders of the team. They command
most of the ball, and generally perform. They also provide for their
teammates through their distribution. Players like LeBron James, Kyrie
Irving, James Harden, Kevin Durant, and Steph Curry are all examples
of players who fulfill this key role for their teams.
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5.1 Conclusions

Through this thesis, a model that defines nine new roles of players in
the NBA was developed based off of 38 player statistics from 19 seasons
spanning 2001 through 2019. These roles aim to help broaden the scope
of a player’s position past the traditional five positions, and to fully
encapsulate what a player provides for their team.

Within these roles is the ‘leader’, where players like Steph Curry,
James Harden, and Lebron James command the ball, provide a large
amount of offensive output, while also facilitating their teammates
through their ball distribution. There is also the role of the ‘high usage
big man’ which describes players like Joel Embiid and Nikola Jokic.
While also very important for their teams, this role is separate from the
‘leader’ because the players who fulfill this role tend to perform better
in obtaining rebounds. Another role is the ‘three-point specialist’ in
which players like Austin Rivers and Kyle Kuzma take almost 50% of
their shots from three-point range. These players have one of the main
purposes of spacing out the court for the rest of their teammates and
creating space.

With these nine new roles quantitatively defined through the model
produced in this thesis, comparisons between players no long has to
rely solely on the ‘eye-test’ or by using the traditional positions. Now,
players can be compared based on their play styles, and similarities
between new players that enter the NBA and historical performances
can be drawn. Furthermore, the progression of a player and the roles
that they have filled over the course of their career can be seen. A player
in their rookie season is not likely to fulfill the role of a ‘leader’, but as
they progress in their ability it is possible that their role changes to that
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of ‘leader’.

5.2 Future Work

Ideally these roles could be further developed into identifying the best
composition of a team, and how to allocate minutes. Being able to
identify the importance of each role in an overall team composition and
winning could lead to general managers better replacing or acquiring
players that would fill holes in their team.

Further work could also be done in expanding the number of
variables available, or experimenting in reducing the number of
variables due to linear dependence. Although each variable itself
tells a story of a player’s performance, it might be superfluous when
the combination of two other variables provide the same information.
Feature selection is a constant problem in data science, and being able
to successfully prune the data set down and still provide clear and
concise information is key.
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Glossary

% FGA 0-3ft Percent of field goals attempted within 3 feet.

% FGA 3pt Percent of field goals attempted from three-point range.

3P Three-point field goals made.

3PA Three-point field goals attempted.

3pFGA Number of field goals attempted from three-point range.

AST Assists.

BLK Blocks.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DRB Defensive Rebounds.

FG Field goals made.

FGA Field goals attempted.

LDA Linear Discriminant Analysis.

MP Minutes played.

NBA National Basketball Association.

ORB Offensive Rebounds.

PCA Principal Component Analysis.

PTS Points.

STL Steals.
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t-SNE t-Distributed Stochastic Neighbor Embedding.

TRB Total rebounds.

Usage % Usage percentage.
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