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An Anomaly Detection Process for a Business Solution

Ana Victoria López Miranda

In this work, a business solution’s implemented using machine learning algorithms. The solution consists
of a particular realistic case of a corporation where the financial department has struggled to evaluate large
quantities of information to capture cost irregularities from its external suppliers’ billing process.

The design of this solution is to solve three critical problems from the business, a tool that detects the
anomalies in an automated fashion that helps the increase savings reducing the number of experts who are
currently needed only to detect the anomalies. Implement unsupervised machine learning methods that
allow a massive tagging of the data due to the current lack of labels in the information.

Apply a method whose results are validated and reviewed by the business Subject Matter Experts, a.k.a.
SMEs for use. A process that simulates the expert’s classification is generated, using a method that allows us
to tag the historical data and accelerate the SMEs’ manual labeling.

The overall workflow consists of five different phases, where first gather the information from the
organization into a single database from where the feature transformation and selection are applied. Once
the characteristics are defined and ready to use, the process continues with the unsupervised training using
a probabilistic method that provides us with the massive tagging of our binary classification. The labeled
dataset is then shared with the business experts for a review and feedback process in which they provide us
the correct classification for the observations that went into the model.

Finally, the data is inputted into a supervised algorithm selected through a fixed accuracy threshold and
contamination rate. Using these parameters as conditions, the model that adjusts better than the probabilistic
unsupervised approach is then selected. When the criteria are met, the model is deployed to a production
environment for user consultation.
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1 Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . 17

1.2 Background . . . . . . . . . . . . . . . . . . . . . 18

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Main Objective . . . . . . . . . . . . . 18

1.3.2 Secondary Objectives . . . . . . . . . . 18

1.1 Motivation

Nowadays, we begin to experience the disruption of machine learning
applications in almost every subject, particularly when it comes to
large enterprises that thrive on seeking AI solutions for every business
process. Most of these studies refer to financial areas, where data is
often available, and day-to-day business is the problem of predicting
trends and anomalies.

The cons that emerge with this type of implementation is the fact
that the data is not always prepared to implement machine learning
algorithms rapidly, requiring, in most cases, significant processing
behind as well as inputs from experts to provide missing data or even
labeled fields for a particular subject that needs to be addressed. In
particular, this is one of the biggest challenges in any ML project; when
the solution begins to be introduced, some of the first findings are that
there are no labels available to fix this question. Data as independent
variables are stored in the database. On the other hand, that is not
available for the dependent variable that needs to be expected. This
problem is getting bigger every time.

Therefore, a reason for this work is to satisfy a recurrent need
of helping the business in labeling those required fields through
unsupervised methods that are able to reach a good percentage of
precision through small labeling efforts and spread that prediction over
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to broader data sets, so these labels can start to be considered as input
for supervised models.

1.2 Background

An international corporation has various business cases from which
it wants to leverage business value; some of the concerns relate to
identifying irregularities that must be documented in the invoicing
process. An outlier is described as possible fraud on suppliers based on
the invoice document’s information. These fields are primarily linked
to the company’s internal data, such as addresses, locations, facilities,
billing objects, specifics of those items, prices, taxes, descriptions, and
other detailed information about its sub-client, the supplier itself.

The leading case concerns a category of prices categorized by the
business in which we would like to detect a shift or variance based on
regular rates. If the result has been registered, the information will be
inputted into a classifier algorithm that can distinguish simple classes
of potential VS typical behavior anomalies.

This project’s main objective is to move from multiple unsupervised
models to a single outlier method; this captures ’anomalies’ for the
company. The algorithms will be evaluated from an empirical to a
theoretical point of view, describing the precision, variance, and other
metrics that the model collects most of the information and produces the
best results. These results will receive feedback from the SME(Subject
Matter Expert) company, choosing the best algorithm for a posterior
implementation in the business process.

1.3 Objectives

1.3.1 Main Objective

This work aims to approach multiple unsupervised models to two
different and tailored mathematical methods to capture what a financial
process would call anomalies in the day to day operational course.

1.3.2 Secondary Objectives

1. Identify the best unsupervised method that replicates the experts
classification and identification of outliers.

2. Train a supervised model that uses the output from the unsupervised
approach as input for its training process.
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Contents
2.0.1 Linear Models . . . . . . . . . . . . . . 19

2.0.2 Principal Component Analysis (PCA) 19
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In this chapter, the mathematical preliminaries are presented as a
complementary base for the work; it includes the definitions of various
unsupervised and supervised methods such as PCA, MCD, clustering,
K-Nearest Neighbors, and Isolation Forest. In addition, some key
algebra concepts will be approached as a complementary explanation
of the models.

2.0.1 Linear Models

2.0.2 Principal Component Analysis (PCA)

The main objective in PCA is finding projections xn of data points that
xn are as similar to the original data points as possible, but which
have a significantly lower intrinsic dimensionality 1. More precisely, an 1 M.P. Deisenroth, A.A. Faisal, and C.S.

Ong. Mathematics for Machine Learning.
Cambridge University Press, 2020. ISBN
9781108470049

i.i.d. dataset is considered X = {x1, ..., xn}, xn ∈ RD, with mean 0 that
possesses the data covariance matrix.

S =
1
N

N

∑
n=1

xnxT
n (2.1)
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This conduct us to a low-dimensional reduced representation of xn,
from where the projection matrix’s obtained:

zn = BTXn ∈ RM (2.2)

B := [b1, . . . , bM] ∈ RD×M (2.3)

The aim is to find projections x̃n ∈ RD so that they are as similar to the
original data xn and minimize the loss due to compression.

Figure 2.1: PCA Graphic representation.

PCA has long been used for multivariate outlier detection. It
considers the sample principal components, y1, y2, . . . , yn, of an
observation x. The sum of the squares of the standardized principal
component scores,

n

∑
i=1

y2
i

λi
=

y2
1

λ1
+

y2
2

λ2
+ . . . +

y2
n

λn

is equivalent to the Mahalanobis distance of the observation x from
the mean of the sample, where 2 2 Mei-Ling Shyu, Shu-Ching Chen,

Kanoksri Sarinnapakorn, and LiWu
Chang. A novel anomaly detection
scheme based on principal component
classifier. Technical report, Miami Univ
Coral Gables Fl Dept Of Electrical and
Computer Engineering, 2003

T2 =
n

n + 1
(X− X)′S−1(X− X)

at the same time, distributed as

(n− 1)p
n− p

Fp,n−p

Since the sample principal components are uncorrelated, under the
normal assumption and assuming the sample size is large, it follows
that

q

∑
i=1

y2
i

λi
=

y2
1

λ1
+

y2
2

λ2
+ . . . +

y2
q

λq
, q ≤ p

has a chi-square distribution with the degrees of freedom q. For this to
be true, it must also be assumed that all eigenvalues are distinct and
positive

λ1 > λ2 > . . . > λp > 0.

Given a significance level α , the outlier detection criterion is given if

q

∑
i=1

y2
i

λi
> χ2

q(α)

where X2
q(α) is the upper α percentage point of the chi-square

distribution with the degrees of freedom q.
To establish a detection algorithm using PCA, the model performs

on top of the correlation matrix of the normal group. The correlation
matrix is used because each feature is measured in different scales. In
the proposed scheme, the principal component classifier (PCC) consists
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of two functions of principal component scores, one from the major

components which contain most of the variance, ∑
q
i=1

y2
i

λi
and another

from the minor components ∑
p
i=p−r+1

y2
i

λi
where r indicates the minor

components used in PCC whose variances or eigenvalues are less than
0.2 that indicates less correlation among the features.

The number of major components is calculated by knowing the
amount of the variation in the data that is considered by these
components. The classification method computes the principal
component scores of each observation for which the class is to be
determined between outliers and inliers.

• Classifies x as an outlier if ∑
q
i=1

y2
i

λi
> c1 or ∑

p
i=p−r+1

y2
i

λi
> c2.

• Inlier ∑
q
i=1

y2
i

λi
≤ c1 and ∑

p
i=p−r+1

y2
i

λi
≤ c2.

where c1 and c2 are outlier thresholds such that the classifier would
produce a specified contamination rate.

2.0.3 Minimum Covariance Determinant (MCD)

The Minimum Covariance Determinant (MCD) method [Rousseeuw,
1984] is a highly robust estimator of multivariate location and scatter.
Developed as a distributional fit to Mahalanobis distance which uses a
robust shape and location estimate.

Given n data points, the MCD of that data is the mean and covariance
matrix based on the sample of size h(h ≤ n) that minimizes the
determinant of the covariance matrix 3. 3 Peter Rousseeuw. Least median of

squares regression. Journal of The
American Statistical Association - J AMER
STATIST ASSN, 79:871–880, 12 1984. doi:
10.1080/01621459.1984.10477105

J =
{

set of hpoints :
∣∣∣S∗J ∣∣∣ ≤ |S∗K| ∀ sets K s.t. #|K| = h

}
where #|ω| defines the number of elements in set ω

X̄∗J =
1
h ∑

i∈J
xi

S∗J =
1
h ∑

i∈J

(
xi − X̄∗J

) (
xi − X̄∗J

)t

(2.4)

MCD =
(

X̄∗J , S∗J
)

(2.5)

The value h can be thought of as the minimum number of points
which must not be outlying. The MCD has its highest possible
breakdown at h = [ (n+p+1)

2 ].
The raw Minimum Covariance Determinant (MCD) estimator with

parameter [ (n+p+1)
2 ] ≤ h ≤ n defines the following location and

dispersion estimates:
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1. µ̂0 is the mean of the h observations for which the determinant of
the sample covariance matrix is minimal

2. Σ̂0 is the corresponding covariance matrix multiplied by a constant
factor c0.

The concept of the MCD can be modified easily to fit the multiple
cluster setting. With a good initialization and a known number of
clusters g,the MCD can be found separately for each of the clusters.
The size of each cluster is determined by the number of points
which are closer to that cluster center than to any other cluster
center. The sizes of the clusters and the MCD samples will be ni

and hi = [ (n+p+1)
2 ]i = 1, . . . , g, respectively.

As a side note, the MCD estimator can only be computed when
h > p, otherwise the covariance matrix of any h-subset will be singular.
Since h ≥ [(n + 2)/2], this condition is certainly satisfied when n ≥ 2p.
To avoid the curse of dimensionality it is however recommended that
n > 5p.

The outlier detection method described here is not dependent on
any particular robust clustering algorithm. Any robust initialization
would presumably give similar results. Random starts could be used if
a condition is added to prevent the clusters from converging to a large
dataset shape.

The core of the MCD estimation algorithm is as follows 4: 4 Johanna Hardin and David Rocke.
Outlier detection in the multiple cluster
setting using the minimum covariance
determinant estimator. Computational
Statistics & Data Analysis, 44:625–638, 01

2004. doi: 10.1016/S0167-9473(02)00280-
3

• Let H1 be a subset of h points.

• Find XH1 and SH1 . (If det(SH1) = 0 then add points to the subset
until det(SH1) > 0.)

• Compute the distances d2
SH1

(xi, XH1) = d2
H1
(i) and sort them for

some permutation π such that,

d2
H1
(π(1)) ≤ d2

H1
(π(2)) ≤ · · · ≤ d2

H1
(π(n)) (2.6)

• H2 := {π(1), π(2), . . . , π(h)}

As a summary of all previous steps, the complete procedure for
calculating the MCDs for each cluster is as follows:

1. Use a clustering algorithm) to find an initial robust clustering of the
data.

2. From the initial clustering, calculate the mean and covariance of
each of the clusters. (Each point belongs to at least one cluster, use
the points belonging to a particular cluster to calculate its mean and
covariance in the usual way.)



mathematical preliminaries 23

3. Calculate the MCD to each cluster, based on the most recently
calculated mean and covariance, for each point in the dataset.

4. Assign each point to the cluster for which it has the smallest
MCD,thereby determining a cluster size (nj) for each cluster based
on the number of points that are closest to that cluster.

5. For each cluster, choose a “half sample” (hj = [(nj + p + 1) = 2]) of
those points with the smallest Mahalanobis distance from step 4.

6. For each cluster, compute the mean and covariance of the current
half sample.

7. Repeat steps 4–7 until the half sample no longer changes.

2.1 Proximity-Based method

2.1.1 Clustering-Based Local Outlier Factor

With the use of the outlier method CBLOF, the degree of a record’s
deviation can be determined, also known as anomalies. To compute
the CBLOF approach, a clustering algorithm is needed. In this work,
the squeezer algorithm is reproduced and introduced with the CBLOF
explanation. The |S| representation is utilized to denote the size of S,
where S in general, is a set containing some elements.

Definition 1 Let A1, ..., Am be a set of attributes with domains D1, ..., Dm,
respectively. Let the dataset D be a set of records where each record t : t ∈
D1 × . . .× Dm. The results of a clustering method applied to D are denoted
as C = {C1, C2, . . . , Ck} where Ci ∪ Cj = ∅ and C1 ∪ C2∪, . . . ,∪Ck = D,
where k represents the number of clusters5. 5 Zengyou He, Xiaofei Xu, and

Shengchun Deng. Discovering cluster-
based local outliers. Technical report,
Harbin Institute of Technology, Harbin
150001, P.R. China Department Of
Computer Science and Engineering, 2003

One of the major priorities while defining the cluster-based local
outlier algorithm is how to identify whether a cluster is large or small.
As discuss in the next definition:

Definition 2 Suppose C = {C1, C2, . . . , Ck} is the set of clusters in the
sequence that |C1| ≥ |C2| ≥, . . . ,≥ |Ck|. Given two numeric parameters α

and β, b is defined as the boundary of large and small clusters if one of the
following formulas holds:{

(|Cl |+ |C2|+ . . . + |Cb|) ≥ |D|∗α
|Cb| / |Cb+1| ≥ β

(2.7)

In that sense, the larger cluster is defined as: LC = Ci, |i ≤ b and the
set of small clusters is defined as SC = Cj|j > b. From the first formula,
most data points are identified in the data set as not outliers. Therefore,
clusters that hold a large portion of data points should be considered
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as large clusters. From the second formula is deducted that large and
small clusters should have significant differences in size. For instance,
if a k is added to β, the size of any cluster in LC is at least k times
greater than the clusters in SC.

Definition 3 Suppose C = {C1, C2, . . . , Ck} is the set of the clusters in the
sequence |C1| ≥ |C2| ≥, . . . ,≥ |Ck| and the meanings of α, β, b, LC and, SC
are the same as formalized in Definition 2. For any record t, the CBLOF of t
is defined as:

CBLOF(t) =

{
|Ci|∗ min (distance

(
t, Cj

))
, where t ∈ Ci, Ci ∈ SC and Cj ∈ LC for j = 1 to b

|Ci|∗ (distance (t, Ci) where t ∈ Ci and Ci ∈ LC
(2.8)

The CBLOF of a record is then determined by the size of its cluster,
and the distance between the record and its closest cluster, if the
observation lies in small clusters, it’s determined by the distance
between the record and the cluster it belongs to which provides
importance to the local data behaviour.

Let A1, ..., Am be a set of attributes with domains D1, ..., Dm,
respectively. Let the dataset D be a set of tuples where each tuple
t : t ∈ D1 × . . .× Dm. Let TID be the set of unique ID of every tuple.
For each tid ∈ TID, the attribute value for Ai of corresponding tuple is
represented as tidAi. Given a Cluster C and a tuple t with tid ∈ TID,
the similarity between C and tid is defined as:

Sim(C, tid) =
m

∑
i=1

(
Sup (ai)

∑aj∈VALi(C) Sup
(
aj
)) where tid.Ai = ai (2.9)

From the equation above is deducted that the larger the similarity is
between a tuple and an existing cluster, the bigger the probability that
this tuple belongs to it. This algorithm has n tuples as input that are
read in, and a Cluster Structure (CS) is constructed with the first tuple.

The similarity index is computed for all tuples in all existing clusters,
the largest value of similarity is then found, if the value is larger than
the given threshold, defined by s, the tuple will be put into the cluster
that has the largest value of similarity. The CS is also updated with the
new tuple. If the above condition does not hold, a new cluster must be
created with this tuple.

2.1.2 k-Nearest Neighbors

To denote the distance of point p, the next representation is used Dk(p)
from its kth nearest neighbor. The points are ranked on the basis of their
Dk(p) distance, leading to the following definition for Dk(n) outliers:
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Definition 4 6 Given an input data set with N points parameters n and k, a 6 Sridhar Ramaswamy, Rajeev Rastogi,
and Kyuseok Shim. Efficient algorithms
for mining outliers from large data sets.
volume 29, pages 427–438, 06 2000. doi:
10.1145/335191.335437

point p is a Dk
n outlier if there are no more than n− 1 other points p′ such

that Dk(p′) > Dk(p).

In other words, if the points are ranked according to their Dk(p)
distance, the top n points in this ranking are considered outliers.
Many metrics can be used such as the (“Manhattan”) or (“euclidean”)
distances for measuring the length between a pair of points. With the
previous definition4 for outliers, it is possible to rank outliers based on
their Dk(p) distances, outliers with larger Dk(p) distances have fewer
points close to them and are thus intuitively stronger outliers.

For this specific approach, the square of the Euclidean distance
is applied (instead of the Euclidean distance itself) as the distance
metric involves fewer and less expensive computations. The distance
is denoted between two points p and q by dist(p, q). A point
p in δ dimensional space is included by [p1, p2, . . . , pδ] and a δ

dimensional rectangle R by the two endpoints of its major diagonal:
r = [r1, r2, . . . , rδ] and r′ = [r′1, r′2, . . . , r′δ] such that ri ≤ r′i for 1 ≤ i ≤ n.
Let us denote the minimum distance between the point p and rectangle
R by MINDINST(p, R), where,

MINDIST(p, R) =
δ

∑
i=1

x2
i , where xi =


ri − pi if pi < ri

pi − r′i if r′i < pi

0 otherwise
(2.10)

Every point in R is at a distance of at least MINDINST(p, R) from p.
The maximum distance between the point p and rectangle R is denoted
by MAXDIST(p, R). That is, no point in R is at a distance that exceeds
MAXDIST(p, R) from point p. MAXDIST(p, R) is calculated as follows:

MAXDIST(p, R) = ∑δ
i=1 x2

i , where

xi =

{
r′i − pi if pi <

ri+r′i
2

pi − ri otherwise

(2.11)

The minimum and maximum distance are defined between two
MBRs. Let and be two MBRs defined by the endpoints of their major
diagonal ( and respectively) as before. The minimum distance is defined
between R and S by MINDIST(R, S). Every point in R is at a distance of
at least MINDIST(R, S) from any point in S (and vice versa). Similarly,
the maximum distance between R and S, denoted by MAXDIST(R, S)
is defined. The distances can be calculated using the following two
formulas:

MINDIST (R, S) = ∑δ
i=1 x2

i , where

xi =


ri − s′i if s′i < ri

si − r′i if r′i < si

0 otherwise
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MAXDIST (R, S) = ∑δ
i=1 x2

i , where xi = max
{∣∣s′i − ri

∣∣ ,
∣∣r′i − si

∣∣}

2.2 Angle-Based Outlier Detection

This algorithm is proposed to not only use distance but primarily the
directions of distance vectors. Comparing the angles between pairs of
distance vectors to other points helps to discern similar data points
between outliers.

Figure 2.2: intuition of ABOD.

This idea is motivated by the following intuition. Consider a simple
data set as illustrated in Figure 2.2. For a point within a cluster, the
angles between the difference vectors of pairs of other points differ
widely. The variance of the angles will become smaller for points
at the border of a cluster. 7However, even here the variance is still 7 Hans-Peter Kriegel, Matthias Schubert,

and Arthur Zimek. Angle-based outlier
detection in high-dimensional data. In
Proceedings of the 14th ACM SIGKDD
international conference on Knowledge
discovery and data mining, pages 444–452,
2008

relatively high compared to the variance of angles for real outliers.
Here, the angles of most pairs of points will be small since most points
are clustered in some direction.

As a result of these considerations, an angle-based outlier factor
(ABOF) can describe the divergence in the directions of objects relatively
to one another. If the spectrum of observed angles for a point is
broad, the point will be surrounded by other points in all possible
directions, meaning the point is positioned inside a cluster. If the
spectrum of observed angles for a point is rather small, other points
will be positioned only in certain directions. This means the point
is positioned outside of some set of points that are grouped together.
Thus, rather small angles for a point

−→
P that are rather similar to one

another imply that
−→
P is an outlier.

As an approach to assigning the ABOF value of any object in the
database D, a calculation of the scalar product of the difference vectors
of any triple of points (i.e., a query point

−→
A ∈ D and all pairs(

−→
B ,
−→
C )

of all remaining points in D{−→A }) normalized by the quadratic product
of the length of the difference vectors is computed, i.e. the angle is
weighted less if the corresponding points are far from the query point.
By this weighting factor, the distance influences the value after all, but
only to a minor part. Nevertheless, this weighting of the variance is
important since the angle of a pair of points varies naturally stronger for
a bigger distance. The variance of this value over all pairs for the query
point

−→
A constitutes the angle-based outlier factor of

−→
A . Formally:

Definition 5 Given a database D ⊆ Rd, a point
−→
A ∈ D, and a norm
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. : Rd −→ R+
o . The scalar product is denoted by

ABOF(~A) =VAR~B,~C∈D

(
〈AB, AC〉

‖AB‖2 · ‖AC‖2

)

=
∑~B∈D ∑~C∈D

(
1

‖AB‖·‖AC‖
· 〈AB,AC〉
‖AB‖2·‖AC‖2

)2

∑~B∈D ∑~C∈D
1

‖AB‖·‖AC‖

−

∑~B∈D ∑~C∈D
1

‖AB‖·‖AC‖ ·
〈AB,AC〉

‖AB‖2·‖AC‖2

∑~B∈D ∑~C∈D
1

‖AB‖·‖AC‖


2

(2.12)

The algorithm ABOD assigns the angle-based outlier factor ABOF
to each point in the database and returns as a result the list of points
sorted according to their ABOF. Consider again the sample data set
in Figure 2.2. The ranking of these points as provided by ABOD is
denoted in Figure2.3 . In this toy example, the top-ranked point (rank 1)
is clearly the utmost outlier. The next ranks are taken by border points
of the cluster. The lowest ranks are assigned to the inner points of the
cluster.

Figure 2.3: Ranking assigned by ABOD.

Since the distance is accounted for only as a weight for the main
criterion, the variance of angles, ABOD is able to concisely detect
outliers even in high-dimensional data where LOF and other purely
distance-based approaches deteriorate in accuracy.

2.3 Isolation Forest

The Isolation forest method takes advantage of to anomalies’
quantitative properties: I) they are the minority consisting of fewer
instances and II) they have attribute values that are very different from
those of normal instances. In other words, anomalies are ‘few and
different’, which make them more susceptible to isolation than normal
points. A tree structure can be constructed effectively to isolate every
single instance. Because of their susceptibility to isolation, anomalies
are isolated closer to the root of the tree; whereas normal points are
isolated at the deeper end of the tree. This isolation characteristic of
trees forms the basis of our method to detect anomalies, and this is
called the ’Tree Isolation’ or ’iTree’. 8 8 Fei Tony Liu, Kai Ming Ting, and Zhi-

Hua Zhou. Isolation forest. In Proceedings
of the 2008 Eighth IEEE International
Conference on Data Mining, ICDM ’08,
page 413–422, USA, 2008. IEEE Computer
Society. ISBN 9780769535029. doi:
10.1109/ICDM.2008.17. URL https://

doi.org/10.1109/ICDM.2008.17

The proposed method, called Isolation Forest or iForest, builds
an ensemble of iTrees for a given data set, then anomalies are those
instances which have short average path lengths on the iTrees. There
are only two variables in this method: the number of trees to build and

https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
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the sub-sampling size. The iForest’s detection performance converges
quickly with a very small number of trees, and it only requires a small
sub-sampling size to achieve high detection performance with high
efficiency. Apart from the key difference of isolation versus profiling,
iForest is distinguished from existing model-based, distance-based, and
density-based methods in the following ways:

• The isolation characteristic of iTrees, which enables them to build
partial models and exploit subsampling to an extent that is not
feasible in existing methods. Since a large part of an iTree that
isolates normal points is not needed for anomaly detection; it does
not need to be constructed. A small sample size produces better
iTrees because the swamping and masking effects are reduced.

• iForest utilizes no distance or density measures to detect anomalies.
This eliminates the major computational cost of distance calculation
in all distance-based methods and density-based methods.

• iForest has a linear time complexity with a low constant, and low
memory requirement. To our best knowledge, the best-performing
existing method achieves only approximate linear time complexity
with high memory usage.

Figure 2.4: Isolation Visual Process.

• iForest has the capacity to scale up to handle extremely large
data sizes and high-dimensional problems with a large number
of irrelevant attributes.

The term isolation means ‘separating an instance from the rest of
the instances’. Since anomalies are ‘few and different’, therefore they
are more susceptible to isolation. In a data-induced random tree, the
partitioning of instances are repeated recursively until all instances are
isolated. To demonstrate the idea that anomalies are more susceptible
to isolation, we observe in Figure 2.4 that a normal point, xi, generally
requires more partitions to be isolated. The opposite is also true for
the anomaly point, xo, which generally requires fewer partitions to be
isolated.

Since each partition is randomly generated, individual trees are
generated with different sets of partitions. The path lengths are
averaged over a number of trees to find the expected path length.

Definition 6 Let T be a node of an isolation tree. T is either an external
node with no child, or an internal node with one test and exactly two daughter
nodes (Tl , Tr). A test consists of an attribute q and a split value p such that
the test q < p divides data points into Tl and Tr.

Given a sample of data X = {x1, . . . , xn} of n instances from a
d−variate distribution, to build an isolation tree, a recursively division
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over X by randomly selecting an attribute q and a split value p is
applied, until either:

• the tree reaches a height limit,

• |X| = 1 or

• all data in X have the same value.

An iTree is a proper binary tree, where each node in the tree has exactly
zero or two daughter nodes. Assuming all instances are distinct, each
instance is isolated to an external node when an iTree is fully grown,
in which case the number of external nodes is n and the number of
internal nodes is n− 1; the total number of nodes of an iTrees is 2n− 1;
and thus the memory requirement is bounded and only grows linearly
with n.

The task of anomaly detection is to provide a ranking that reflects
the degree of anomaly. An anomaly score is required for any anomaly
detection method. The difficulty in deriving such a score from h(x) is
that while the maximum possible height of iTree grows in the order of
n, the average height grows in the order of log n. 9 9 D.E. Knuth. The Art of Computer

Programming: Volume 3: Sorting and
Searching. Pearson Education, 1998. ISBN
9780321635785

Since iTrees have an equivalent structure to Binary Search Trees or
BST, the same analysis is used to estimate the average path length of
the iTree. Given a data set of n instances, the average path length of an
unsuccessful search in BST as:

c(n) = 2H(n− 1)− (2(n− 1)/n) (2.13)

where H(i) is the harmonic number and it can be estimated by
ln(i) + e. As c(n) is the average of h(x) given n, it’s then used to
normalise h(x). The anomaly score s of an instance x is defined as:

s(x, n) = 2−
E(h(x))

c(n) (2.14)

where E(h(x)) is the average of h(x) from a collection of isolation
trees. In the previous equation (2.14):

• when E(h(x))→ c(n), s→ 0.5

• when E(h(x))→ 0, s→ 1

• and when E(h(x))→ n− 1, s→ 0

Using the anomaly score s, the following assessment is concluded:

• if instances return s very close to 1, then they are definitely
anomalies.

• if instances have s much smaller than 0.5, then they are quite safe to
be regarded as normal instances.
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• if all instances return s ≈ 0.5, then the entire sample does not really
have any distinct anomaly.

2.4 Supervised Method - Support Vector Machine (SVM)

The SVM view starts by designing a particular function that is to be
optimized during training, based on geometric intuition; starting by
designing a loss function that is to be minimized on the training data.

Intuitively, and imagining a binary classification data set, which can
be separated by a hyperplane where in Figure2.5 every example xn (a
vector of dimension 2) is a two-dimensional location (x(1)n and x(2)n),
and the corresponding binary label yn is one of two different symbols.

Figure 2.5: Representation of a linear
separation of two categories, orange and
blue dots.

Given two examples represented as vectors xi and xj , one way to
compute the similarity between them is using an inner product (xi, xj),
so that the inner products are closely related to the angle between
two vectors. The value of the inner product between two vectors
depends on the length of each vector. Furthermore, the inner product
allows to rigorously define the orthogonality and projections which are
extensively used in this process. A linear partition is first considered,
splitting the space into two halves using a hyperplane. Let an example
x ∈ RD be an element of the data space. Consider a function 10 10 M.P. Deisenroth, A.A. Faisal, and C.S.

Ong. Mathematics for Machine Learning.
Cambridge University Press, 2020. ISBN
9781108470049

f : RD → R

x 7→ f (x) := 〈w, x〉+ b
(2.15)

The hyperplane that separates the two classes in our binary
classification problem is defined as:

{
x ∈ RD : f (x) = 0

}
(2.16)

The vector w is then specified as a vector normal to the hyperplane
and b the intercept. It can be derived that w is a normal vector to the
hyperplane by choosing any two examples xa and xb on the hyperplane
and showing that the vector between them is orthogonal to w as both
points are within the hyperplane creating a 90º angle to the w vector.

f (xa)− f (xb) = 〈w, xa〉+ b− (〈w, xb〉+ b)

= 〈w, xa − xb〉
(2.17)

Since xa and xb are chosen to be on the hyperplane, this implies that
f (xa) = 0 and f (xb) = 0 and hence (w, xa − xb) = 0. Knowing that two
vectors are orthogonal when their inner product is zero. Therefore, it’s
deducted that w is orthogonal to any vector on the hyperplane.
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When presented with a test example, the example’s classified as
positive or negative depending on the side of the hyperplane on which
it occurs. Therefore, to classify a test example xtest, the value of
the function f (xtest) is calculated and classify the example as +1 if
f (xtest) ≥ 0 and −1 otherwise. Thinking geometrically, the positive
examples lie “above” the hyperplane and the negative examples “below”
the hyperplane.

When training the classifier, it has to be ensured that the examples
with positive labels are on the positive side of the hyperplane,

〈w, xn〉+ b ≥ 0 when yn = +1 (2.18)

and the negative labels are on the other side represented by:

〈w, xn〉+ b < 0 when yn = −1 (2.19)

Both conditions can be simplified to a single equation,

yn (〈w, xn〉+ b) ≥ 0 (2.20)

For a dataset {(x1, y1), . . . , (xN , yN)} that is linearly separable, there
are infinitely many candidate hyperplanes, that solve our classification
problem without any (training) errors. To find a unique solution, one
idea is to choose the separating hyperplane that maximizes the margin
between the positive and negative examples. Figure2.6

Figure 2.6: Possible scenarios for
hyperplane separation.

The margin is represented by the distance of the separating
hyperplane to the closest example in the dataset, assuming that the
dataset is linearly separable.

Considering a hyperplane 〈w, x〉+ b, and an example xa as shown in
Figure 2.7 . Without loss of generality, the example xa is considered to
be on the positive side of the hyperplane, 〈w, xa〉+ b > 0. The distance
r > 0 of xa is then computed from the hyperplane by considering the
orthogonal projection of xa onto the hyperplane, which is denoted by
x′a. Since w is orthogonal to the hyperplane, the distance r is just a
scaling of this vector w. If the length of w is known, the scaling factor r
can be used to work out the absolute distance between x′a and xa. For a
vector of unit length (norm = 1) which is obtained by dividing w by its
norm, w

‖w‖ . Using vector addition, the next equation is calculated

xa = x′a + r
w
‖w‖ (2.21)

The positive example is preferred to be further than r from the
hyperplane, and the negative examples to be further than distance r (in
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the negative direction) from the hyperplane. Analogously, the objective
formulation is,

yn (〈w, xn〉+ b) ≥ r (2.22)

Figure 2.7: Primal Support Vector
Machine

Adding the assumption that the parameter vector w is of unit
length to our model, ‖w‖ = 1, where the Euclidean norm is used
‖w‖ =

√
w>w, allows a more intuitive interpretation of the distance r

since it is the scaling factor of a vector of length 1.
The objective is represented by,

max
w,b,r

r︸︷︷︸
margin

subject to yn (〈w, xn〉+ b) ≥ r︸ ︷︷ ︸
data fitting

, ‖w‖ = 1︸ ︷︷ ︸
normalization

, r > 0,
(2.23)

which says that the margin r maximization is prioritized while
ensuring that the data lies on the correct side of the hyperplane.

Derivating (2.23), and by observing that the only interest lies in the
direction of w and not its length, leads to the assumption that ‖w‖ = 1.

This scale is chosen ensuring that the value of the predictor 〈w, x〉+ b
is 1 for the closest example. It also denotes the example in the dataset
that is closest to the hyperplane by xa. Since x′a is the orthogonal
projection of xa onto the hyperplane, it must by definition lie on the
hyperplane,

〈
w, x′a

〉
+ b = 0 (2.24)

By substituting (2.21) into (2.24), it’s obtained〈
w, xa − r

w
‖w‖

〉
+ b = 0 (2.25)

Exploiting the bi-linearity of the inner product,

〈w, xa〉+ b− r
〈w, w〉
‖w‖ = 0 (2.26)

Observe that the first term is 1, by our assumption of scale,
〈w, xa〉 + b = 1 knowing that 〈w, w〉 = ‖w‖2. Hence, the second
term reduces to r‖w‖. Finally obtaining,

r =
1
‖w‖ (2.27)

Combining the margin maximization with the fact that examples
need to be on the correct side of the hyperplane (based on their labels)
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gives us

max
w,b

1
‖w‖

subject to yn (〈w, xn〉+ b) ≥ 1 for all n = 1, . . . , N
(2.28)

The squared norm is often minimized, and it also includes a constant
1
2 that does not affect the optimal w, but yields a tidier form when the
gradient’s computed. Then, the objective becomes

min
w,b

1
2
‖w‖2

subject to yn (〈w, xn〉+ b) ≥ 1 for all n = 1, . . . , N
(2.29)

This last equation is known as the hard margin SVM. The reason for
the expression “hard” is because the formulation does not allow for
any violation of the margin condition.

2.4.1 Linear Kernel

In the binary classification setting, let ((x1, y1)...(xn, yn)) be the training
dataset where xi are the feature vectors representing the instances (i.e.
observations) and yi ∈ −1,+1 be the labels of the instances. Support
vector learning is the problem of finding a separating hyperplane
that separates the positive examples (labeled +1) from the negative
examples (labeled −1) with the largest margin.

The margin of the hyperplane is defined as the shortest distance
between the positive and negative instances that are closest to the
hyperplane. The intuition behind searching for the hyperplane with
a large margin is that a hyperplane with the largest margin should be
more resistant to noise than a hyperplane with a smaller margin. 11 11 Vasileios Apostolidis-Afentoulis. Svm

classification with linear and rbf kernels.
07 2015. doi: 10.13140/RG.2.1.3351.4083Figure 2.8 represents the decision function and boundaries for each

kernel. In this work the linear kernel is discussed, as it represents the
method used in our practical case.

2.5 Performance Metrics

For the evaluation of the different methods used in this work, the main
focus will be on three standard performance indicators, precision, recall,
and F-Score.
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Figure 2.8: SVM and the decision
boundary drawn by the different kernels.
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Figure 2.9: Confusion Matrix

For illustration purposes, the following simple setting is considered:
each observation is associated with a binary label which accounts for
the correctness of the object. In addition, the model produces a result
or a prediction indicating whether it believes the object to be correct
or not. The experimental outcome is conveniently summarised in a
confusion table that classifies the results in four different groups.

In Figure 2.9 the + and − symbols represent the correct and incorrect
classification of the predictions, where TP stands for True Positive, FN
False Negative, FP False Positive and TN True Negative.

From the previous definitions, one can compute the precision p and
recall r:

p =
TP

TP + FP
r =

TP
TP + FN

(2.30)

Taking the (weighted) harmonic average of precision and recall leads
to the F-Score:

Fβ =
(

1 + β2
) pr

r + β2 p
=

(
1 + β2) TP

(1 + β2) TP + β2FN + FP
. (2.31)

Both precision and recall have a natural interpretation in terms of
probability. Indeed, precision may be defined as the probability that
an object is relevant given that it is returned by the system, while the
recall is the probability that a relevant object is returned:

p = P(label = + | pred = +) r = P(pred = + | label = +) (2.32)

This may seem like a trivial reformulation. However, there is
a big semantic difference: in the original formulation, p and r are
just formulas calculated from the observed data; in the probabilistic
framework, the data D = (TP, FP, FN, TN) actually arises from p and r,
which are parameters of a (primitive) generative model. Thus, the usual
expressions (2.30) arise only as estimates of these unknown parameters.
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3.1 Feature Selection

The feature selection process was based on different statistical methods,
that allowed to understand which variables are more relevant compared
to the response feature.

The first subset of data consists of a list of filters applied to the
original data set of 200 columns, obtaining 51 main characteristics.
From these fields, the dataset is pre-filtered by three key categories,
service type, rate type, and category type. As a result, a cluster of
hardware information is obtained that gathers all prices of various asset
models from where the standard cost is pulled as a basis for classifying
outliers. The subsequent data sets get divided into groups of models
and service subcategories from each type of hardware.

The first process started by comparing the business expertise on
selecting the features used by the SMEs (Subject Matter Experts) to
detect the anomalies for this particular phenomenon. Out of 9 variables
of the original data set were extracted from the database for this
application’s purpose. Each variable is described in the following
list:

• Model: Represents the type of machine/hardware that is being used
for providing network services.

• Charges: Total cost in dollars, that is paid in a specific recurrent
period of time.

• Country.
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• Geography: The company divides the different regions into five
different geographies, they represent a higher hierarchy of country
division.

• Service Type: The type of service that is being required by the client
is within the network scope.

• Account: Client name or unique code that identifies a client in the
system.

• Price upper boundary: Highest limit of price for any specific asset.

• Price lower boundary: Lowest limit of price for an specific asset.

• Item Reference: Short description of an asset in terms of
characteristics, machine type, service, composition, etc.

Our variables are divided into two wider groups, 3 continuous
variables which are closely related to the price and its behaviours, and
6 discrete features that categorize each of the observations in distinct
classes depending its value.

Finally, the discrete response feature, which is not available in the
original dataset is then defined by the unsupervised approach, later
explained in the next chapter 4. It is essential to mention that the
response feature consists of a binary classification of an outlier versus
an inlier. An outlier behavior is mostly driven by the cost assigned to
its observation; when an average normal range is defined, the outliers
are caught as they distance from the average limit range.

3.1.1 Statistical Measures

The Pearson Correlation was initially used as a metric to define which
variables showed a greater relationship towards the price (charge)
variable. In addition, any type of collinearity between them needs to be
captured, so those features would be removed from the input variables.

The Pearson correlation function is applied in the original data
set containing the nine features to see the percentage of relationship
between them. Five Variables showed a strong collinearity, meaning
that those can be linearly predicted from the others with a substantial
degree of accuracy. Therefore, those are not included as input variables
into the model.

The first group showing this phenomenon was the charge feature
versus the lower and upper ranges, each having more than 85% of
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the relationship. (88% - Lower range , 92% - Upper range). The only
variable considered in the model was the charge one, representing a
better standard cost behavior.

Figure 3.1: Geography categories

The next group is different due to their nature, geography, country,
and account are each discrete variables, a business statement is applied
for the selection process, where it states that most of the prices variate
depending on its geography and not necessarily on its country. Neither
accounts, as the client does not determine if they are more prone to
receive outliers, those factors are mainly given to the type of service,
items and geography where the client is located. Figure 3.1

Charges Model Geography Service Type

Charges 1.00 0.30 0.01 −0.43
Model 0.30 1.00 −0.03 −0.78

Geography 0.01 −0.03 1.00 0.07
Service Type −0.43 −0.78 0.07 1.00

Table 3.1: Pearson Correlation

The subsequent data sets get divided into groups of models and
service subcategories, as well as geographies from each type of
hardware. The input for the algorithm becomes the rate of the model
group, including the categorical features previously mentioned, which
in this phase would be transformed into numeric variables depending
on each group.

3.2 Variable Transformation

The only transformation applied to the subset due to the fact that most
of them are discrete features, which is a dummy treatment which converts
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a categorical variable into a dummy/indicator feature by supplying a
binary category (0, 1) depending on its frequency of appearance.

A dummy variable is often used to distinguish different treatment
groups. For this particular implementation, it’s applied as a binary
feature (0, 1) where an invoice for the geography category is given a
value of 1 if they are in the "US" group or a 0 if they belong to any
other geography. The Dummy treatment is very useful as it enables to
use a single regression equation to represent multiple groups. Doing
so, the separation of equation models for each subgroup is not needed
anymore, as the dummy variables act like ‘switches’ that turn various
parameters on and off in the model equation. Another advantage of a
binary-coded variable is that even though it is a nominal-level variable
it can be treated statistically as an interval-level variable.

Dummy variables are incorporated in the same way as quantitative
variables are included in the regression model. For example,
considering on predicting the price of an invoice based on our discrete
variables:

• Geography

• Service Type

• Model

The model with the original features would be:

Price = β0 + βGeography + βServiceType + βModel (3.1)

Applying the treatment to the discrete variables, the model is:

Price = β0 + βUS + βEurope + βLatinAmerica + βCanada + βAsiaβModel1 + . . . + βModeln (3.2)

In the model, US = 1 when an invoice belongs to that region and
US = 0 when the the invoice has a different location from US. βUS can
be interpreted as the difference in price between the distinct regions,
holding all other variables constant.

Let us remember that our objective of using the unsupervised
approach, later described in the next chapter, is to generate our response
variable, which determines when an invoice is considered an anomaly
versus those that are not. As stated before, most of this behavior is
driven by the price in cooperation with the three discrete factors. The
dummy transformation has modified the model so far in increasing the
number of input features ingested to the model. However, it increases
the discrete features’ explanation, understanding which category from
each class is the most significant based on the data. The first approach
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contained four different variables, while the transformed approach
contains 57 features. Despite the increase of variables, this did not show
a significant impact of performance in the model.
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The model selection requires a broader scope of outlier algorithms
to be considered. This group was separated into four higher groups
that were explained previously in chapter 2

From the wide variety of models being provided by each category,
one of them was finally selected after extensive testing by comparing
the contamination rate that simulates the same percentage provided
by the business experts. It was also considered to compare a small
subset of data labeled by the SMEs in which four different performance
metrics known as accuracy, recall, precision, and F1 metrics where
considered.

In the next subsections, the process of modeling is defined for
the unsupervised approach that was first selected from the previous
unsupervised categories mentioned above. The labeling method and
training of the second supervised approach will be then specified.

4.1 Mathematical Description

Traditionally, as for any machine learning implementation. There’s
always a tendency to train a model based on historical information
to calculate the best parameters, using a set of labels provided by the
experts. This process is mostly utilized for supervised methods, which
require the dependent variable predefined, so the model understands
and learns from it.
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When applied to real data, some cases do not contain enough data
labeled or even an endogenous feature for the model to train. In such
cases, the first method to use is an unsupervised algorithm that allows
the user to label the data based on its behavior, also depending on the
prediction problem.

In this work, An unsupervised method is first used allowing to
reproduce enough labels as the prediction problem relies on outlier
detection, which can also be determined as a binary classification with
a particular and well-studied phenomenon. Once the unsupervised
method is applied and reveals the outcome, the binary labels
representing y0 = inlier and y1 = outlier; are then reviewed by a
group of business experts who provide their input. This feedback in
hand with the algorithm’s labeling process allows us to recreate enough
labeled information to train a supervised method.

4.1.1 Unsupervised Method: Minimum Covariance Determinant (MCD)

The first assumption is that the data’s stored in an n× p data matrix
X = (x1, . . . , xn)t with xi = (xi1, . . . , xip)

t the ith observation. Hence n
stands for the number of observations and p for the number of variables.

To illustrate, the first step is defining the dataset of 113 features (once
transformed into dummy variables)3. hence p = 113. In figure 4.1 two
of the variables from the original dataset (invoice cost and geography)
are illustrated before the transformation process, together with the
classic and the robust 97.5% tolerance ellipse.

Figure 4.1: Invoice cost and Geography
variables with classical and robust
tolerance ellipse

The classical tolerance ellipse is defined as the set of p-dimensional
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points x whose Mahalanobis distance is defined as follows:

MD(x) =
√
(x− x̄)tS−1(x− x̄) (4.1)

The Mahalanobis distance MD(xi) should tell us how far away xi is
from the center of the cloud, relative to the size of the data points. On
the other hand, the robust tolerance ellipse in Figure 1 which is based
on the robust distance

RD(x) =
√
(x− µ̂MCD)

t Σ̂−1
MCD (x− µ̂MCD) (4.2)

that is much smaller and encloses the regular data points. Here, µ̂MCD
is the MCD estimate, and Σ̂MCD the MCD covariance estimate. The
robust distances exposed in Figure 4.2 (b) now clearly spot 3 outliers
while chart (a) spots only 1 outlier.

Figure 4.2: (a) Mahalanobis distance VS
(b) MCD robust distance applied to same
sample dataset.

This illustrates the masking effect: classical estimates can be
positively affected by outlying values that diagnostic tools such as
the Mahalanobis distance can no longer detect. Robust estimators are
required to get a more reliable detection of such potential outliers. The
MCD estimator is considered one of those.

4.1.2 Supervised Method: Support Vector Machine (SVM)

As mentioned previously, the minimum covariance determinant method
allows us to identify the observations that are considered as anomalies,
a.k.a outliers. One step of the process that does not involve a
mathematical approach is the expert’s feedback, where the data points
reviewed by them manually are then retrieved. The data is prepared
and displayed to the business into the different categories adding the
labels predicted by the MCD model.

Once the feedback and selection process are completed, the next
phase is the Support Vector Classifier’s training.
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The same initial four variables described before in chapter 3 are
considered as a starting point. Once transformed, the features are
ingested in the Support Vector classifier using a linear kernel. In figure
4.2 the separation between the two categories is shown, outliers and
inliers depend on a linear separation mainly due to the cost assigned
to the invoice in contrast to the discrete variables. This behavior allows
to specify a linear kernel as the best method for classification within
the SVM.

Figure 4.3: Support Vectors from Linear
Kernel applied to sample data

The next process leads to the testing phase using 20% of the
previously separated data through the cross-validation process (80

- 20), where the model is evaluated and analyzes the support vectors
calculated as the boundaries to separate both classes 4.3. The algorithm
is saved once it reaches the same or higher precision and performance
than the MCD algorithm.

Finally the last prediction is performed as the model gets deployed
into a production environment for business use.

4.2 Process Diagram

In the next diagram 4.4 each of the steps previously explained
in the mathematical description are summarised, including the
data engineering process of collecting and ingesting the data and
deployment, until production.
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Figure 4.4: ML Process Workflow





5 Results

As it was stated in the modeling chapter 4 , the MCD model had the best
results in terms of accuracy as well as adjusting to the contamination
rate provided by the experts, once compared to the other models.
This results are shown as a reference in the tables below, where the
MCD metrics are compared to the results of the second best approach,
Isolation Forest, which precision drops significantly.

Precision Recall F1-Score Support

Inlier 0.95 1 0.97 7581
Outlier 0.90 0.49 0.63 369

Table 5.1: MCD Metrics

Precision Recall F1-Score Support

Inlier 0.94 0.98 0.96 7266
Outlier 0.67 0.37 0.48 684

Table 5.2: Isolation Forest Metrics

From the hypothesis previously stated in the work, it’s concluded
that the model and data process were able to show a good relationship
in the variables versus the outlier’s behavior getting as a result, good
precision and performance of the process.

In addition, regarding the second hypothesis, which relates to having
a supervised method that could use as input the labels from the
unsupervised approach. It’s shown that this fact was proven once
the experts reviewed the labels; these became the input characteristics
to our support vector machine increasing the percentage of accuracy
from the previous MCD model, as shown in the next table.

Precision Recall F1-Score Support

Inlier 1.0 1.0 1.0 7568
Outlier 0.94 0.97 0.96 382

Table 5.3: Support Vector Machine
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6.1 Conclusions

Since the historical data provided from the business did not contain
labels identifying the inliers VS outliers, it was decided to select an
unsupervised model that was able to simulate the expertise of an
SME, replicating the selection process. The MCD model has proven to
replicate this selection process with the highest accuracy from the wide
variety of unsupervised approach that were described in chapter 2.

Even though a small subset of labels was received initially to test the
unsupervised methods, this subset did not represent our universe as it
was only representing a unique group of models due to the sampling
selection. However, after implementing the MCD method and the
expert’s feedback on the model’s output, it was decided to train a
supervised model representing the universe of the different categories
contained in the discrete features and the continuous variable.

Some of the outcomes to consider while applying a machine learning
method to an unlabeled approach are unsupervised algorithms that
help provide a massive tagging with less manual effort due to its
implementation process. Unsupervised methods are pretty good at
finding patterns within the data but are not as consistent as supervised
approaches. One suggestion that came out of this work is that data
scientists can leverage value using these approaches, mainly on the
massive tagging process, which is one of the most common problems
encountered in real data.
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6.2 Future Work

• Evaluate the MCD model, dividing the dataset on categories and
run parallel algorithms for each specific model category and cost.

• Compare results versus the iterative parallel approach and the
current transformation method applied to the Minimum Covariance
Determinant.

• Augment the descriptive analysis to apply feature engineering that
allows increasing the predictive capability of the model.

• Create process documentation that allows the scalability of the
method and ease solving problems such as the amount of data,
categories, and the odds of having labeled data.
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