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Abstract 

 This document presents the design of a successive approximation register (SAR) and a digital to 

analog converter (DAC). The two circuits are designed, synthesized, and implemented in layout using 

TSMC 180nm technology. The DAC has a Charge-Scaling Capacitors architecture and uses a switching 

scheme different to the conventional one, which improves the power consumption of the circuit. These 

modules are used in a low power 10-bit ADC and are designed for Biomedical applications.   

 

The SAR design is synthesized using a clock with a frequency of 250 MHz, the total power 

consumption of the SAR is 22045.030 uW. A testbench is designed to verify the functionality of the SAR 

by testing several cases of interest. 

  

The base capacitance of the DAC is 1 pF. The functionality of the DAC is tested using a mixed 

signal simulator and a testbench with the required circuit. This also includes the Verilog model of the SAR 

block. The testbench is able to apply single conversions test case and a ramp-test case, in which all the 

possible inputs to the DAC are tested sequentially. 
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1. ADC for Biosensor Applications 

1.1. Project Introduction 

This project, together with  the designs presented in  (Castañeda Villalpando, 2021) and  

(Gonzalez Ornelas, 2021), are developed with the intention of designing a functional 10 bit Low 

Power SAR ADC for biomedical purposes using TSMC 180nm technology. Each of these works 

contains a report about the design of different modules that together conform the ADC. The last 

chapter of this document focus on the process of integrating all the ADC modules, and the 

functional results that were obtained. 

Biomedical applications have special requirements to work as smoothly as possible. One 

of them is to have a design as small as possible so that the chip is the least intrusive to user. That 

is the reason why a VLSI technology, like TSMC180 nm, is used. Another requirement for 

biomedical purposes is to have a low power design, since the chip is going to work with a battery, 

and it is expected to have a relative long life. Taking these in consideration, an architecture for a 

low power SAR module and DAC are proposed and develop in this document. 

1.2. The Process of Analog to Digital Conversion  

ADCs or analog to digital converters translate analog signals, which are characteristic of 

most phenomena in the world, into a digital signal, to be processed in digital systems (Floyd, 

2014). Since most of the signals are originally analog and signal processing uses digital signals in 

current electronics design, data converters are used in electronic circuits at the interface between 

analog and digital world. ADC play a fundamental role in most of the applications, such as 

industrial, telecommunications, automotive, medical, etc. 

The process of data conversion can be explained in four steps: sampling, analog to digital 

conversion, digital signal processing, and digital to analog conversion [6]. These steps are shown 

in Figure 1. 
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Analog signal Analog signal 

 

Figure 1: Analog to digital and digital to analog signal conversion process. 

Sampling is the process that takes the value of the input signal every certain amount of time 

to have enough information of the input signal. This process converts an analog signal into a series 

of steps (like in a stairs), each one representing the amplitude of the signal at an instant in time. 

The more samples are taken, more accurate is the waveform representation.  

The holding operation ensure the sampled value must be held constant for an instant 

defined, until the next sample is taken. This is necessary for the ADC to have time to process the 

sampled value. These sample and hold process results into a stairstep waveform that approximates 

the analog input signal, as is shown in Figure 2. 

Since ADCs produces a digital output, they have a limited number of values that it can 

detect depending on the number of bits of resolution of the system. The resolution divides the 

range of voltage that the ADC can detect in levels of voltages. The sampled signal must be rounded 

up to one of these levels in order to continue the conversion. This process is called quantification. 

Encoding is the process of converting the quantized signal into a series of binary codes that 

represent the amplitude of the analog input signal at each of the sample times. The ADC makes 

the codification in the time between sample pulses, or the time that sample and hold circuit is 

holding the sampled value. 
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Figure 2: analog signal and its stairstep approximation  

 

Digital Signal Processor (DSP) 

Digital signal processors (DSP) are microprocessor chips that specializes in digital signal 

processing. Their architecture is optimized for those applications and their goal is to process data 

in real time. The DSP stage of Figure 1 takes its input from the ADC and produces a digital output, 

that goes to a DAC for conversion back into an analog form. 

Digital to Analog Conversion 

Digital to analog conversion is the process of transforming the result of the digital 

processing into an analog signal to send to back to “real world”. Most of the DACs perform two 

basic functions: convert the digital input into an equivalent analog signal and then reconstructs the 

signal. 

1.3. SAR ADC Architecture 

There are several conversion techniques for analog signals to digital conversion. The 

proposal of this project uses a SAR ADC architecture. Figure 3 shows the main components of 

this architecture. The flow of an operation is that the circuit samples an input signal and compares 

it to several voltages that are generated by a DAC. The successive approximation register (SAR) 

controls the voltage of the DAC and saves the results of the comparison in a register. The output 

of register is the digital value of the sampled signal. 



 

 6 

 

Figure 3: Block diagram of a standard SAR ADC architecture 

Figure 3 shows the block diagram of a basic SAR ADC architecture. The main components 

of this architecture are a sample and hold circuit, a comparator, a DAC, and the SAR. 

As stated before, the SAR controls the voltage that the DAC outputs. It starts by assigning 

a 1 to the most significant bit (MSB). This is done because that is the half-way value of the voltage 

that the DAC works with. The next step is to compare the DAC voltage with the sampled input 

voltage. If the analog input is higher than the DAC’s voltage, the Comparator has an output of 1 

(or the equivalent analog voltage) that the SAR saves, and then the SAR will assign an 1 to the 

next significant bit, repeating the process. But if the sampled voltage is smaller than the original 

DAC’s voltage, then the SAR saves a 0, turn the MSB to 0 and assign a 1 to the next significant 

bit, starting the cycle again.  

A SAR ADC converts a bit in each cycle. The resolution of the ADC is the number of bits 

used to represent the analog signal. 
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1.4. Capacitive Split-Array DAC Architecture  

A SAR ADC needs a DAC to generate the voltages that will be compared against the input 

voltage. Since this project wants to be used in biosensor application, as stated in Section 1.1, our 

proposal must consume the least amount of power and must be as small as possible. For this reason, 

a capacitive split-array architecture for the DAC is selected. 

Most of the DAC architecture uses either resistors or capacitors as their main component 

to generate the different voltages that are needed. The difference between them is that resistors are 

elements that are constantly consuming power since they only work in a state (static power), 

meanwhile capacitors consume power depending on the state the capacitor is in (dynamic power). 

If the capacitor is charging, then it consumes power, but if it’s not charging then it does not. This 

behavior is a deciding factor to choose to use an architecture based on capacitors.  

The most common capacitor architecture that is used is called Charge-Scaling Capacitors 

which is shown in Figure 4.  

 
 

Figure 4:   Schematic diagram of Charge-Scaling Capacitor topology for a 10-bit 

resolution DAC (Savitha & Venkat Siva Reddy, 2018) 

 

 

The number of capacitors of Charge-Scaling Capacitor DAC defines the bits DAC works 

with. In this sense, Figure 4 shows the schematic of a 10-bits DAC. Each of the capacitor represents 

a bit, except for the last one that is used to provide the correct divisor factor in the inverting node. 

Each of the capacitor will switch between VSS and VDD, depending on what the SAR will assign 

to the control signals. This process will start from the MSB to the LSB.  
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The main problem with this architecture is that capacitor value of the MSB is 2n-1; where n 

is the DAC resolution. The bigger the resolution of the DAC, the bigger the difference between 

the capacitance of the capacitors and it scales exponentially. In the example of Figure 4, the MSB 

capacitor is 512 times bigger than the smallest one, i.e., the unitary capacitance Cu. Having large 

capacitors is not desirable because they are area-consuming, which is an important trade-off when 

designing a chip. The more area they take the more expensive they are, and they consume more 

power. 

To reduce the power consumption of DAC, the Capacitive Split-Array topology is utilized. 

It is shown in Figure 5. 

 

 
Figure 5: Schematic diagram of Capacitive Split-Array topology (Reyes et al., 2020) 

 

The architecture called “Capacitive Split-Array” reduces power consumption by dividing 

the capacitors in two arrays, one for the least significant bits (LSB) b0 to b4 and the other one for 

the most significant bits (MSB) b5 to b9. Both arrays have capacitors from the same magnitude, 

and this works because of the bridge capacitor between both arrays (Cbridge). The only difference 

between the arrays is that the one for the LSBs also has the extra capacitor to provide the correct 

divisor factor in the inverting node. The value of the bridge capacitor can be calculated using 

equation 1: 

𝐶𝑏𝑟𝑖𝑑𝑔𝑒 =
𝑆𝑢𝑚 𝑜𝑓 𝐿𝑆𝐵 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒

𝑆𝑢𝑚 𝑜𝑓 𝑀𝑆𝐵 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒
∗ 𝐶𝑢                          (1) 

Eq 1: Equation for calculating the bridge capacitor in Capacitive Split-Array architecture 

The DAC Capacitive Split-Array have all the benefits of the DAC Charge-Scaling 

Capacitors and uses smaller capacitors. The only disadvantage is that by adding the bridge 
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capacitor, the system stops having a linear behavior which could complicate mismatch fixing if 

the capacitor arrays are not properly balanced in silicon layout. 

 

1.5. SAR ADC Block Diagram 

 Figure 6 shows the block diagram of the 10-bits low power SAR ADC proposal of this 

work. 

 

 

 
Figure 6:  Block diagram of the proposed low power SAR ADC. 

 

 

 Comparing the proposal in Figure 6 against the basic architecture in Figure 3, there are 

several differences. In the proposal of this work, a SPI module is added to communicate the ADC 

module with another system. A bandgap module is used to generate a stable reference voltage that 

the array of capacitors uses. Since the proposal uses a dynamic comparator, a latch SR module is 

added to generate an output that the SAR module can understand. 
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1.6.  Functional Description of Low Power SAR ADC Block Diagram 

 The SAR ADC is made by different functional blocks. 

Table 1: SAR blocks description.  

 

Block Name Description 

Serial Interface The SPI module sends the ADC result to an external port, in serial 

format. 

Bandgap Reference This module supplies a reference voltage to the capacitor array. This 

module is supplied by 1.8V and provides a stable output of 900mV 

±500µV. 

Successive 

Approximation 

Register 

It controls the DAC and saves the conversion result of the analog signal 

into a 10-bits register. These 10-bits, named SAR_data_out [9:0], is 

the output that are sent directly to the SPI module and to external ports. 

Capacitor Array This module consists of a digital to analog converter block that 

generates voltages to be compared to two external signals, Vip and Vinn. 

It works in conjunction with the Latch SR, Comparator, and the SAR 

to convert the analog signal into digital. 

Comparator 
It compares the two external signals, Vip and Vinn, after they have been 

sampled by the Bootstrap Switches. It works in conjunction with the 

latch SR, SAR and capacitor array to convert the analog signal to 

digital. 

 

Latch SR 
After the comparison between Vip and Vinn has been finished, the Latch 

SR module converts the differential output signal, from the comparator 

to a single ended output. 
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2. Successive Approximation Register 

A Successive Approximation Register (SAR) is a digital module that is used in the process 

of converting an analog signal to a digital signal with the help of a comparator, a sample and hold 

circuit, and a DAC (Baker, 2010). The block diagram of a general SAR ADC is shown in Figure 

7. 

The SAR controls the voltage value that the DAC is providing, and this voltage is compared 

with an input voltage that is sampled by the sample and hold circuit. Depending on the result of 

the comparison, the SAR saves either a 1 or a 0 and then change their output B[n-1:0] to change 

the output voltage of the DAC (Vdac) to a bigger or smaller voltage. This process is repeated 

depending on the number of bits that DAC works with.  

 

 
 

Figure 7: Circuit for Analog to Digital Conversion with SAR 
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2.1. Flow Diagram of SAR Algorithm 

The functionality of the SAR is described in Figure 8. Variable b is the number of bits 

that the DAC works with, b is the resolution of the DAC. The variable n represents the iterations 

that the flow must be run. 

 

                    
 

Figure 8: Flow Diagram of SAR algorithm 
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For example, if an ADC is working with 4 bits of resolution, b = 4, and n always starts with 

a value of 1. The ADC starts by sampling and holding an input signal (Vin) which is going to be 

used to compare against the value of the DAC (Vdac).  

In the first cycle, the SAR assigns a 1 to the DAC in the position 4-1 = B3. In other words, 

the DAC receives a 10002. This value corresponds to half of the maximum voltage that the DAC 

can output, if the DAC works within the range of 0 to 1.8 V 10002 corresponds to 0.9 V. The 

comparator then compares Vin against the voltage of the Vdac (0.9 V). If Vin is bigger than 0.9 

V, the SAR saves a 1 in the position B3. If Vin is smaller than 0.9 V, the SAR saves a 0 in the 

position B3. For this example, Vin has a value of 1.125 V which means that the SAR saves a 1 in 

position B3 (1???2 where “?” stands for the bits that we have not converted yet). 

Since n is smaller than b, the continues with the second cycle by increasing n by 1. This 

means that the SAR assigns a 1 to the DAC in the position 4-2 = B2 and keep the previous value 

that was saved in position B3. Since in the previous comparison the SAR saved a 1, the DAC 

receives a 11002 which represents a voltage of 1.575 V. Since Vin is smaller than 1.575 V, the 

SAR saves a 0 in position B2 (10??2).   

Since variable n is still smaller than b, the conversion has not finish. In this cycle n has a 

value of 3. The SAR assigns a 1 to the position 4-3= B1 to the DAC. It receives a value of 10102 

as an input and outputs 1.125 V. The voltage of the DAC is equal to Vin which means that the 

SAR saves 1 in the position B1 (101?2). 

The conversion could end right now since the DAC has already reach a voltage that is equal 

to the input, but the system is not designed to reach to this conclusion. Therefore, a last cycle is 

needed. Now n = 4. The SAR assigns now a 1 to the DAC in the position 4-4 = B0. The DAC 

receives a 10112 which represents a Vdac of 1.2376 V. This voltage is bigger than 1.125 V (Vin), 

so the SAR saves a 0 in position B0 (10102). Finally, n is equal to b, which means that the 

conversion is finished.  
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2.2. SAR Implementation 

The SAR algorithm is modeled in Verilog by using a state machine that implements the 

algorithm shown in Figure 8. The proposed SAR works with 10 bits since that is the resolution of 

the proposed ADC. The inputs and the outputs of this module are:  

 

Table 2: Inputs and Outputs of the SAR module 

 

Name Direction Description 

SAR_clk Input Main Clock, works with 50 KHz  

SAR_nrst Input Reset, active in 0  

SAR_en Input Enable of the Module, 1 would enable 0 would turn 

off 

SAR_in Input This input is connected to the output of the 

comparator.  

SAR_ready Output This output indicates when the conversion is ready 

SAR_sampling Output This output indicates that the SAR is in the sampling 

phase. 

SAR_data_out[9:0] Output This bus represents the digital result of the 

conversion. It’s the main output. 

SAR_DAC_pos_#_out[1:0] 

# Represents the DAC 

switch number. 

Output These buses are the control signals which are 

connected to the non-inverting DAC input. After a 

reset, or at the start of a conversion, all of them start 

with a value of 01. Depending on the results of the 

comparator, this output could change to 002 or to 102.    

SAR_DAC_neg_#_out[1:0] 

# Represents the DAC 

switch number. 

Output These buses are the control signals that are connected 

to the inverting DAC input. After a reset, or at the start 

of a conversion all of them start with a value of 012. 

Depending on the results of the comparator, this 

output could change to 002 or to 102.    

 

Figure 9 shows the FPGA synthesis of the SAR module. In this schematic, which is 

generated by the Quartus synthesis tool, we can see all the modules that are included for the 

implementation.  
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Figure 9: FPGA synthesis schematic of SAR implementation 

 

The output signal SAR_sampling is added to control the bootstrap switches that samples 

the input signal (Vinp and Vinn) in the first cycle of a conversion. Since the ADC that we 

implemented is fully differential, this SAR provides the control signals for two DAC capacitive 

arrays. We use a low power switching scheme (this is explained in Chapter 3) that uses three 

references voltages for the capacitors instead of two (Zhu & Liang, 2015). This means that two 

bits are used to control each of the DAC bits, instead of only 1. That is the reason why all of control 

signals are 2-bit buses. These buses control the multiplexers that are connected to the capacitors 

and depending on the value of the control bus, it connects the capacitor to VDD (102), VCM (012) 

or VSS (002). This can be seen in Table 3. 

 

Table 3: Voltage reference applied to the capacitive DAC accordingly to control signals values. 

Control Signal 

Value 

Voltage 

Reference 

Voltage Label  

002 0 VSS 

012 0.9 VCM 

102 1.8 VDD 
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All the control signals start with a value of 012. From Table 3 we can see that this binary 

value corresponds to a Vref = VCM. After each conversion, the control signal of the positive DAC 

either go to 002 (VSS) or to 102 (VDD) for the corresponding bit depending on the result of the 

comparator, a 0 or a 1 respectively.  This happens because when a capacitor is connected to VSS 

the output voltage of that DAC increases, therefore if the result of the comparator is a 0, Vpos (the 

voltage that the positive DAC Outputs) must try to be bigger than the voltage Vneg (the voltage 

that the negative DAC Outputs). If a control signal bus for the positive DAC connects to VDD, 

the same control signal, but for the negative DAC, must connect to VSS, and vice versa.   

For example, if in the first conversion the comparator result gives a 1 that means that the 

Vpos is bigger that the Vneg, therefore the SAR sends a 102 to connect the positive DAC’s 

capacitor to VDD to make that Vpos lower and to the negative DAC a 002 to make that Vneg 

higher. What the SAR is trying to do is that Vpos and Vneg converge in almost the same value. 

This switching scheme is better explained in Chapter 3.  

 

2.3. Simulation of SAR module 

To simulate the functionality of the SAR module, a testbench is created. In this testbench, 

the inputs SAR_clk, SAR_en and SAR_nrst have the values to enable the SAR to work. The input 

SAR_in is the one that changes to verify that the outputs work correctly.  This simulation verifies 

that SAR can save the values that are given as input, that it can use SAR_sampling and SAR_ready 

in the correct moments, and that the control signals are working correctly depending on the input 

that is given. 

Test #1: In the first test, for half of the conversion cycle a 1 is given as an input to the 

SAR_in and after that it toggles to 0. The first outputs that we focus on are SAR_ready and 

SAR_sampling. SAR_sampling should have a value of 1 in the first cycle of each conversion cycle. 

SAR_ready should have a 1 when the conversion is ready and in a continuous process, SAR_ready 

is active before the next SAR_sampling becomes active. In Figure 10, the previous description can 

be seen in the blue signal for SAR_ready and in the pink one for SAR_sampling.  
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The next output that is focus on is SAR_data_out. We expect to see after each conversion 

that this output updates with the previous value of SAR_in, starting from the 3rd clock cycles. We 

can see how the output ends up with five 1’s and five 0’s, as intended.  

 

 
Figure 10: First part of simulation of Test 1 

 

The final output that we focus on are the control signals, SAR_DAC_pos_#_out and 

SAR_DAC_neg_#_out. In Figure 11, we can see that buses starts with a value of 01 (VCM), and 

for the first 5 bits that are converted (9 to 5) the values corresponding to the positive DAC 

(SAR_DAC_pos_[9-5]out) change to 10 (VDD), meanwhile SAR_DAC_neg_[9-5]_out change to 

the contrary value, 00 (VSS). This is the behavior that we expect for an input of 1 in SAR_in. For 

the next 5 bits, this behavior is the contrary since the input SAR_in was toggled to 0. In the Figure 

11 we can see how the control buses changes. 

 

 
Figure 11: Second part of simulation of Test 1, focusing on how the control buses changes 

depending on the input SAR_in 

 

Test #2: In the second test, the input signal SAR_in is toggled after each clock cycle. Since 

the first cycle is “sampling”, the output SAR_data_out starts with a 0. In Figure 12, we can see 

that the bus SAR_data_out ends with a value of 01010101012 as expected since SAR_in toggles 

after every clock cycle. 
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Figure 12: First part of simulation of Test 2, focusing on the input of the testbench 

 

The output SAR_DAC_pos_#_out also changes after each cycle to either 002 or 102, 

depending on the value of the input SAR_in. If SAR_in has a 1 SAR_DAC_pos_#_out, changes 

to 10 (VDD), else it changes to (VSS). SAR_DAC_neg_#_out has the contrary value than 

SAR_DAC_pos_#_out. We can see this behavior in Figure 13. 

 

 
Figure 13: Second part of simulation of Test 2 focusing on how the control buses changes 

depending on the input SAR_in 

 

Test #3: In this test we focus on doing two conversions, one after the other. The input signal 

SAR_in is toggling every two clock cycles, so we expect that the output is 10011001102 since the 

first cycle is for determining the sign of the analog input voltage. The result of the second 

conversion should be 00110011002 since it takes 3 cycles from the ending of the first conversion 

and the start of the next one. The inputs in those 3 cycles were 0112. In Figures 14 and 15, this 

behavior can be verified.  

 

 
Figure 14: First conversion of Test 3 
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Figure 15: Second conversion of Test 3 

 

We can see that the test was successful just by checking SAR_data_out in Figure 14 and 

Figure 15. In the Figures, 16 and 17, we can see how the control signals are acting. We can see 

that they are working correctly since we are already familiar of how they should act depending on 

SAR_in.  

 

 

 
Figure 16: Control signals in first conversion of Test 3, focusing on the control buses 

 

 
Figure 17: Control signals in second conversion of Test 3, focusing on the control buses 
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2.4. Logic Synthesis 

The SAR is synthesized using RTL Compiler of Cadence (RC). To perform the logic 

synthesis of the SAR, the design constraints are defined. This information is presented in the sdc 

file (Appendix B of this document). Some of the most important constraints are the next ones:  

• There’s only 1 clock (Main_CLK) that works with a period of 4000 picoseconds, 

that represents a frequency of 250 MHz 

• Both the input and output delay where 10% of the main clock’s period 

• The external driver is the buffer BUFFD12BWP7T. 

• The maximum transition is 65% of the clock’s period 

• The maximum capacitance is 6000 femtofarads 

• The maximum fanout is 50  

 

In the Figure 18 one can see the schematic diagram of the SAR synthesized using the 

technology of 180 nm of TSMC. 

 

 
Figure 18: Schematic diagram of synthesized SAR module using RTL Compiler (RC). 
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The results of the main report are the following (the units for time are ps. and fF for 

capacitance). 

 

 

 
Timing 
-------- 
 
  Clock Period 
---------------- 
Main_CLK 4000.0 
 
 
  Cost     Critical       Violating 
  Group   Path Slack TNS    Paths   
------------------------------------ 
C2C            937.0   0          0 
C2O            989.7   0          0 
I2C           2204.6   0          0 
I2O         No paths   0        
------------------------------------ 
Total                  0          0 
 
Instance Count 
-------------- 
Leaf Instance Count             241 
Sequential Instance Count        66 
Combinational Instance Count    175 
Hierarchical Instance Count      38 
 
Area 
---- 
Cell Area                          7555.878 
Physical Cell Area                 0.000 
Total Cell Area (Cell+Physical)   7555.878 
Net Area                           2031.993 
Total Area (Cell+Physical+Net)    9587.871 
 
Power 
----- 
Leakage Power                      0.245 uW 
Dynamic Power                      22044.785 uW 
Total Power                        22045.030 uW 
 
Max Fanout                         66 (SAR_clk) 
Min Fanout                         0 (n_0) 
Average Fanout                     2.3 
Terms to net ratio                 3.0 
Terms to instance ratio            3.2 

 

The Critical Path Slack is the longest time that it takes to reach from one point of the design 

to another. This period of times is calculated for different groups: register to register (C2C), 

register to output (C2O), input to register (I2C) and input to output (I2O). For this design, the slack 
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cannot be calculated for the cost group I2O since there is no input which reaches and output 

without passing before to a register. This is not strange; this happens because the design is based 

on a State Machine type Moore. All the inputs reach this structure, and according to the state in 

which it is and the input it receives it assigns an output.  

It is important that the design does not present any timing violation in any cost group, since 

lowest slack is the one that is going to be used to drive the synthesis. 

Another thing to notice is that the max fanout is the main clock signal with 66. This is 

acceptable since we haven’t added a clock tree to help improve the timing and diminish this factor.  

 

  



 

 23 

3. Digital to Analog Converter 

A digital to analog converter (DAC) is a device that converts a digital signal to an analog 

signal.  SAR ADCs need a DAC for creating the voltages that is compared against the input of the 

ADC every cycle (Weste & Harris, 2011). In our proposal, two DACs are used since the proposed 

ADC is differential, it has a positive input (Vinp) and a negative input (Vinn) as seen in Figure 6 

in Chapter 1. Both inputs work with 10 bits.    

3.1. DAC Architecture 

There are many architectures for DACs (Deng & Li, 2014; Singh et al., 2017), our proposal 

is based on the one called Capacitive Split-Array. DAC architectures based in capacitors are more 

power-consumption efficient than the ones that use resistances. Also, Capacitive Split-Array has 

the advantage of using smaller capacitors that other architectures like Charge-Scaling Capacitors 

(Savitha & Venkat Siva Reddy, 2018) .  

 

 
Figure 19: Ideal single ended 10-bit DAC using Split-Array architecture 

Figure 19 shows an ideal 10-bit DAC using Split-Array architecture. One can see that it 

can be divided in 2 equal arrays of capacitors that have values equals to 2 elevated to the power of 

0 to 4 (depending on the bit that they are representing). The array that represents the least valuable 

bits have an extra capacitor that goes directly to VSS with the value of the base capacitance (Cu). 

To determine the capacitance of the bridge capacitor (the capacitor that divides both arrays, 

between B5 and B4), Equation 1 is used: 

 

 𝐶𝑏𝑟𝑖𝑑𝑔𝑒 =
𝑆𝑢𝑚 𝑜𝑓 𝐿𝑆𝐵 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒

𝑆𝑢𝑚 𝑜𝑓 𝑀𝑆𝐵 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒
∗ 𝐶 (1) 
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The capacitors are switched to VDD or VSS depending on the value that SAR assign to 

them, to generate a voltage that is used to compare against the inputs of the ADC. 

 

  
Figure 20: Schematic of the implementation of the DACS in this project 

 

Figure 20 shows the proposal of the DAC module for the project. It consists of 2 Capacitive 

Split-Array, one for the positive input voltage, and one for the negative input voltage. As can be 

seen in Figure 20, capacitors can be switched to 3 signals, VDD, VCM or VSS, this is explained in 

section 3.2. Our base capacitance, Cu, is 1 pF. This value is chosen because it gives the best 

simulation results.  

3.2. Low Power Switching Scheme  

In the most basic Capacitive Split-Array architecture, the capacitors are switched between 

VDD or VSS. Figure 20 shows that the implementation of this project switches between 3 levels 

of voltage VDD, VSS, or VCM  because the proposal is doing a low power switching scheme 

(Reyes et al., 2020). 

The purpose of having 3 voltage levels is to make sure that all the changes of voltage that 

the capacitors do are no bigger than VDD/2. For example, if a capacitor is commuted from 0 V to 

1.8 V for a conversion, it must switch again to 0 to be ready for the next conversion. Each of these 

changes takes certain amount of power that depends on the initial and final voltage of the capacitor. 

If the difference between the initial and final voltage is smaller, then the power needed for each 

change is also lower.  
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By using 3 voltage levels instead of only VDD and VSS, a virtual ground is created in 

VCM and each change only have a difference of VCM volts (0.9 V), lowering the difference 

between the initial and final voltage and taking less power (Ginsburg & Chandrakasan, 2005).  

 
Figure 21: Diagram explaining the low power switching scheme for a 3-bit DAC 

 

Figure 21 shows how this switching scheme works for a 3-bit DAC. At the beginning all 

the capacitors are connected to VCM since that is the virtual ground, or the value in the middle of 

VDD voltage. In this phase, the DAC is connected to the inputs Vinp and Vinn since it needs to 

sample those voltage. To refer to the node that is connected to the comparators non-inverting input 

the name Vpos is used and for the node connected to the inverting input the Vneg is used.  
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After the sampling phase, Vpos and Vneg are disconnected from the inputs and the first 

comparison starts. If Vpos is bigger than Vneg, then the biggest capacitor of the positive DAC 

connects to VDD and the one of the negative DAC connect to VSS. This is because connecting a 

capacitor to VDD lowers the voltage of the node and connecting it to VSS makes it bigger. The 

SAR is trying to make that the voltage in both nodes converge in almost the same value.  

This process repeats depending on the number of bits that the DAC works with. After each 

cycle, the voltage of the nodes either increase or decrease by VDD/[2*2^(n)], where n is the cycle 

that is running. For example if in the first cycle (n = 1) Vpos is bigger than Vneg, then Vpos has 

to decrease its voltage 1.8/ [2*2^(1)] = 0.45 V, and Vneg add to itself the same 0.45 V by 

connecting the biggest capacitor of the negative branch to VSS. The SAR saves a 1 to its memory. 

If in the second cycle (n=2) Vpos is smaller than Vneg, then Vpos increases 1.8/ [2*(2^2)] 

= 0.225 V by connecting the next capacitor of the positive branch to VSS, meanwhile Vneg 

decreases the same amount. The SAR saves a 0 to its memory 

3.3. Transmission Gate Switch Design 

To manage the 3 different reference voltages and one output, an analog multiplexer circuit 

is needed. A simple transmission gate switch is used as a base to design this multiplexor.  
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Figure 22: Schematic of a simple transmission gate switch  

Figure 22 shows the schematic of a simple transmission gate switch. It consists of 2 pairs 

of nMOS and pMOS transistors. The inputs of the switch are Vin, and CK and the output is Vout. 

The switch receives a signal Vin and depending on the value of CK the output is either Vin or Z 

(high impedance).  

 

Table 4: Dimensions of the transistors used in the transmission gate switch. 

Transistor w/l 

M1 1.9u / 200n 

M2 760n / 200n 

M3 1.9u / 200n 

M4 1.9 / 200n 

 

The first pair of transistors are used to create an inverter for the signal CK. The second pair 

of transistors have their sources connected with the input Vin, and their drains are connected with 

Vout. CK is connected directly to the gate of the nMOS transistor, and the inverted CK signal is 

connected to the pMOS signal. When CK is driving a 1 (ideally since it’s an analog component) 

the nMOS and the pMOS is activated and Vin is able to pass to Vout. When CK is driving a 0, 

then neither of the transistors are working and Vout is connected to nothing.  
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Figure 23: Schematic of a 3 to 1 multiplexor 

Using 4 simple transmission gate switches a 3 input to 1 output multiplexer is created with 

2 Control signals (Figure 23).  The multiplexor functionality can be seen in Table 5 

Table 5. Truth table of the multiplexor 

 

Con2 Con1 Vout 

0 0 Vin1 

0 1 Vin2 

1 0 Vin3 

1 1 Vin3 

3.4. Layout of Multiplexer and DAC Module 

For creating the layout of the DAC module, the layout of the multiplexer is needed first to 

use as a base. After having this design, a second layout is designed using 20 multiplexers and the 

capacitors.   

All the transistors have their width modified by dividing the magnitude. The purpose of 

this is to have all of them of the same dimensions (w = 360n and l = 200n), and to only modify the 
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number of fingers that they use. For example, now the transistor M2 (see Table 4) has a w =360n, 

l = 200 and it consists of 2 fingers to have a final w of 760n (360n x 2 fingers). 

 

 
Figure 24: Layout of the multiplexer 4:1 using simple transmission gate switch. 

 

Figure 24 shows the layout of the multiplexer 4:1 using simple transmission gate switch.  

Most of the routing is in Metal 1, Metal 2, Metal 3 (for ports) and Poly All of the nMOS are laid 

in a single row, and below were all the pMOS also in a single row. 

The layout passes through DRC test and LVS test using Calibre from Siemens. The layout 

is clean of almost all DRC errors. The LVS results pass cleanly, giving us assurance that we pass 

to the complete layout.   

 

 
Figure 25: LVS result of multiplexer’s layout  

 

For the complete layout of the DAC, 2 equal arrays of capacitors are used. Since all the 

capacitors are multiples of Cu is possible to organize the capacitors in straight arrays of 16 x 4. 

The multiplexors are arranged in different positions surrounding these arrays to facilitate the 

connections between them.  
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Figure 26: Implementation of the layout of the DAC module 

 

 
Figure 27: LVS Test for the DAC 

 

Figure 26 shows us that the LVS test results are clean. After passing both LVS and DRC 

tests, the design is exported to a LEF file that is used in the logical synthesis. 
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4. SAR and DAC Integration 

SAR and DAC modules can now be simulated using a mixed signal simulator (see 

Appendix A) to verify that our designs work correctly. A testbench is created using the SAR 

module, the DAC module, an ideal comparator, ideal bootstrap switches, and several voltage 

sources so simulate the clock, the reset signal, the enable signal, and the input of the system.  

 
Figure 28: Schematic of the testbench of SAR and DAC module integration 

 

Figure 28 shows the schematic of the complete testbench that is used for simulating the 

functionality of the SAR and DAC modules. For the ideal comparator, a voltage dependent voltage 

source is used with a big gain, and in between the inputs a really big resistance is used. A small 

circuit to limit the output voltage is used, and 2 inverters are used to create a signal that could only 

change from 0 to 1.8 imitating a digital signal. For this testbench a clock signal with a period of 

20 µs is used, therefore 50 KHz of frequency.  

To verify that the testbench works correctly, 2 test are designed. In the first one, several 

input voltages are used to see what output we get. This process is repeated for several pairs of input 

voltages. The output bus of the SAR register SAR_data_out, is then converted to an analog signal 

again and is compared against the difference between the original inputs.  
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Figure 29: Simulation of conversion using the testbench 

 

Figure 29 shows the result of one of these simulations. Since SAR_data_out only changes 

when the conversion is ready, these signals are converted in a digital bus to see the value. In this 

example, an input signal of 1.5 V and 0.9 V is used for positive input and negative input respective, 

the result of the conversion should be 0.6 V. We can see that the blue and the purple signals are 

the voltage of the DAC outputs that are connected to the positive inputs (Vpos) and negative input 

(Vneg) of the comparator respectively.  These signals are that ones that are going to be changing 

depending on the result of the previous comparison.  

To know if this conversion is successful, we take the value of the bus SAR_data_out 

10101010102 and convert it to an analog signal. Although this is a 10-bit vector, the MSB only 

mean if the number is positive or negative, depending on if it MSB is a 1 or a 0 respectively. This 

also means that our resolution is 1.8/ (2^9) = 0.003515625 V per bit. If the number is positive, 

then the next bits are taken just as they are without modifying them. This is our case. For 

0101010102 this is in decimal 170 and multiplying it by the resolution 170*0.003515625 V = 

0.5976 V. Comparing it to the original difference voltage 0.6 – 0.5976 = 0.0024 V. This is less 

than the resolution, so it is an acceptable result for this case.  

For a negative result (MSB is 0), the process to convert SAR_data_out to an analog value 

is different. All the bits are negated (except the MSB) and after that the vector is converted to 
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decimals. That result is then multiplied times the resolution and then times -1 since it is a negative 

number.  

For example, if the result of SAR_data_out is 01010101012, the MSB indicates the 

conversation is negative. The rest of the vector is negated 1010101012 - > 0101010102, the is 

converted to decimal 170, and finally it is multiplied times the resolution to have a result of 0.5976 

V. Since the MSB was a 0, the previous result must be multiplied times -1, ending in a result of        

-0.5976 V. 

This test is repeated for several values and the results can be seen in Table 6. 

  

Table 6: Results of applying test 1 to several values 

Vinp 0.9 0.6 1.2 0.6 1.8 0.9 

Vinn 0.6 0.9 0.6 1.2 0.9 1.8 

Vdiff 0.3 -0.3 0.6 -0.6 0.9 -0.9 

Vout 1001010101 0110101010 1010101010 0101010101 1011111111 0011111111 

Binary 
conv 1010101 001010101 10101010 010101010 11111111 100000000 

Decimal 
conv 85 85 170 170 255 256 

Voltage 
out 0.298828125 

-
0.298828125 0.59765625 

-
0.59765625 0.896484375 -0.9 

Diff 0.001171875 
-

0.001171875 0.00234375 
-

0.00234375 0.003515625 0 

Error % 33% -33% 67% -67% 100% 0% 

 

Vinp 1.4 0.4 1.5 0.3 1.7 

Vinn 0.4 1.4 0.3 1.5 0.2 

Vdiff 1 -1 1.2 -1.2 1.5 

Vout 1100011100 0011100011 1101010100 0010101010 1110101010 

Binary conv 100011100 100011100 101010100 101010101 110101010 

Decimal conv 284 284 340 341 426 

Voltage out 0.9984375 -0.9984375 1.1953125 -1.198828125 1.49765625 

Diff 0.0015625 -0.0015625 0.0046875 -0.001171875 0.00234375 

Error % 44% -44% 133% -33% 67% 
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Vinp 0.2 1.8 0 1 

Vinn 1.7 0 1.8 1 

Vdiff -1.5 1.8 -1.8 0 

Vout 0001010101 1111111111 0000000000 0111111111 

Binary conv 110101010 111111111 111111111 000000000 

Decimal conv 426 511 511 0 

Voltage out -1.49765625 1.79648438 -1.79648438 0 

Diff -0.00234375 0.00351562 -0.00351562 0 

Error % -67% 100% -100% 0% 

 

Explaining Table 6, the first 2 rows are the positive (Vinp) and negative (Vinn) input 

voltages respectively. Vdiff is the difference voltage between the inputs. Vout is the result of the 

conversion in the testbench in binary. In the row of binary conv, depending on the sign of Vout it 

ignores the MSB for a positive Vout, or it negates the vector if Vout is negative. Decimal conv is 

the result of converting the binary number of the previous row to decimal. The row of Voltage Out 

represents the value of multiplying the decimal number times the resolution. Diff is the difference 

between Vdiff minus Voltage Out, and finally Error % is the value of Diff divided by the 

resolution. If “Error %” is in between -100% and 100% it means that difference is less than one 

bit which is acceptable. For this project, a value between -200% and 200% is also accepted since 

it is only a difference of 1 bit.   

Table 6 shows that the results are acceptable. The biggest “Error %” is 133% which means 

that the difference is at most a bit. With those results, it is concluded that our design passes this 

test.  

The second test that is applied to the testbench is one in which we test all the possible cases 

of inputs that the design can have. A signal called Vramp is used which every 12 clock cycles (240 

us) it increases its voltage by 0.003515625 V (the resolution of a bit) until reaching 1.8. This signal 

is used first as an input voltage for Vinp, meanwhile Vinn is constantly 0, and then it is running 

again but with the inputs inverted.  
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 The objective of this test is to have an output that increases from 0 to 511. If 

successful, the DAC and SAR modules are verified that they work correctly for all the possible 

inputs.   

 
Figure 30: Simulation of ramp test connecting Vramp to the positive input Vinp  

  

Figure 30 shows the result of doing this test for the case in which Vramp is connected to 

the positive input Vinp. This graph has a lot of information. To have an easier time analyzing this 

data, the results of SAR_data_out was exported as table. In this table, it is easier to see how the 

output is increasing by one after each iteration. To be sure that all these values were corrected we 

used a formula called Mean Square Error (MSE), Equation 2. 

 

 

 𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑌𝑖 − �̂�𝑖)

𝑛
𝑖=1   (2) 

 

Where: 

 n is the number of data points used 

 𝑌𝑖 is the expected result for iteration i 

�̂�𝑖 is the result that the testbench calculated for iteration i 

  

To get the expected result, a test where all the components are ideal is run to have the best 

results possible and use as reference. The testbench has a MSE of 0.4186. There is no standard to 

say that this value is acceptable or not. Analyzing the table for expected results and testbenches 

results we concluded that they were similar and that they don’t really have that many differences. 

For the standards of this project, this test has also pass successfully.  
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5. ADC Integration 

  Logic synthesis 

The process of Logic synthesis transforms a digital circuit hardware description language 

(HDL) model into a netlist describing the hardware as a model represented by logic blocks and the 

connections between them using a standard-cell library as a reference. In this project, logic 

synthesis was done by Encounter RTL Compiler (RC). This process needs several files as inputs 

such as the HDL files that describe the circuit, a standard cell library to use as a reference, LIB 

and LEF libraries, and a constraint file. The output of RC is a netlist and some synthesis reports 

like total area, fanout, total power consumption, number of used cells, etc.  

To integrate a full custom design module into the synthesis work flow, , such as the band 

gap, dynamic comparator, bootstrap switch, S-R latch, and the DAC, it is necessary to generate 

the Library Exchange Format (LEF) files of each of this cell. LEF Files contents information about 

the area that the cell uses, which materials are used for the metal connection and vias. With this 

information, the tool can have an idea about how to include this customs cells in the design. 

The LEF Files are generated from the abstract view of the layout once it is DRC and LVS 

verified. Figure 31 to 34 show the abstracts of the full-custom modules of the proposed ADC. 

   

 
Figure 31: Boostrap switch abstract view layout. 
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Figure 32: Dynamic comparator abstract view layout. 

 

 

 
Figure 33: DAC capacitive abstract view layout. 

 

 

 
Figure 34: Band gap abstract view layout. 
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To perform a logic synthesis of a circuit, the constraints of the system must be defined. 

This information should be completely specified in a sdc file. The following lines shown some of 

the most important constraints of the proposed design: 

• The existence of one clock (Main_CLK) that works with a period of 4000 ps 

• The system has an input and an output delay of 10% the main clock’s period 

• The external driver for the ADC is the buffer BUFFD12BWP7T using the pin Z 

• The max transition is 65% of the clock’s period 

• The max capacitance is 6000 fF 

• The maximum fanout is 50  

Figure 35 shows the schematic diagram of the synthesized DAC. All the digital modules 

are green, and the full-custom modules are shown in orange color. The schematic diagram shows 

all connections are correct. To have a tidier design, most of the digital modules are inside a top 

module called digital_inst, only the latch of the comparator is outside. 

 
Figure 35: Schematic of synthesized ADC. 

 

The synthesis process takes in consideration constraint for a typical case and a worst case. 

After finishing the process, the tool creates the following reports.  
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Resultados Typ: 

  Module:                 ADC_LP_bb  
  Technology libraries:   tcb018gbwp7twc 270 
                          tpd018nvwc 280a 
                          physical_cells  
  Operating conditions:   WCCOM  
  Interconnect mode:      global 
  Area mode:              physical library 
============================================================ 
  
Timing 
-------- 
  
  Clock Period  
---------------- 
Main_Clk 4000.0  
  

  
  Cost     Critical       Violating  
  Group   Path Slack TNS    Paths    
------------------------------------ 
C2C            947.2   0          0  
C2O           1490.4   0          0  
default       3683.9   0          0  
I2C           3329.5   0          0  
I2O         No paths   0             
------------------------------------ 
Total                  0          0  
  
Instance Count 
-------------- 
Leaf Instance Count             249  
Sequential Instance Count        72  
Combinational Instance Count    177  
Hierarchical Instance Count      44  
  
Area 
---- 
Cell Area                          227032.622 
Physical Cell Area                 0.000 
Total Cell Area (Cell+Physical)   227032.622 
Net Area                           2232.648 
Total Area (Cell+Physical+Net)    229265.270 
  
Power 
----- 
Leakage Power                      0.139 uW 
Dynamic Power                      2148.675 uW 
Total Power                        2148.814 uW 
  
Max Fanout                         68 (ADC_SPI_sck) 
Min Fanout                         0 (digital_inst/sar_lp_inst/DobleRegs/sw9n/SW_ctrl[0]) 
Average Fanout                     2.5 
Terms to net ratio                 3.3 
Terms to instance ratio            3.6 
Runtime                            14.996 seconds 
Elapsed Runtime                    31 seconds 
RC peak memory usage:              175.00  
EDI peak memory usage:             no_value  
Hostname                           FV00 
Final Runtime & Memory. 
=========================================== 
The RUNTIME after FINAL is 15 secs 
and the MEMORY_USAGE after FINAL is 173.00 MB 
=========================================== 
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Results WC: 
   Module:                 ADC_LP_bb  
  Technology libraries:   tcb018gbwp7twc 270 
                          tpd018nvwc 280a 
                          physical_cells  
  Operating conditions:   WCCOM  
  Interconnect mode:      global 
  Area mode:              physical library 
============================================================ 
  
Timing 
-------- 
  
  Clock Period  
---------------- 
Main_CLK 4000.0  
  

  
  Cost     Critical       Violating  
  Group   Path Slack TNS    Paths    
------------------------------------ 
C2C            934.7   0          0  
C2O           1348.1   0          0  
default       3574.9   0          0  
I2C           3250.1   0          0  
I2O         No paths   0             
------------------------------------ 
Total                  0          0  
  
Instance Count 
-------------- 
Leaf Instance Count             249  
Sequential Instance Count        72  
Combinational Instance Count    177  
Hierarchical Instance Count      44  
  
Area 
---- 
Cell Area                          227032.622 
Physical Cell Area                 0.000 
Total Cell Area (Cell+Physical)   227032.622 
Net Area                           2232.648 
Total Area (Cell+Physical+Net)    229265.270 
  
Power 
----- 
Leakage Power                      0.139 uW 
Dynamic Power                      2150.416 uW 
Total Power                        2150.556 uW 
  
Max Fanout                         68 (ADC_SPI_sck) 
Min Fanout                         0 (digital_inst/sar_lp_inst/DobleRegs/sw9n/SW_ctrl[0]) 
Average Fanout                     2.5 
Terms to net ratio                 3.3 
Terms to instance ratio            3.6 
Runtime                            13.993 seconds 
Elapsed Runtime                    26 seconds 
RC peak memory usage:              175.00  
EDI peak memory usage:             no_value  
Hostname                           FV00 
Final Runtime & Memory. 

 

 

 The report describes that a main clock (Main_CLK) is used for both cases with a 4000 ps 

period, therefore working with a frequency of 250 MHz. There are no time violations in the design 

cost group, which is something that the design needs to have to be correct. 
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 The synthesis report also describes the number of instances that are used in the design and 

the total area. The tool reports that the physical cell area is 0, which is not true since the synthesis 

take in consideration the LEF files of the custom cells. In a different report, the information of the 

physical cells is described. In figure 36, in the first 5 rows after total, the information of the area 

of the custom cells can be seen. 

 

 
Figure 36: Report of area utilized in the ADC project 

  

The total power that the ADC consumes is 6587.202 uW. This is high for the intended and 

should be improve. And finally, the maximum fanout is the signal ADC_SPI_sck with 68 

connections. This is expected since the clock tree has not been added in this stage. 
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Physical synthesis 

The netlist generated by the logic-synthesis process, is given to a place and route tool, in 

this case Encounter Digital Implementation (EDI), to perform the physical-synthesis process. The 

process objective is to optimize the design in terms of area, routing, and timing. 

The inputs that EDI needs to run the physical synthesis are netlist created in the logic 

synthesis, the LEF libraries of the custom cells, timing libraries and timing constraints. Every cell 

must have a LEF library that contains detail information of area and routing. In this project, timing 

libraries were not generated of the full-custom modules.  

 In this project, the physical synthesis consisted in six steps: floorplan definition, power 

ring creation, placement of the cells, clock tree synthesis, and routing. Figure 37 shows the 

placement of the modules (DAC, dynamic comparator, bootstrap switches, and band gap), standard 

cells and connections. 

 

Figure 37: Physical view of the ADC after physical synthesis. 
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Figure 38 shows the result of displaying only the Clock Tree, ignoring all other routing. 

 

Figure 38: Clock Tree view of the ADC design 

 

Next report shows the geometry verification. This test check for violations of wiring, shorts 

between nets, overlapping between cells, etc.  

*** Starting Verify Geometry (MEM: 884.1) *** 

 

  VERIFY GEOMETRY ...... Starting Verification 

  VERIFY GEOMETRY ...... Initializing 

  VERIFY GEOMETRY ...... Deleting Existing Violations 

  VERIFY GEOMETRY ...... Creating Sub-Areas 

                  ...... bin size: 8320 

  VERIFY GEOMETRY ...... SubArea: 1 of 1 

  VERIFY GEOMETRY ...... Cells         :  0 Viols. 

  VERIFY GEOMETRY ...... SameNet       :  0 Viols. 

  VERIFY GEOMETRY ...... Wiring        :  182 Viols. 

  VERIFY GEOMETRY ...... Antenna       :  0 Viols. 

  VERIFY GEOMETRY ...... Sub-Area: 1 complete 182 Viols. 0 Wrngs. 

VG: elapsed time: 1.00 

Begin Summary ... 

  Cells      : 0 

  SameNet    : 0 

  Wiring     : 2 

  Antenna    : 0 

  Short      : 180 

  Overlap    : 0 

End Summary 

 

  Verification Complete: 182 Viols.  0 Wrngs. 

 

**********End: VERIFY GEOMETRY********** 
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Connectivity verification 

******** Start: VERIFY CONNECTIVITY ******** 

Start Time: Sun Aug 8 22:12:17 2021 

 

Design Name: ADC_LP_bb 

Database Units: 2000 

Design Boundary: (0.0000, 0.0000) (587.7050, 572.3200) 

Error Limit = 1000; Warning Limit = 50 

Check all nets 

Net vref_gnd_w: no routing. 

Net vref_vdd_w: no routing. 

 

Begin Summary  

    2 Problem(s) (ENCVFC-98): Net has no global routing and no special routing. 

    2 total info(s) created. 

End Summary 

 

End Time: Sun Aug 8 22:12:18 2021 

Time Elapsed: 0:00:01.0 

 

******** End: VERIFY CONNECTIVITY ******** 

 

DRC verification 

 
*** Starting Verify DRC (MEM: 959.9) *** 

 

  VERIFY DRC ...... Starting Verification 

  VERIFY DRC ...... Initializing 

  VERIFY DRC ...... Deleting Existing Violations 

  VERIFY DRC ...... Creating Sub-Areas 

  VERIFY DRC ...... Using new threading 

  VERIFY DRC ...... Sub-Area: 1 of 1 

  VERIFY DRC ...... Sub-Area: 1 complete 182 Viols. 

 

  Verification Complete: 182 Viols. 

 

 *** End Verify DRC (CPU: 0:00:00.1 ELAPSED TIME: 0.00  MEM: 1.5M) *** 

 



 

 45 

6. Conclusions and Future Work 

A 10-bit successive approximation register (SAR) and a digital to analog converter (DAC) 

were successfully designed for an ADC using the technology of TSMC for 180 nm. The DAC has 

a capacitive split array architecture with a unitary capacitance of 1 pF and works with a three-

reference voltage switching scheme to achieve low power consumption. The SAR controls the 

DAC and is the control unit of the conversion process.  

The SAR design is synthesized using a clock with a frequency of 250 MHz. The design 

does not present any issue of timing. 

 The functionality of both modules is verified with a testbench and a mixed signal 

simulator. The design responds correctly to independent inputs. It also responds correctly to a test 

in which a ramp signal of voltage is used as an input to test all the possible cases. 

 The layout for the DAC is designed and it passed both DRCs and LVS test. The SAR is 

logically synthesized using RTL Compiler of Cadence. 

These 2 modules are integrated to a SAR ADC and this was logically and physical 

synthesized. The other modules of the SAR ADC are implemented by Karina Castañeda 

(Castañeda Villalpando, 2021) and Luis Angel Gonzalez (Gonzalez Ornelas, 2021) using the same 

technology.  

An improvement that could be done to the proposed ADC is to lower the total capacitance 

of DAC array , to reduce the ADC power consumption and silicon area. 
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Appendix A: Simulating using AMS Simulator 

In this project, we needed to simulate using both analog and digital components. We use 

AMS Simulator for this since it is already included in Virtuoso.    In this section we run the steps 

for creating testbench that uses both digital and analog components, and how to simulate them.  

We use the following 3 Verilog files: 

module my_or ( 

input a,  

input b,  

output x) ; 

 

assign x = a | b; 

 

endmodule 

 

module my_and ( 

input a,  

input b,  

output x) ; 

 

assign x = a & b; 

 

endmodule 

 

 

module logic_calc ( 

input a,  

input b,  

output and_out,  

output or_out) ; 

 

my_or or_inst ( .a(a), .b(b), .x(or_out) ); 

my_and and_inst ( .a(a), .b(b), .x(and_out) ); 

 

endmodule 
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1. The first step is to open Virtuoso by using the Querio shortcut in the desktop. The 

open Library Manager. 

 

2. Select the Library where the modules are saved.  

 

3. Go to File -> New -> Cell View and the next window opens:  

 

 

 
 

Figure 39: New File Window 

 

In here we write the name of our cell, and make sure that the library is the correct 

one. In Type choose Verilog, and the View changes automatically.  Click in OK. 

(If Virtuoso ask you to start a session just press yes to everything) 

 

 

4. A text editor window opens.  Write your Verilog code in there.  



 

 50 

 
Figure 40: Text Editor for creating Verilog modules 

 

 

After finishing writing your code, save using the Extract button (the floppy disk 

with a check mark and an arrow).  If everything is fine, the Virtuoso asks you if you 

want to create a symbol for this file, say yes.  

If there’s an error, you can check it in View - >   Parser Log File. You must correct 

it before advancing. 

Repeat step 3 and 4 for the other files. 

5. Next step is to do the testbench. Create a file as in step 3 but with the Type Schematic. 
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Figure 41. Creating schematic for testbench 

 

6. A black canvas is opened. If you press  “i” the window to add instances appears. In 

here you are able to find the modules that we just created.  Since we have a top module 

(logic_calc), we only add this file and some  voltages sources to act as inputs.  

 

Figure 42:  Window for Adding Instance 
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Figure 43: Test bench of logic_calc 

 

For this example, we used 2 Vpulse voltage sources one working with a period of 20 

uS and the other one with a period of 40 uS. We added some capacitors for the outputs. 

Remember to use labels.  Save your design and close it.  

It’s important to know which technology you are using. In this case we are using 0.180 

um of TSMC and this one works from a voltage range of 0 to 1.8V. This means that 

our digital modules understand as a logic 1 voltage values that are near 1.8 V. My 

voltage sources is mainly changing from 0 to 1.8V.  

 

7. Next step is to create the config view. To do this, in the Library Manager Window, go 

to File -> New -> Cell View.  Make sure to have selected the same cell that was used 

for the schematic. In type choose config, this also changes the view. Press okay 
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Figure 44: Creating config view for my_tb 

 

8. This opens the New Configuration Window. We are going to use the template for AMS 

so click the button of Use Template that is below.  
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Figure 45: New Configuration Window 

  

 Choose AMS and press OK.  

 

 

Figure 46: Template Window 
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In the New Configuration Window, you must change the view from myView to schematic. 

Also, in the part of Global Bindings, be sure to add the library where your files are located.  

Press Okay. 

 

 

Figure 47:  New Configuration Window filled up with template 

 

9. A window like the next one opens, just be sure that all the cell bindings have a View 

Found. If it doesn’t have it, it means that you are missing adding libraries.  
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Figure 48: Configuration View 

If everything is okay. Just save and close this file.  

10. Open the config file again. Virtuoso asks you if you want to open the config file and 

the schematic. Select yes for both. 
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Figure 49: Open Configuration Windows 

 

This opens the window of step 9 and the schematic. Every change that you applied 

is also applied to the schematic since it’s the same file. 

11. In the schematic go to Launch -> ADEL. If some pop ups appeared saying to start a 

new session press yes to everything. The ADE L Window appears next 

 

 

Figure 50: ADE L main window 

The first thing to do in here is to change the simulator. Go to Setup -> 

Simulator/Directory/Host … In the window select AMS in the simulator option.  
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Figure 51:   Selecting Simulator 

 

12. From here on forward, the simulation is like every other. We have to choose an analysis, 

which output is going to be traced, add variables if necessary.  

 

Figure 52: Simulation setup for this example 

 

13. Analyze your results: 
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Figure 53: Resulting signals of simulation 

 

Extra tip:  For creating a nrst signal 

 

Creating a reset signal is really important for all sequential modules. It’s the first stage of 

most of them. To create a nrst, we used a “vpwl” voltage source from the library analogLib. We 

used 4 pairs of points with the following characteristics.  
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Figure 54: Instance used for creating a  nrst signal 

In the first stage, we describe the beginning stat of the signal. It starts a 1.8V. After 

4.5 uS we want that the signal starts to change, we have to state that up until this second 

there is no changes to signal, it is still 1.8 V until this moment. After 0.5 uS ( 5 uS globally), 

the reset signal must reach 0. This is described in pair 3. And finally, the voltage must 

return to 1.8V and stay there forever, as described in the fourth pair.  
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Appendix B: SDC Constraint File 

 The SDC file that is used in this project was the following: 

 
# ITESO University 
# User Constraint File: ADC_LP_Typ.sdc 
# This sdc file is considering the I/O blocks 
 
set_time_unit -picoseconds 
set_load_unit -femtofarads 
 
# Clock definition 
define_clock -name Main_Clk -period 4000 -rise 50 -fall 50 [clock_ports] 
 
# slew attribute: Specifies the minimum rise, minimum fall, maximum rise, and 
# maximum fall slew values, respectively, in picoseconds. 
# The following sentence define the (min rise, min fall, max rise, max fall). 
# In this example we are considerin 2% of the clock period. 
set_attribute slew { 150 120 165 132 } Main_Clk 
  
# network clock latency 1% 
set_attribute clock_network_late_latency 60 Main_Clk 
set_attribute clock_network_early_latency 50 Main_Clk 
 
# source clock latency 
set_attribute clock_source_late_latency 60 Main_Clk 
set_attribute clock_source_early_latency 50 Main_Clk 
 
# clock skew 
set_attribute clock_setup_uncertainty {17 10} Main_Clk 
set_attribute clock_hold_uncertainty  {14 8} Main_Clk 
 
# Input delay definition: This is the delay coming from outside the design 
# for this design it's defined at 5% the period of the clock. 
external_delay -clock [find / -clock Main_Clk] -input 200 -name IDelay [find /des* -port 
ports_in/*] 
 
# Output delay definition: This is the delay going outside the design 
# for this design it's defined at 5% the period of the clock. 
external_delay -clock [find / -clock Main_Clk] -output 200 -name ODelay [find /des* -port 
ports_out/*] 
 
# Driving cell definition 
## Available buffers: BUFFER_{PL}, where PL can be from C-O. 
## Considering PL = J: 
 
set_attribute external_driver [find [find / -libcell BUFFD12BWP7T] -libpin Z] { ports_in/* } 
# BUFFD2P5BWP7T FilterChip 
 
# Specifies the maximum acceptable transition time on the library pin. 
# This attribute applies to input and output pins. 
# We are considering around 10 times the clock slew rate. 
# The following example specifies a maximum transition design rule limit 
# for all nets in a design: 
# The following parameter is set to 65% of clock cycle 
set_attribute max_transition 2600 /designs/ADC_LP_bb 
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# max_capacitance specifies the maximum capacitance in femtofarads that an output pin can 
drive. 
# Note: This attribute has no value for input pins. 
# The input capacitance of a I/O block PDUW0204CDG I pin  is 52.9 fF 
# The PDUW0204CDG PAD-pin capacitance is 2,546 fF 
# The Artix 7 input cap. is 8pF do no include package cap. 
# # The typical capacitance of a digital osciloscope is 11 pF 
set_attribute max_capacitance 6000 /designs/ADC_LP_bb 
 
# external_pin_cap 
# port attribute: Indicates the external capacitive load (in femtofarads) due to pins 
# that are connected to this port. 
# The typical capacitance of a digital osciloscope is 11 pF 
# Considering a I/O block PDUW0204CDG PAD pin load Capacitance 
set_attribute external_pin_cap 3000 /designs/ADC_LP_bb/ports_out/* 
 
# Setting maximum value of fanout 
set_attribute max_fanout 50 /designs/* 
 
# lp_power_unit {nW | mW | pW | uW}} 
# Default: nW 
# Read-write root attribute. Specifies the power unit to be used when analyzing net power, 
# cell internal power, or cell leakage power. The power units are case sensitive. 
set_attribute lp_power_unit {uW} 
 
# lp_power_optimization_weight 
# Controls the weight factors to be used when optimizing 
# leakage power and dynamic power simultaneously during global mapping, mapping, and 
# incremental optimization. Specify a value between zero and one. Assuming the attribute is 
# set to w, the RC-LP engine optimizes for total power. Total power is computed as follows: 
# Total power = w x leakage_power + (1-w) x dynamic_power 
set_attribute lp_power_optimization_weight 0.2 [current_design] 
 
## To enable the recommended leakage power optimization flow,  use the root 
## attribute  leakage_power_effort  set to low, medium or high- 
## with an optional specification of max_leakage_power attribute for a specific power budget. 
## Setting leakage_power_effort to 'none' will enable the backward compatible mode. 
set_attribute leakage_power_effort medium 
set_attribute max_leakage_power 200 [current_design] 

set_attribute max_dynamic_power 800 [current_design]
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