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Image Features’ Extraction Using Proportional-Integral Filters

Gabriel Alejandro Morales Ruiz

Abstract
This document aims to demonstrate that features generated as a side effect of using Proportional-Integral

filters, with explicit or implicit Euler discretization, could be viable for imaging Machine Learning applications.
This thesis delves into how the Proportional-Integral and Super-Twisting filters are defined, how they

are discretized with the Forward and Backward Euler method, which results in the need to calculate an
error or difference scaled with a step size (discrete derivative), and how these features are used in an image
classification problem with two different datasets, using a convex machine learning method (Support Vector
Classifier). These results are compared with a commonly used kernel for extracting an image’s differences or
edges, called the Sobel operator.

With the PI and ST robustness and stability in mind and their implicit low-pass filter from their formulation
as a continuous output signal, two tests involving adding artificial uniform and Gaussian noise are realized.
The features derived from the automatic control algorithms prove to be viable but more valuable in situations
where noise exists.
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1.1 Justification

Machine learning algorithms in image processing applications often
use an image’s edges as features and add a procedure to calculate
them in their pipeline, where edges can be interpreted as the silhouette
of all different objects and contrasts within the image. The task of
differentiating objects within an image is called image segmentation,
where many methods from various disciplines exist and are used
interchangeably depending on the application.

Humans identify different objects according to their color and
texture; we naturally and automatically perform segmentation of what
we observe within our brains. For example, a gigantic dog will still
be perceived as a dog because size doesn’t matter as much as its fur,
geometry, and color. We can also identify its volume through the
observed shading. 1 1 George Stockman Linda Shapiro. Com-

puter Vision. Prentice Hall, 2001. ISBN
978-0130307965

Texture and geometry give information about the spatial
arrangement of colors in an image, and edge detectors are typically
employed as the first step in texture analysis. A hardship arises because
changes may occur over a wide range of scales, so no single filter can
be an all-end solution for every problem. 2 2 E. Hildreth D. Marr. Theory of edge

detection. Proc. R. Soc. Lond., 1980. doi:
10.1098/rspb.1980.0020

1.2 Problem Statement

Applications such as image enhancement, recognition, and classification
employ machine learning algorithms. These algorithms will train their
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parameters accordingly to transform inputs into the desired outputs
(within an error margin), wherein these inputs are called features.

Commonly used features for these image machine learning problems
include the image’s edges information 3; also dubbed the image’s 3 Scott E. Umbaugh. Computer imaging:

digital image analysis and processing. CRC
Press, 2005. ISBN 0-8493-2919-1

gradient, because of the congruence between an image’s edges and a
discrete derivative in both horizontal and vertical directions.

As mentioned before, as one may need to focus differently on
varying changes in the image’s texture or geometry, many different
solutions exist. Would it be possible to use automatic control algorithms
where a reference’s derivative is implicitly computed while trying to
replicate it? Discrete automatic control algorithms require step size
information to calculate errors and try to follow the original signal.
How could a machine learning algorithm benefit from additional
hyperparameters introduced by these automatic control algorithms,
such as step size? Could some problems be additionally tuned and
have their performance increase? Would the physical impediments of
how the control algorithms’ formulation (stability and continuity) help
smooth over the image if noise is added?

1.3 Objectives

This section will discuss general and specific targets that drive this
document.

1.3.1 General Objectives

• Extract features from an image (edges) using estimation algorithms
based on automatic control theory.

• Compare these generated features to the commonly used baseline
Sobel.

1.3.2 Specific Objectives

• Extract edges using a discrete Proportional-Integral filter, with both
explicit and implicit discretization.

• Extract edges using a Super-Twisting filter, with both explicit and
implicit discretization.

• Test and compare the extracted features using a convex optimization
method, such as a support vector classifier.

• Add Gaussian and Uniform noise to the inputs before extracting the
features and repeat the previous steps for different noise magnitudes.

• Complete all the previous steps with two different datasets.
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• Perform hypothesis tests to verify if a statistically significant
distinction between using the baseline and these features exists.
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2.1 Digital Image Processing Concepts

Even though image editing is, by itself, image processing, the main
difference is that image processing will refer to working directly with
the discrete pixels array that describes the discretized image. Image
editing mainly refers to working with software that gives non-technical
people access to modify an image’s parameters, such as brightness,
contrast, and gamma, among other variables. 1 1 Mark Burge Wilhelm Burger. Principles

of Digital Image Processing: Fundamental
Techniques. Springer-Verlag London, 2009.
ISBN 978-1-84800-190-92.1.1 Digital Image

An image is a two-dimensional (horizontal and vertical) analog signal.
Older analog cameras sensed the light that bounced off what the
photographed subject was and wrote it in film. Nowadays, digital
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cameras discretize the sensed image and save the results as a tensor,
with values for each pixel on every point of the horizontal-vertical
plane, plus a third dimension for color.

Modern digital images are a collection of 2d arrays, where each array
corresponds to the intensity of each particular color. A basic model for
this is the RGB model, where the image has a size of x× y× 3, in which
x is the number of pixels in each row, and y is the number of pixels
in each column; the 3 means that there are 3 x× y arrays: one for the
detected intensity for colors red, green, and blue; a linear combination
of these yields any possible color from the color spectrum.

Detectors calibrated to specific wavelengths sense these colors, which
generate a voltage and convert it to a discrete value through an analog-
digital converter (ADC). In the case of a 256-level ADC, 255 means high
saturation detection, and 0 means no such color saturates that pixel. 2 2 Jorge Lira Chávez. Tratamiento digital de

imágenes multiespectrales. UNAM, 2010.
ISBN 978-607-00-3403-9

2.1.2 Transformations and Spatial Filtering

As with signal processing, signals can be worked on in the spatial or
the frequency domain. The spatial domain is what you would call the
"regular image space", or the image as it is. The frequency domain
represents how quickly the value of the pixels in the spatial domain
changes in the image. E.g. An image with a drop from white (255, 255,
255) to (0, 0, 0) from bottom to top (Fig 2.1) can be modeled as a linear
combination of sinusoidal functions, of which the results can be seen in
the frequency domain representation (Fig 2.2).

Figure 2.1: Black to white gradient.

As the color is only changing in the y axis, the frequency
representation in the image will only have information (changes) in
the y axis as well. If an image rotates 90 degrees, the frequency
representation will rotate too. With that logic, when using figure
2.3, a picture whose pixel values change through all directions, the
frequency representation of the image will have information about



literature review 23

Figure 2.2: Fast Fourier Transform of
black to white gradient.

every direction (Fig 2.4).

Figure 2.3: Lenna standard test image.

In this project, we will work solely on the spatial domain; the
frequency domain could be something to explore in future work.

A transformation in the spatial domain can be defined as:

g(x, y) = T[ f (x, y)] (2.1)

where f (x, y) is an input image, g(x, y) is the output, and T is an
operator that operates on a neighborhood of points (x, y) 3. 3 Richard E. Woods Rafael C. Gonzalez.

Digital Image Processing. Pearson
Education Limited, 2018. ISBN 978-1-292-
22304-9

Transformations, also called kernels, can sometimes be represented
as a matrix. In this representation, they are applied to the input image
with a convolution, with a convolution defined as:

[ f ∗ g](t) =
∫ t

0
f (τ)g(t− τ)dτ (2.2)

This yields the following equation:

g(x, y) = f (x, y) ∗ K (2.3)
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Figure 2.4: Fast Fourier Transform of
Lenna standard test image.

Some standard kernels include low-pass filters (blur), high-pass
filters (sharpen), and edge detection. This work will use Sobel
edge detection as a baseline against which the extracted features’
performance will be compared.

2.1.3 Sobel

The Sobel kernel is used in image processing to detect an image’s
borders. Presented in 1968 as "A 3x3 Isotropic Gradient Operator
for Image Processing" 4. Sobel is widely used in applications in 4 G. Feldman I. Sobel. A 3x3 isotropic

gradient operator for image processing.
pages 271–272, 1968

image classification where the distinguishing factors are the geometric
features (shape) or texture and not the color or background (e.g., face
recognition).

Sobelx =

1 0 −1
2 0 −2
1 0 −1

 ; Sobely =

 1 2 1
0 0 0
−1 −2 −1

 (2.4)

These matrices are applied to the input image with the convolution
operation. For a 2d array, a window with the kernel values will move
across all the pixels in both x and y directions. If an image has more
than one color (e.g., RGB), the convolution is applied to every color
individually.

Let us imagine how the Sobel operators would work on an edge.
Visualize an application to figure 2.1, specifically the y operator. (Fig
2.5)

The pixel value is continuously increasing while going downwards.
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Figure 2.5: Representation of a Sobel
kernel being applied to a black to white
gradient.

If the intensity of the values is

Window =

127 127 127
128 128 128
129 129 129


then, when the kernel is applied to that window but before summing
the values

Window =

 127 254 127
0 0 0
−129 −258 −129


The final result for the output image in the pixel that pertains to the
center of the window is −8: this lets us knows that, with the Sobel
operator, the image is changing intensity in that spot. As the gradient is
smooth, the results will all be small numbers, as no true "edge" appears
on the image; however, using the Lenna image (Fig 2.3) and applying
both Sobel operators to it yields the result seen in figure 2.6.

The human eye can immediately detect edges. In image processing,
edges are just spots where the image changes pixel values rapidly. One
can see the commonality with edges in images and discrete derivatives,
where the derivative and the edges are more prominent when the
difference between pixels px,y and px+1,y or px,y+1 is greater. This
commonality is the groundwork from which the problem statement
of this thesis stands. Thus, this project’s hypothesis is: "PI filters
calculate a derivative of the signal they try to replicate employing the
discretization process. Can this derivative be used as a feature for
image classification problems?"

Now, if a noisy sensor retrieves an image and the Sobel operator
is applied to it, it would not be able to differentiate which parts were
originally from the image and which were noise. For example, let’s add
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Figure 2.6: Edge detection of Lenna
standard test image via Sobel kernels.

a 100N (µ = 0, σ = 1) noise to figure 2.3 and use the Sobel kernel on it.
Results are shown in figures 2.7 & 2.8. Note that a machine learning
algorithm might still be able to recognize Lenna, even if the human eye
cannot identify her silhouette.

Figure 2.7: Lenna standard image with
Gaussian noise.

2.2 Automatic Control Concepts

This section describes the automatic control notions and algorithms
required to understand and follow this document.

2.2.1 Control System

Plainly speaking, a control system is "something" that regulates, guides,
or directs variables or behaviors to achieve specific objectives. E.g.:
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Figure 2.8: Sobel operator applied to
Lenna image with Gaussian noise.

• An electric fan in a hot room has four states: off, low, medium, and
high. You turn the fan’s knob to the medium setting, and the fan
starts spinning.

• A room has a climate system with radiators, air conditioning, and
airflow control. This system is controlled by adjusting a thermostat.
You turn the knob on the thermostat to a lower value, and the system
adapts to achieve the selected temperature.

These two examples also demonstrate two different control systems:
open-loop and closed-loop. The control system will not read the output
to adjust its setting for open-loop systems, but it will for closed-loop
systems. The fan will not start spinning faster by itself if it realizes that
the room is still hot, but the thermostat-controlled room will increase
the intensity of the AC if the room does not cool down and will lower
the power once it reaches the desired temperature because there’s
a thermometer sensing what is happening and alerting the system.
Automatic control systems range from mundane applications such as a
thermostat to applications such that human control is impossible due
to having to process a large amount of data in a limited time.5 5 J.C. Maxwell. On governors. In

Proceedings of The Royal Society of London,
number 10, pages 270–283, 1868

A control system has three basic components6:

6 Benjamin C. Kuo Farid Golnaraghi.
Automatic Control Systems. John Wiley &
Sons INC, 2010. ISBN 978-0470-04896-2

1. Control objectives

2. Control system components

3. Results or outputs

2.2.2 PID Controller

A closed-loop control mechanism first proposed by Nicolas Minorsky7, 7 S. Bennett. A brief history of automatic
control. In IEEE Control Systems Magazine
Vol. 16, number 3, pages 17–25, 1996. doi:
10.1109/37.506394
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wherein the output tries to replicate the input by adjusting itself
proportionally to:

• the difference between the current output and the input, or the
current error (P)

• the cumulative past errors (I). E.g., the longer it takes for the output
to reach the input, the faster it will adjust to try and match it. This
also helps diminish steady-state errors, as these will accumulate and
force the controller to change the output.

• the difference between the previous error and the current one (D).
E.g., if the input changes drastically, the derivative’s magnitude will
increase, and the controller will adjust its output accordingly to try
and stabilize faster.8 8 Tore Hagglund Karl J. Astrom. PID

Controllers. Instrument Society of
America, 1995. ISBN 1-55617-516-7A PID control variable can be described with the following equation:

u(t) =kpe(t) + ki

∫
e(t)dt + kd

de(t)
dt

(2.5)

e(t) =yre f (t)− y(t) (2.6)

where yre f is the desired output and y(t) the current output.

Definition 1 A Proportional-Integral (PI) filter is a structure based on the
PI controller, and is defined as:

ẋ1(t) = f (t, x1(t)) + u(t) (2.7)

u(t) =λ1x1 + v(t) (2.8)

v̇(t) =λ2x1 (2.9)

2.2.3 Super Twisting

The Super Twisting algorithm is a PI structure with non-linear terms,
which implements a second-order sliding mode controller. Considering
the Single-Input-Single-Output system described in equation (2.10), the
super twisting sliding mode controller is given by equations 2.11 &
2.12

9. Note from the equations that Super-Twisting is a variation of 9 A. Levant. Sliding order and sliding
accuracy in sliding mode control. In
International Journal of Control Vol. 58,
pages 1247–1263, 1993

a Proportional-Integral structure; therefore, all these implementations
will be referred to as Proportional-Integral filters. 10

10 Jorge Rivera et al. Sliding Mode Control.
IntechOpen, 2011. ISBN 978-953-51-6002-
1

ẋ1(t) = f (t, x1(t)) + u(t) (2.10)

u(t) =kp

√
|e(t)|sgn(e(t)) + ki

∫
sgn(e(t))dt (2.11)

e(t) =yre f (t)− y(t) (2.12)
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Definition 2 A Super-Twisting (ST) filter is a structure based on the ST
controller, which is in itself based on the PI structure, and is defined as:

u(t) =λ1

√
|x1(t)|sgn(x1(t)) + v(t) (2.13)

v̇(t) =λ2sgn(x1(t)) (2.14)

Homogeneous differentiators based on sliding modes have been
formulated to estimate the first n derivatives of a signal, given that its
n + 1 derivative is bounded by a known constant L. Taking this into
account, λ1 and λ2 can be obtained from combining a second order
differentiator with a controller on a Single-Input-Single-Output system;
the results are written in equations (2.15 & 2.16). 11 11 A. Levant. Higher-order sliding modes,

differentiation and output-feedback con-
trol. In International Journal of Control Vol.
76, number 6, pages 924–941, 2003

λ1 = 1.5
√

L (2.15)

λ2 = 1.1L (2.16)

2.2.4 Explicit Euler discretization

Also known as Forward Euler Method, it is a simple numerical method
that solves an initial value problem for an ordinary differential equation.
Its goal is to derive a difference equation that approximates the original
differential equation to eliminate derivatives, going from equation (2.18),
which is a derivative’s estimation, to equation (2.19) using the initial
value problem (2.17).12 12 Kendall E. Atkinson et al. Numerical

solution of ordinary differential equations.
John Wiley & Sons, Inc., 2009. ISBN 978-
111-81-6449-5Y′(t) = f (t, Y(t)), Y(0) = Y0 (2.17)

Y′(t) ' 1
h
[Y(t + h)−Y(t)] (2.18)

Y(t + h) ' Y(t) + h f (t, Y(t))⇒ yn+1 = yn + h f (tn, yn) (2.19)

Definition 3 The PI filter with explicit discretization is defined as:

x1,k+1 =x1,k + hλ1x1,k + hvk (2.20)

vk+1 =vk + hλ2x1,k (2.21)

Both the original signal and its first derivative are being pieced
together. Applying this algorithm to all rows and columns in the
Lenna image (Fig 2.3), and showing its v values results in figure 2.9
(hyperparameters h = 0.01, λ1 = 150, λ2 = 3000). Considering how
the filter follows physical limitations (non-discontinuity), any noise
that is added to the image (Fig 2.7) can be reduced by its design. The
results for when the filter is used on the noisy Lenna image are shown
in figure 2.10 (hyperparameters h = 0.01, λ1 = 20, λ2 = 50.
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Figure 2.9: Edge detection of Lenna
image with an explicit PI filter.

Figure 2.10: Edge detection of noisy
Lenna image with an explicit PI filter.
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Definition 4 The ST filter with explicit discretization is defined as:

x1,k+1 =xk + hλ1sign(x1,k)
√
|x1,k|+

hλ2sign(x1,k)

2
+ hvk (2.22)

vk+1 =vk + hλ2sign(x1,k) (2.23)

The results obtained from repeating the experiment done with the PI
filter on the Lenna image are shown in figures 2.11 (hyperparameters
h = 0.1, L = 800) and 2.12 (hyperparameters 0.01, L = 9000).

Figure 2.11: Edge detection of Lenna
image with an explicit ST filter.

Figure 2.12: Edge detection of noisy
Lenna image with an explicit ST filter.

2.2.5 Implicit Euler discretization

Also known as Backward Euler Method, as it takes from the previous
value to get its derivative approximation (eq 2.24) and not the next
value as the Forward Euler Method does. This yields the definition
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from equation (2.25), in which we can shift the indexes of the discrete
signal by one and get equation (2.26). This method requires solving
implicit equations and involves a higher computational cost, but it has
better stability properties. 13 13 Kendall E. Atkinson et al. Numerical

solution of ordinary differential equations.
John Wiley & Sons, Inc., 2009. ISBN 978-
111-81-6449-5Y′(t) ' 1

h
[Y(t)−Y(t− h)] (2.24)

yn = yn−1 + h f (tn, yn) (2.25)

yn+1 = yn + h f (tn+1, yn+1) (2.26)

Definition 5 The implicit discretization for the PI filter is defined as:

x̃1,k+1 =x1,k + hλ1 x̃1,k+1 + hvk+1 (2.27)

vk+1 =vk + hλ2 x̃1,k+1 (2.28)

Algorithm 1 Implementation of implicit PI discretization for application
xk ← yk − ỹk #Error
x̃1,k+1 ←

x1,k+hvk
1−hλ1−h2λ2

vk+1 ← vk + hλ2 x̃1,k+1

uk ← λ1 x̃1,k+1 + hvk+1

ỹk+1 ← ỹk + huk + hvk+1

Definition 6 The implicit discretization for the ST filter, taken from
Brogliato’s work 14, is defined as: 14 Denis Efimov Bernard Brogliato, An-

drey Polyakov. The implicit discretization
of the super-twisting sliding-mode con-
trol algorithm. In 15th International Work-
shop on Variable Structure Systems, pages
349–353, july 2018

x̃1,k+1 =x1,k − hλ1

√
|x̃1,k+1|sgn(x̃1,k+1) + hvk+1 (2.29)

vk+1 ∈vk − λ2hsgn(x̃1,k+1) (2.30)

Where sgn(x)

sgn(x) =


1 if x > 0

-1 if x < 0

[-1,1] if x = 0

(2.31)

2.3 Machine Learning Concepts

This section describes the machine learning theory essential to
understanding and following this document.
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Algorithm 2 Implementation of implicit ST discretization for
application

xk ← yk − ỹk #Error
a← hλ1

bk ← −xk − hvk

if bk < −h2λ2 then√
|x̃1,k+1| ← 1

2 (−a +
√

a2 − 4(bk + h2λ2))

vk+1 ← vk − hλ2

uk ← −λ1
√
|x̃1,k+1|+ vk+1

else if bk ∈ [−h2λ2, h2λ2] then
x̃1,k+1 ← 0
vk+1 = vk +

bk
h

uk = vk+1

else if bk > h2λ2 then√
|x̃1,k+1| ← 1

2 (−a +
√

a2 + 4(bk − h2λ2))

vk+1 ← vk + hλ2

uk ← λ1
√
|x̃1,k+1|+ vk+1

end if
ỹk+1 ← ỹk − huk + hvk+1

2.3.1 Ordinary Least Squares Regression

The ordinary least squares regression problem consists of finding a
linear combination of features X that best describe the desired output y.
For i = 1, . . . , n the mean of the conditional distribution of yi is given
by a feature vector xi, in the form of

yi = xT
i θ + εi. (2.32)

θ and xi are vectors with size k× 1, and εi is a vector of independent and
identically distributed variables such that εi N(0, σ2).15 The problem’s 15 C.S. Ong M.P. Deisenroth, A.A. Faisal.

Mathematics for Machine Learning. Cam-
bridge University Press, 2020. ISBN
9781108470049

maximum likelihood function is:

L(Y | X, θ, σ2) ∝ (σ2)−n/2e−
1

2σ2 (Y−Xθ)T(Y−Xθ) (2.33)

To maximize it, the expression to minimize is:

min
θ

1
2
(Y− Xθ)T(Y− Xθ) (2.34)

2.3.2 Support Vector Classifier

In support vector classification, the input space is mapped into the
feature space, where an optimal hyperplane is given by

f (x) = wT ϕ(x) + b, (2.35)
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where ϕ : X → F is a function that makes each input point x
correspond to a point in F , where F is a Hilbert space. As seen from
equation (2.34), OLS utilizes the squared residuals to fit the parameters
θ. However, large residuals caused by outliers may worsen the accuracy
significantly. 16. 16 Shigeo Abe. Support Vector Machines

for Pattern Classification, 2 Ed. Springer-
Verlag London, 2010

SVC uses a piecewise linear function to counter this, in which a
hyperparameter ε, also known as the margin, lets errors that are less or
equal to it be 0, and errors greater than it be error− ε. Any prediction
inside the radius of ε counts as a correct prediction. The problem to
solve

min
w,b,ξ
Pε(w, b, ξ) =

1
2

wTw + c
N

∑
k=1

ξk

s.t. yk[wT ϕ(xk)− b] ≥ 1− ξk, k = 1, ..., N

ξk ≥ 0, k = 1, ..., N

(2.36)

The Lagrangian for this problem is given by

L(w, b, ξ; α, η) =
1
2

wTw + c
N

∑
k=1

ξk

−
N

∑
k=1

αk[yk(wT ϕ(xk) + b)− 1 + ξk]

−
N

∑
k=1

ηkξk

s.t. α, η,� 0

(2.37)

where the Lagrange multipliers must be greater than or equal to zero
to not disturb the inequalities.

The stationary conditions derived from the problem’s Lagragian are
the following:

∇wL = w−
N

∑
k=1

αkyk ϕ(xk) = 0

⇒ w =
N

∑
k=1

αkyk ϕ(xk)

(2.38)

∂L
∂b

= −
N

∑
k=1

αkyk = 0⇒ yTα = 0 (2.39)

∂L
∂ξk

= c− αk − ηk = 0, k = 1, ..., N

c− αk = ηk, ηk ≥ 0 ∀ k⇒ c− αk ≥ 0 ∴ αk ≤ c
(2.40)
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Wolfe’s dual problem is obtained from substituting equations (2.38),
(2.39) and (2.40) back into (2.37), and its solution is to find the α that
maximizes its output.

D(α) = −1
2

N

∑
k,l=1

ykyl ϕ(xk)
T ϕ(xl)αkαl +

N

∑
k=1

αk

s.t. 0 � α � c

yTα = 0

(2.41)

When 0 < αk < c

ηkξk = (c− αk)ξk = 0, αk < c ∴ c− αk > 0⇒ ξk = 0

Thus, the bias term is defined as

b = yk − wT ϕ(xk)− ε, 0 < αk < c (2.42)

Parameter b is obtained from averaging all of these possible solutions.

2.3.3 Gaussian Processes

Some statistics problems admit a representation through a probability
distribution. Gaussian processes are non-parametric regression models
that extend the multivariate normal distribution (2.43) and are used to
model functions on infinite domains.

f (x1, x2, ..., xk) =
exp(− 1

2 (~x−~µ)Σ−1(~x−~µ))√
(2π)k|Σ|

(2.43)

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution 17. It is defined by 17 C.K.I. Williams C.E. Rasmussen. Gaus-

sian Processes for Machine Learning. MIT
Press, 2006

its mean and covariance functions of real observations as

f (~x) ∼ p( f ) = GP( f ;~µ, K) (2.44)

where

~µ = E[ f |~x] (2.45)

K(~x,~x′) = cov[ f , f ′|~x,~x′] = E[( f (~x)−~µ)( f (~x′)−~µ′)] (2.46)

p( f |~x) = N ( f ;~µ, K) (2.47)

Mutual dependence between the random variables in ~x determines
the function’s shape and statistical properties.
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2.3.4 Bayesian Optimization

Bayesian optimization is an approach that utilizes Bayes’ Theorem
(2.48) to direct a search to find either the minimum or maximum of
an objective function. Optimization is accomplished by performing
a regression of the low-sampled objective function with a Gaussian
process and then using this surrogate function to direct the search.
The suggested new point from the surrogate function is evaluated and
added back into the Gaussian Process to redirect the search to a new
plausible optimal value, chosen depending on the exploration method
(probability of improvement, expected improvement, upper-confidence
bound).18 18 Roman Garnett. Bayesian Optimization.

Cambridge University Press, 2022. in
preparation

P(A|B) = P(B|A) P(A)

P(B)
(2.48)

The method used for this work is upper-confidence bound, which
directs the search to the maximum of all the upper limit values from
all confidence boundaries.

Figure 2.13: Bayesian Optimization -
Confidence Interval Plot.

2.3.5 Classification Metrics

Metric is a performance indicator that measures the results obtained
from something. In classification problems, you either get the correct
prediction or you don’t, whereas in regression problems, you can get
a wrong value but still be close to the correct answer. We traverse
classification errors with the help of the confusion matrix (Fig 2.14),
which has the four possible outcomes of any decision. Below are
some commonly used metrics for classification problems based on the
confusion matrix. It’s important to note that these metrics have an
inherent bias; thus, a clear understanding of the problem is needed to
select which to use. 19 19 David Powers. Evaluation: From

precision, recall and f-measure to roc,
informedness, markedness & correlation.
In Journal of Machine Learning Technologies,
volume 2, 2008
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Figure 2.14: Confusion matrix.

• Accuracy: How many positives and negatives were correctly
predicted?

Accuracy =
TP + TN

TP + FN + FP + TN
(2.49)

• Precision: How many predicted positives were correct?

Precision =
TP

TP + FP
(2.50)

• Recall/Sensitivity: How many positives were correctly predicted out
of them all?

Recall/Sensitivity =
TP

TP + FN
(2.51)

• Specificity: How many negatives were correctly predicted out of
them all?

Specificity =
TN

FP + TN
(2.52)

F1 Score
A specific case of the Fβ score, giving equal weight to both Precision

(2.50) and Recall (2.51). It is used when both False Positives and
False Negatives are equally undesirable: Precision is affected by False
Positives but not by False Negatives, and Recall is affected by False
Negatives but not by False Positives. The F1 score combines these
competing metrics through a harmonic mean.

F1 = 2
(Precision)(Recall)
Precision + Recall

(2.53)

As seen from equation 2.53, F1 score values will range from 0 to 1:

• It will only be 1 if both Precision and Recall are 1.
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• It will be 0 if any of Precision or Recall are 0.

ROC and AUC
A Receiver Operating Characteristic curve plots the false positive

rate (1− Specifity 2.52) vs. the true positive rate (Recall/Sensitivity
2.51) at different points, varying the classification threshold (Fig. 2.15).

Figure 2.15: (1-Specificity) vs Sensitivity.
(ROC)

AUC stands for Area Under the ROC Curve; it gives insight into
the probability of the model classifying a positive sample as more
likely than a negative sample (Fig. 2.16). AUC has two important
characteristics20: 20 Tom Fawcett. Introduction to roc

analysis. In Pattern Recognition Letters,
volume 27, pages 861–874, 06 2006. doi:
10.1016/j.patrec.2005.10.010

1. Scale-invariant: Does not care about absolute quantities/values of
TP, TN, FP, or FN, but rather measures how well the samples are
ranked.

2. Classification-threshold invariant: Because all possible thresholds
are considered, AUC will measure the quality of the model itself
regardless of what threshold is chosen.

2.3.6 Radial Basis Function kernel

Kernels provide a framework to represent data through pairwise
comparisons rather than through individual samples. The radial
basis function kernel is given by equation (2.54) and yields an infinite
summation of polynomials. The RBF kernel is a decreasing function
of the Euclidean distance between samples, and can also be used as
a measure of similarity. γ is a positive parameter for controlling the
radius and was defined as equation (2.55) for this application. 21 21 Shigeo Abe. Support Vector Machines

for Pattern Classification, 2 Ed. Springer-
Verlag London, 2010
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Figure 2.16: Area Under the ROC Curve.
(AUC)

K(x, x′) = exp
(
−γ‖x− x′‖2

)
(2.54)

γ =
1

(n_features)(var(x))
(2.55)
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To determine the viability of these automatic control methods
as feature generators, we must test them against a benchmark. A
transformer class was created for each of the different methods:

• Sobel

• PI Explicit/Implicit

• ST Explicit/Implicit

The chosen method to test these features was a Support Vector
Classifier with a Radial Basis Function kernel.

Features Hyperparameters
Sobel c

PI c, h, kP, kI

ST c, h, L

This thesis contains two devised test cases: In the first one, 30

different score samples are compiled from testing the SVC with these
features and no additional noise added; then, 60 further samples are
collected by adding a high amplitude Gaussian/Uniform noise to the
images before extracting the features. The second test case compiles
score samples while continuously adding noise to the images. The
following points were considered and applied to all tests:

• Data was split in two: 40% for training and 60% for testing.
Each run has a distinct splitting to prevent bias from an
advantageous/damaging split.
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• Hyperparameters were optimized every run using Bayesian
Optimization, with 30 loops to probe for the best hyperparameters
assortment.

The steps for test one are the following:

Algorithm 3 Test one steps
i← 0
while i < 30 do

Split data set
Bayesian Optimization for Sobel, PI and ST features.
Add Uniform noise to the base images (±100).
Bayesian Optimization for Sobel, PI and ST features.
Add Normal noise to the base images 100N (µ = 0, σ = 1).
Bayesian optimization for Sobel, PI and ST features.

end while

The steps for test two are the following:

Algorithm 4 Test two steps
A← 2
while i ≤ 100 do

Split data set
Add Uniform noise to the base images (±A).
Bayesian Optimization for Sobel, PI and ST features.
Add Normal noise to the base images AN (µ = 0, σ = 1).
Bayesian optimization for Sobel, PI and ST features.

end while

Forewarning
The implicit PI features showed to be highly sensitive to

hyperparameter tuning but are promising because when a sizable
amount of time is spent adjusting them, they yield similar results to
their explicit counterpart. The Bayesian Optimization module utilized
the same range of values for the explicit/implicit hyperparameters to
avoid bias, which does not favor these features. Future work can be
done with a more finely tuned implicit PI transformer.

3.1 Animals Dataset

The dataset contains pictures of the faces of different animals (bears,
cats, chickens, cows, deer, dogs, ducks, eagles, elephants, humans, lions,
monkeys, mice, pandas, pigeons, pigs, rabbits, sheep, tigers, wolfs) and
some unrelated pictures (landscapes). The following image sets were
used:



implementation 43

• Wolf

• Tiger

• Sheep

• Cat

• Lion

• Deer

• Mouse

• Cow

• Duck

These images were rescaled to 80x80 pixels, and converted from RGB
to grayscale.

pixel = (0.2989R + 0.5870G + 0.1140B)

Figure 3.1: Sample of an image from each
category.

In the end, the images were each an 80x80 pixels matrix, with values
ranging from 0 to 255 (8 bits).

3.1.1 Results with F1 Score

With no noise added to the images, the explicit discretization PI features
seem to perform better on average (Fig 3.2). A Mann-Whitney U test
confirms that the distributions are statistically different, with a 95%
confidence interval (Fig 3.3).

When Uniform noise is added, all features’ average decreases.
Explicit ST features overtake Sobel features (Fig 3.4). Hypothesis
tests determine the distributions to have a statistically significant
difference 3.5), which conveys that explicit PI and ST features had
a better performance.

Gaussian noise results seem to repeat Uniform noise results, with
both explicit PI and ST overtaking Sobel 3.6). Once again, hypothesis
tests confirm a statistically significant difference in the distributions
(3.7).
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Figure 3.2: Animals DS: Histogram of F1

scores when no noise was added.

Figure 3.3: Animals DS: Hypothesis tests
of F1 scores’ distributions when no noise
was added.

Figure 3.4: Animals DS: Histogram of F1

scores when Uniform noise was added.
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Figure 3.5: Animals DS: Hypothesis tests
of F1 scores’ distributions when Uniform
was added.

Figure 3.6: Animals DS: Histogram of F1

scores when Gaussian noise was added.

Figure 3.7: Animals DS: Hypothesis tests
of F1 scores’ distributions when Gaussian
noise was added.
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For the noises sweep, the ST features seem to be more resilient. Their
slope is horizontal. Sobel’s slope is steeper than the explicit PI features,
and the implicit PI features have promising results occasionally, but its
sensitivity to hyperparameter tuning is detrimental (Figures 3.8 & 3.9).

Figure 3.8: Animals DS: Scatter plot of F1

scores when sweeping through Uniform
noise.

Figure 3.9: Animals DS: Scatter plot of F1

scores when sweeping through Gaussian
noise.
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3.1.2 Results with AUC Score

As with the F1 results, the explicit PI features surpass Sobel with AUC
scoring (Fig 3.10). No statistically significant difference is found in
Implicit PI and ST results. (Fig 3.11).

Figure 3.10: Animals DS: Histogram of
AUC scores when no noise was added.

Figure 3.11: Animals DS: Hypothesis
tests of AUC scores’ distributions when
no noise was added.

The distributions from the results when Uniform noise is added (Fig
3.12) produce similar results. Implicit PI results are not statistically
different from both Sobel and implicit ST results, and explicit PI results
are not statistically different from explicit ST results (Fig 3.13). Explicit
PI and ST features lead to a better classification model.

Explicit ST features pull ahead when scored with AUC and added
Gaussian noise (Fig 3.14). Results can be ranked: Explicit ST, Explicit
PI, Sobel, Implicit ST, Implicit PI, as all distributions are found to be
different with statistical significance (Fig 3.15).

Explicit and implicit ST features appear virtually impervious to
the added noise sweep, with Sobel and explicit PI features’ average
decreasing every time the noise is increased (Figs 3.16 & 3.17).
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Figure 3.12: Animals DS: Histogram of
AUC scores when Uniform noise was
added.

Figure 3.13: Animals DS: Hypothesis
tests of AUC scores’ distributions when
Uniform noise was added.

Figure 3.14: Animals DS: Histogram of
AUC scores when Gaussian noise was
added.



implementation 49

Figure 3.15: Animals DS: Hypothesis
tests of AUC scores’ distributions when
Gaussian noise was added.

Figure 3.16: Animals DS: Scatter plot
of AUC scores when sweeping through
Uniform noise.

Figure 3.17: Animals DS: Scatter plot
of AUC scores when sweeping through
Gaussian noise.



50

3.2 Politicians Dataset

An extract from the Labeled Faces in the Wild people dataset commonly
used for classification. The original dataset contains 5749 persons, with
13233 total samples. Each sample is a grayscale image with a size of
47x62 (base x height). We use a portion of the dataset with people for
which it contains at least 60 different images. The result is 1348 samples
with eight influential politicians from various countries:

• Ariel Sharon

• Colin Powell

• Donald Rumsfeld

• George W Bush

• Gerhard Schroeder

• Hugo Chavez

• Junichiro Koizumi

• Tony Blair

Figure 3.18: Politicians Dataset Samples.

3.2.1 Results with F1 Score

Sobel features pull ahead of explicit PI results with lower variance
when no noise is added (Fig 3.19), possibly due to not having extra
hyperparameters to adjust. Implicit PI features behave similarly to
explicit and implicit ST features (Fig 3.20).

When Uniform noise is added, explicit and implicit PI features pull
ahead, followed by implicit ST features and then by Sobel (Fig 3.21).
Both distributions for PI features are similar, and implicit features
behave similarly. Further work is required here, as it is noteworthy to
check if the difference lies in the features themselves (an extra degree
of tuning) or if it’s just the hyperparameters’ sensitivity affecting the
distributions (Fig 3.22).
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Figure 3.19: Politicians DS: Histogram of
F1 scores when no noise was added.

Figure 3.20: Politicians DS: Hypothesis
tests of F1 scores’ distributions when no
noise was added.

Figure 3.21: Politicians DS: Histogram
of F1 scores when Uniform noise was
added.
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Figure 3.22: Politicians DS: Hypothesis
tests of F1 scores’ distributions when
Uniform noise was added.

Regarding Gaussian noise results, implicit PI features appear to
have the potential to yield better results than all the others (Fig 3.23).
Explicit PI and Sobel results are not as sensitive as having a hidden
combination of hyperparameters that could provide a higher score.
Implicit PI features behave similarly to explicit PI and implicit ST
features (Fig 3.24).

Figure 3.23: Politicians DS: Histogram
of F1 scores when Gaussian noise was
added.

For these images, the noise acts as a regularization, enabling the SVC
able to generalize better, which causes a couple of features to have a
positive slope for the noise sweep tests (Figs 3.25 & 3.26).



implementation 53

Figure 3.24: Politicians DS: Hypothesis
tests of F1 scores’ distributions when
Gaussian noise was added.

Figure 3.25: Politicians DS: Scatter plot
of F1 scores when sweeping through
Uniform noise.

Figure 3.26: Politicians DS: Scatter plot
of F1 scores when sweeping through
Gaussian noise.
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3.2.2 Results with AUC Score

Scoring with AUC and not adding noise results in almost all features
behaving similarly (Fig 3.27). Explicit PI & ST and implicit PI features
behave comparably, and only Sobel and implicit ST features maintain
diverse behaviors (Fig 3.28).

Figure 3.27: Politicians DS: Histogram of
AUC scores when no noise was added.

Figure 3.28: Politicians DS: Hypothesis
tests of AUC scores’ distributions when
no noise was added.

When Uniform noise is added to this dataset, Sobel maintains its
score, but the noise has a positive result on the other features (Fig 3.29).
The PI features behave similarly, as do the ST features (Fig 3.30).

Results with Gaussian noise favor explicit PI results, followed by
implicit PI and Sobel results (Fig 3.31). Implicit PI results seem
statistically similar to most others (Fig 3.32).

With this dataset, the noise resulted in a better generalization of the
SVC for AUC scores (Figs 3.33 & 3.34).
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Figure 3.29: Politicians DS: Histogram
of AUC scores when Uniform noise was
added.

Figure 3.30: Politicians DS: Hypothesis
tests of AUC scores’ distributions when
Uniform noise was added.

Figure 3.31: Politicians DS: Histogram
of AUC scores when Gaussian noise was
added.
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Figure 3.32: Politicians DS: Hypothesis
tests of AUC scores’ distributions when
Gaussian noise was added.

Figure 3.33: Politicians DS: Scatter plot
of AUC scores when sweeping through
Uniform noise.

Figure 3.34: Politicians DS: Scatter plot
of AUC scores when sweeping through
Gaussian noise.
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This section will contain insight from the results from section 3,
the conclusions drawn concerning the questions asked in this thesis’
problem statement, and what future work can be done to advance this
investigation further.

4.1 Results

The question this work was centered on was "Are Automatic Control
Algorithms viable to extract features from images to feed machine
learning algorithms?". The answer obtained from the results is yes. Not
only do some of these features behave comparably to those obtained
from the Sobel kernel, but they occasionally surpass it. The distribution
plots are a good visualization tool but are hard to interpret, so table
representations for all results are shown.

First, with the exception of a 19.79% higher standard deviation in
AUC results with no noise (Table 4.4) and a 0.82% higher standard
deviation in AUC results with Gaussian noise (Table 4.6), the explicit
PI features outperformed Sobel with higher mean, minimum, quartiles
and maximum, and lower standard deviation in all of the sampling tests
with the animal dataset. There’s a statistically significant difference
between these distributions per the hypothesis tests in section 3.1.2.

Explicit ST features outperformed the Sobel features when noise
was added, with the exception of 0.74% higher standard deviation in
F1 results with Uniform noise (Table 4.2) and 12.34% higher standard
deviation in AUC results with Uniform noise (Table 4.5). There’s a
statistically significant difference between these distributions per the
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hypothesis tests in sections 3.1.1 and 3.1.2.
Sobel remains unchanging in all the sampling tests on the politicians’

dataset, with a very low standard deviation. The automatic control
algorithms had a more challenging time getting stable results and had
a more comprehensive range of scores, with the exception of implicit
ST features. PI features always had a higher maximum obtained value
than Sobel for tests when noise was added. ST features had a higher
maximum obtained value for tests with F1 scores and added noise.

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.642107 0.657804 0.358367 0.523504 0.428740
std 0.019519 0.015514 0.201677 0.017582 0.016628
min 0.599568 0.623143 0.192736 0.495378 0.400048
25% 0.626935 0.649519 0.199480 0.508153 0.417775
50% 0.643380 0.660579 0.212891 0.521776 0.428530
75% 0.657345 0.666159 0.602748 0.534524 0.436239
max 0.681353 0.690407 0.673339 0.554765 0.473129

Table 4.1: Animals Dataset: Compilation
of F1 results with no noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.473029 0.591369 0.316817 0.539295 0.445350
std 0.020600 0.016167 0.152751 0.020753 0.014599
min 0.434242 0.566353 0.180564 0.494719 0.410158
25% 0.460832 0.578070 0.201055 0.528117 0.436222
50% 0.477540 0.589666 0.218071 0.537054 0.447127
75% 0.485813 0.601452 0.463261 0.555430 0.454649
max 0.506889 0.636355 0.580973 0.583408 0.474330

Table 4.2: Animals Dataset: Compilation
of F1 results with Uniform noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.435821 0.558269 0.335545 0.529536 0.443108
std 0.020031 0.017456 0.150237 0.015052 0.016715
min 0.394162 0.521004 0.178326 0.502241 0.414837
25% 0.422339 0.547027 0.190862 0.516163 0.428140
50% 0.434335 0.556163 0.308389 0.525250 0.443026
75% 0.452158 0.570624 0.468066 0.540455 0.457204
max 0.475329 0.598312 0.574553 0.558055 0.474171

Table 4.3: Animals Dataset: Compilation
of F1 results with Gaussian noise
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Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.930166 0.932372 0.745026 0.892874 0.803584
std 0.004891 0.005859 0.144050 0.007551 0.009234
min 0.917780 0.918222 0.601326 0.875632 0.783010
25% 0.928064 0.930195 0.619482 0.888999 0.799262
50% 0.931127 0.932661 0.642338 0.893608 0.803548
75% 0.932595 0.935760 0.917016 0.897249 0.807513
max 0.940424 0.943385 0.930669 0.905920 0.828811

Table 4.4: Animals Dataset: Compilation
of AUC results with no noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.890085 0.905066 0.803633 0.901884 0.816900
std 0.009134 0.008095 0.129807 0.010262 0.009571
min 0.868521 0.887279 0.606125 0.880141 0.794940
25% 0.883268 0.901902 0.646317 0.897241 0.811495
50% 0.890046 0.906110 0.885124 0.903961 0.818380
75% 0.897499 0.909877 0.904811 0.908511 0.822141
max 0.907085 0.916834 0.915307 0.920065 0.839250

Table 4.5: Animals Dataset: Compilation
of AUC results with Uniform noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.863796 0.883641 0.698364 0.893077 0.820378
std 0.010827 0.010916 0.116385 0.009523 0.011751
min 0.838941 0.861075 0.589132 0.867689 0.800007
25% 0.858589 0.876447 0.604661 0.886230 0.811819
50% 0.864579 0.886615 0.627801 0.894088 0.821740
75% 0.871638 0.888778 0.832762 0.899952 0.829327
max 0.881989 0.901776 0.893633 0.908173 0.844165

Table 4.6: Animals Dataset: Compilation
of AUC results with Gaussian noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.632175 0.594158 0.507467 0.561445 0.554639
std 0.018527 0.072307 0.122441 0.017336 0.018410
min 0.579699 0.285882 0.334742 0.522350 0.522179
25% 0.621519 0.581588 0.365830 0.550276 0.540679
50% 0.635879 0.615826 0.568082 0.558491 0.551816
75% 0.645784 0.629679 0.614919 0.573638 0.566590
max 0.659052 0.671475 0.641180 0.605608 0.601200

Table 4.7: Politicians Dataset: Compila-
tion of F1 results with no noise
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Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.620200 0.665734 0.635351 0.504582 0.675453
std 0.018464 0.105985 0.096182 0.081249 0.015363
min 0.568133 0.415946 0.483839 0.381916 0.641394
25% 0.606947 0.685424 0.527701 0.435827 0.668287
50% 0.618557 0.702830 0.674089 0.489354 0.674431
75% 0.631457 0.727642 0.714594 0.574440 0.684833
max 0.652962 0.753132 0.747902 0.656394 0.701253

Table 4.8: Politicians Dataset: Compila-
tion of F1 results with Uniform noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.624911 0.721796 0.667160 0.533802 0.691709
std 0.017913 0.058879 0.104365 0.078451 0.015950
min 0.592068 0.423808 0.476718 0.415903 0.661450
25% 0.611451 0.717235 0.595115 0.459854 0.682070
50% 0.626573 0.732711 0.717484 0.526450 0.690532
75% 0.637495 0.743629 0.753589 0.595673 0.702135
max 0.652522 0.758982 0.779504 0.658261 0.726534

Table 4.9: Politicians Dataset: Compila-
tion of F1 results with Gaussian noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.948755 0.936795 0.934812 0.934348 0.886408
std 0.007678 0.011913 0.011072 0.006076 0.005839
min 0.930242 0.890063 0.908227 0.923038 0.875525
25% 0.944769 0.933290 0.931052 0.930639 0.882247
50% 0.949990 0.938284 0.937352 0.935084 0.885835
75% 0.955597 0.944810 0.942425 0.938195 0.890083
max 0.961130 0.951160 0.950222 0.945205 0.899924

Table 4.10: Politicians Dataset: Compila-
tion of AUC results with no noise

Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.959473 0.964839 0.959148 0.943571 0.943912
std 0.004511 0.019908 0.022742 0.017375 0.004436
min 0.948819 0.861910 0.866843 0.893433 0.936168
25% 0.956749 0.966072 0.957608 0.934968 0.941007
50% 0.959653 0.969049 0.966288 0.949365 0.943431
75% 0.962778 0.970423 0.971558 0.956037 0.946742
max 0.966712 0.978124 0.976960 0.960747 0.953799

Table 4.11: Politicians Dataset: Compila-
tion of AUC results with Uniform noise
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Sobel PI Exp PI Imp ST Exp ST Imp

count 30 30 30 30 30
mean 0.954950 0.969697 0.926631 0.941808 0.945971
std 0.004471 0.004213 0.048996 0.014755 0.003391
min 0.944428 0.959288 0.854462 0.884453 0.940118
25% 0.953055 0.967710 0.862288 0.938856 0.943157
50% 0.954988 0.970767 0.951159 0.945471 0.946030
75% 0.957789 0.973078 0.964964 0.952028 0.948235
max 0.963004 0.975641 0.976612 0.958268 0.953173

Table 4.12: Politicians Dataset: Compila-
tion of AUC results with Gaussian noise
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4.2 Conclusions

• Automatic control structures such as Proportional-Integral and Super-
Twisting filters, with both explicit and implicit discretization, are
viable feature generators.

• The features generated with these filters behave similarly or
better than a benchmark kernel commonly used to generate edge
information.

• These features require additional hyperparameters to be tuned, and
the implicit discretization methods are much more sensitive to any
difference than their explicit discretization counterparts.

• Like tools in a toolbox, sometimes a screwdriver will outperform
a hammer, which doesn’t mean the hammer is useless. Some
features behaved better with the animals’ dataset and others with
the politicians’ dataset.

• The physical limitations of the automatic control algorithms filtered
added noise and provided steady and stable results, which means
these features could be better suited for applications where
characterized noise is expected.

4.3 Future Work

Knowing that these features are viable for machine learning
algorithms and applications, many paths open from the available
controllers/observers in automatic control theory and machine learning
algorithms and applications.

• Further investigation regarding the sensitivity of implicit methods
is required. Could implicit methods work all-around better than
explicit methods? Are they just different tools to be used on different
occasions?

• There are more ways to discretize differential equations. Would
these be different, better features than the ones obtained from using
the Forward/Backward Euler Method?

• All these features were trained on a convex model. Non-convex
methods such as Neural Networks create their features in hidden
layers, but they are still susceptible to the input. Could these features
yield consistently better results in noisy situations with non-convex
machine learning methods?

• The current implementation of the automatic control features uses
one row/column at a time, which means diagonal edges may be
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improved. Sobel, for instance, checks edges three rows/columns at
a time. Could these algorithms be modified so that the number of
rows/columns used was an additional hyperparameter?

• These features can be used with the Deep Image prior method, which
consists of enhancing and removing noise from an image given an
untrained neural network.

• The step-size hyperparameter could allow us to focus the image
differently, like a camera’s lens. Would a more appropriate use
of these features be object identification in images where much is
happening?
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