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Drone Flight Performance Evaluation Methodology based on Data
Science

Adrián Homero Moreno García

Abstract
Nowadays Unmanned Aerial Vehicle (UAV) consist of collaborators for hazardous jobs like deliveries,

from commerce to clients, and emergency scenarios, like fire fighting and rescue humanitarian jobs. The
pilot’s responsibility has increased as the new requirements settle for new applications, so in this way, they
need to have enough capabilities to perform this valuable work. However, this required knowledge, skills,
and attitudes not provided in a formal educational institute with an established process. Therefore, there is
no method defined to know the level of performance of a Pilot, and this is essential before giving a duty as
valuable of delivery.

This thesis presents an effort to establish a detailed structured methodology for evaluating a pilot’s ability to
coordinate psycho-motor and evaluate this determined pilot’s learning rate in a sequence of flights. Further-
more, to generate a predictive model representing this learning for a specific pilot and give formal evidence
of the improvement in the near future and which orientation coordination ability can improve.
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1.1 Background

Canada public safety agencies have made an enormous effort to
introduce Remotely piloted aircraft system (RPAS) in their activities for
situational awareness scenes of wildland fires and unnatural disasters.
This includes high response time and effective management for
invading hot zones and giving adequate evacuation during dangerous
scenarios. In addition, Transport Canada has done an excellent job in
crafting regulations that include several basic examination knowledge
of areas like air traffic rules and procedures; after this, the candidate can
download the certificate for basic operations. Therefore, Canadian Fire
Agencies require a standardized sequence of tests in a more practical
reinforcement, as firefighters’ present situations are risky.

On the other hand, the National Institute of Standards and
Technology (NIST) in the United States, who has several expert
engineers in the field, is implementing new and better performance
tests that evaluate pilot proficiency capabilities. All test methods are
available, free of charge, so in this way, other agencies or companies can
regulate their operations for aircraft1. The best part is that the material 1 Alan Frazier. Evaluating drone

pilot skills, Nov 2020. URL https:

//www.firefightingincanada.com/

evaluating-drone-pilot-skills/

used for the different tests scenarios can be acquired and assembled
in any supplier store. Figure 1.1 depicts the differences between these
two mentioned types of evaluation scenarios, the one from Canadian

https://www.firefightingincanada.com/evaluating-drone-pilot-skills/
https://www.firefightingincanada.com/evaluating-drone-pilot-skills/
https://www.firefightingincanada.com/evaluating-drone-pilot-skills/
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Fire Agency and the one from NIST. Finally, it is essential to mention
this effort’s importance that even the Civil Air Patrol© uses this Unit
Accreditation Program for their pilots; this is a massive success on this
effort for standardized aircraft, and its the inspiration and base of this
work. Please find Figure 1.1 the represents mentioned above.

Figure 1.1: (Left) Evaluating
flight abilities for Drone pilots
by Canadian Fire Agency, (Right)
NIST: National Institute of Stan-
dards and Technology in the
United States, Methods for Test
Flight.

1.2 Justification

The responsibility of a drone pilot involves the manipulation of
the aircraft previously, during, and after the flight, every time it
serves in many activities immerse in society when performing several
applications. That is why, it is necessary the creation of standardization
flight tests and an evaluation framework for drone pilots that includes
the pilot capabilities diagnostics and an estimate of their learning rate
progress. This will allows the drone pilot to build confidence and
accomplishes the abilities necessary for performing their designated
tasks in a safely manner for himself, the people and objects around the
drone.

1.3 Problematic

As discussed in the Background section, drones have specific
applications; some are complex and require a certain level of accuracy
on their flights. In addition, the creation of various types of drones
with different sizes and weights makes their management even more
challenge. Therefore, it is a reality that risks must be mitigated or at
least reduced at its minimum when dealing with these aircrafts. Citing
some examples, Amazon Prime Air Unmanned Aerial Vehicle (UAV)
drone can carry a package weighing 2.5 kg and travel up to 24 km. On
the other hand, DHL’s ® Parcelcopter brings a box of up to 2 kg with
a travel range of 16 km2. It is worthwhile to mention that regulations 2 Gohram Baloch and Fatma Gzara.

Strategic network design for parcel
delivery with drones under competition.
Transportation Science, 54(1):204–228, 2020
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require that a UAV must be monitored by a certified operator, even
though some drones can fly in automatic mode. In case of failure on
the autopilot system, the drone pilot needs to take the intervention of
the aircraft and be capable of handling it into safe destiny. We cannot
ignore that collisions can happen between aircraft, terrestrial structures,
people, birds, interference, and failed in critical activity (see Figure 1.2).
So in this way, the responsibility of an operator that controls the flight
is essential. That is why drone pilots need to have enough capabilities
to perform this valuable work. This raises the following question: How
can a drone pilot be evaluated to know if he/she has the necessary
skills to be reliable when performing a specific type of flight depending
on the application?

Figure 1.2: (Left-Top) Drone
delivery representation. (Right-
Top) Street view perspective with
all the obstacles for free flight.
(Down) Drone in an open field
with trees surrounding.

1.4 Hypothesis

Creating an evaluation system for drone pilots flight abilities will enable
the creation of a Benchmark of flight drone performance in specific
tasks from basic to advanced flight. This system will be able to diagnose
the technical skills of a drone pilot, making him aware of his strengths
and weaknesses. Then, an estimate on the required time to improve
their flight skills to a point in which it is ready to perform safety flight
and tasks will be given to the pilot. In this way, civilians and enterprises
will have the confidence that a capable pilot is in charge of the drone.
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1.5 Objectives

1.5.1 General Objective

Generate a benchmark capable of evaluating drone pilots’ flight. Also,
analyze and give feedback about the evolution of the learning rate
of the pilot, generating a system capable of predicting the number of
flights needed for reaching a certain level of experience.

1.5.2 Specific Objective

• Establish a sequence of tests for pilots for a different level of
experience.

• Generate a Database by using the data thrown by the simulator,
virtual or real.

• Generate a model that defines the trend line evolution of the
determined pilot and, based on this, estimates their learning rate of
a specific flight.

• Evaluate models and determine their accuracy for the results,
standardizing the process for certificate a pilot drone.

1.6 Scientific Innovation, Techonological and Contribution

This project promises to generate tangible results to interpret as a level
of confidence that a pilot can bring; this by itself is an innovation
combined as an automatic tool built with Software and Data Science.
The actual process of evaluating a pilot consists of a manual process,
written tests, sequences of flights, and some performance with the
help of visible markers. However, there are few related works in
the extensive scientific research to automate these auto-evaluations
for pilots. Indeed, in this thesis are mentioned some related results,
where we can see that innovation goes forward in the scientific and
technological contribution. The creation of this project works under the
different designed tests for the auto-evaluation; the scheduled manual
mainly focuses on developing knowledge (previous co-related work)3, 3 Luis F. Luque-Vega, Emmanuel Lopez-

Neri, Carlos A. Arellano-Muro, Luis E.
González-Jiménez, Jawhar Ghommam,
and Rocío Carrasco-Navarro. Uav flight
instructional design for industry 4.0
based on the framework of educational
mechatronics. In IECON 2020 The 46th
Annual Conference of the IEEE Industrial
Electronics Society, pages 2313–2318. IEEE,
2020

and the methodology applied to achieve this goal. This work ensures
that the process and the different tools used are references for future
research.
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Contents
2.1 The initiative of NIST . . . . . . . . . . . . . . . 23
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This Chapter mainly emphasizes the related work that directly or
indirectly impacts this research, also as evidence of the investigation
done of previous works. Additionally, it remarks on this community’s
effort to formalize the educational format for piloting a drone’s learning
and evaluation process. As stated before, it is essential for the actual
society. The study of these related works helped this research adapt or
even improve with its focus on the pilot evaluation flight.

2.1 The initiative of NIST

NIST© effort to develop a set of flight tests for Drone Pilots that yields
quantifiable metric results to evaluate them.1 This Institute created 1 Jonathan Griffin. Nist performance

tests for aerial response robots become
national standard, May 2021. URL
https://www.nist.gov/news-events/

news/2018/12/nist-performance-

tests-aerial-response-robots-

become-national-standard

test methods for Small Unmanned Aircrafts (sUAŠ) referenced some of
them as Job Performance Requirements in the National Fire Protection
Association Standard for Small Unmanned Aircraft System Used For
Public Safety Operations (National Fire Protection Association (NFPA)©
2400). These methods are the opening of this work which creates an
open window to take this reference and adapt into the necessities.
However, first, introducing these methods primarily for vertical takeoff
and landing systems with an onboard camera and remote pilot display.
In general, these tests focus on Maneuvering and Payload Functionality
taking proficiency tests for:

• Position (hold position and rotate, climb and descend, fly straight
and level, move and rotate and land Accurately) and manipulates
traverse, orbit, spiral, and recon flights.

https://www.nist.gov/news-events/news/2018/12/nist-performance-tests-aerial-response-robots-become-national-standard
https://www.nist.gov/news-events/news/2018/12/nist-performance-tests-aerial-response-robots-become-national-standard
https://www.nist.gov/news-events/news/2018/12/nist-performance-tests-aerial-response-robots-become-national-standard
https://www.nist.gov/news-events/news/2018/12/nist-performance-tests-aerial-response-robots-become-national-standard
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• Avoid obstacles that pass through doors and windows.

Now, for being specific in each kind of test, below are the details2: 2 National Institute of Standards | NIST,
Technology, and Adam Jacoff. National
institute of standards and technology
| nist. URL https://www.nist.gov/

system/files/documents/2019/08/

21/nist-astm-nfpa_standard_test_

methods_for_suas_-_maneuvering_

and_payload_functionality_overiew_

v2019-08-20v2.pdf

• Maneuvering Tests (Man)©: Align with 20 buckets along the flight
paths. The pilot will identify continuous rings inside the bucket
using its camera; the aligned image is considered a point. Five
minutes per test in 30 minutes total time. Score up to 20 points each,
100 points in total.

• Payload Functionality Tests (Pay)©: Align with 20 buckets along the
flight paths. The pilot will use the camera to identify continuous
rings inside the bucket, but it will capture a full zoom showing the
ring and a small concentric C gap inside the bucket. Ten minutes
per test in 60 minutes total time. Score up to 100 points each, 500

points in total.

Figure 2.1: Scalable Test Lane
Route for Maneuvering and
Payload Functionality.

Figure 2.2: (Left) MAN test
type bucket aligned to see the
entire inscribed ring inside the
bucket. (Right) As mentioned
before, PAY test type bucket with
the increasingly small concentric
C gap.

This work done by NIST© opens new opportunities to improve and
apply this test concept to more specific purposes.

https://www.nist.gov/system/files/documents/2019/08/21/nist-astm-nfpa_standard_test_methods_for_suas_-_maneuvering_and_payload_functionality_overiew_v2019-08-20v2.pdf
https://www.nist.gov/system/files/documents/2019/08/21/nist-astm-nfpa_standard_test_methods_for_suas_-_maneuvering_and_payload_functionality_overiew_v2019-08-20v2.pdf
https://www.nist.gov/system/files/documents/2019/08/21/nist-astm-nfpa_standard_test_methods_for_suas_-_maneuvering_and_payload_functionality_overiew_v2019-08-20v2.pdf
https://www.nist.gov/system/files/documents/2019/08/21/nist-astm-nfpa_standard_test_methods_for_suas_-_maneuvering_and_payload_functionality_overiew_v2019-08-20v2.pdf
https://www.nist.gov/system/files/documents/2019/08/21/nist-astm-nfpa_standard_test_methods_for_suas_-_maneuvering_and_payload_functionality_overiew_v2019-08-20v2.pdf
https://www.nist.gov/system/files/documents/2019/08/21/nist-astm-nfpa_standard_test_methods_for_suas_-_maneuvering_and_payload_functionality_overiew_v2019-08-20v2.pdf
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2.2 State of Art related with Pilot Evaluation using Data Science

On this section purpose is for put some of the effort from different
researches that are applying Data Science for Evaluate Drone Pilot
Evaluation.

Starting with Visual attention prediction improves performance of au-
tonomous drone racing agents its a very interesting paper that studies how
neural networks can be trained to imitating a human race drone. Part
of the hypothesize is about the gaze-based attention can be predicted
in a model. They do it in base of raw image inputs and image-based
abstractions. To be more specific the first consists of the mean attention
map over training set. The second, shuffle ground-truth attention map
samples within each lap of the race tack in the test set, retaining the
same distribution across the lap , but disconnecting the attention out-
put from the RGB input. The results demonstrate that human visual
attention prediction improves the performance of autonomous vision-
based drone, having some results with (88% success rate) outperforms
the RGB-image.3 An extend of this work is expressed on an article 3 Christian Pfeiffer and Davide Scara-

muzza. Human-piloted drone racing:
Visual processing and control. IEEE
Robotics and Automation Letters, 6(2):3467–
3474, 2021

named Human-Piloted Drone Racing: Visual Processing and Control which
collected a multi modal data set from 21 experienced drone pilots using
a highly realistic drone racing simulator. They found a strong correla-
tion between pilots eye movements and the commanded direction of
quadrotor flight, with an average visual-motor response latency of 220

m. In Conclusion they revealed a strong relationship between eye gaze
behavior, quadrotor control, and flight performance.4 4 Christian Pfeiffer, Simon Wengeler, An-

tonio Loquercio, and Davide Scaramuzza.
Visual attention prediction improves per-
formance of autonomous drone racing
agents. arXiv preprint arXiv:2201.02569,
2022

The second one presents an article that evaluates the potential
of flight simulators in the process of pilot training to enhance the
flying precision as piloting errors may negatively influence air traffic
safety. They focus in a designed rout which is a maneuver 180

◦

climbing/descending turn, but this limited the results, so in future
studies they want to experiment with other types of maneuvers in
order to obtain different error ratios. In the other hand there is an
intention of optimize the effectiveness of flight simulators parameters
that determine the levels of mental stress impacting the piloting
precision. So in conclusion the objective is providing correct flying
habits, eliminating errors, teaching flight procedures etc.5 5 Vladimr Socha, Lubos Socha, Karel

Szabo, Stanislav Hana, J Gazda, Iveta
Kimlickova, M Vajovaa, A Madoran,
Lenka Hanakova, V Nemec, et al.
Training of pilots using flight simulator
and its impact on piloting precision. In
Transport Means 2016, Proceedings of the
International Conference, pages 374–379,
2016
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2.3 UAV Flight Instructional Design for Industry 4.0 based on
the Framework of Educational Mechatronics

It is essential to mention this co-related work; which author is the
director of this thesis Ph.D. Luis F. Luque Vega. The cited work’s
purpose is the present a Framework with a structural design for
teaching 6 Unmanned Aerial Vehicle (UAV) flight based on the 6 Luis F. Luque-Vega, Emmanuel Lopez-

Neri, Carlos A. Arellano-Muro, Luis E.
González-Jiménez, Jawhar Ghommam,
and Rocío Carrasco-Navarro. Uav flight
instructional design for industry 4.0
based on the framework of educational
mechatronics. In IECON 2020 The 46th
Annual Conference of the IEEE Industrial
Electronics Society, pages 2313–2318. IEEE,
2020

Educational Mechatronics Conceptual Framework (EMCF). So this will
be constructed in different macro-process levels: concrete, graphic, and
abstract, which will generate a learning construction to pilot a drone.

Everything starts by practicing basic drone flight movements (basic
maneuvers) using remote control in a simulated environment. Then,
the pilot will perform some accurate flights; this covers the concrete
level.

Figure 2.3: Basic Maneuvers: Go
forward, backward, rightward
and leftward, accomplishing a
back and forth displacements of
the drone, a cross movement, an
square array movement and a
lemniscate movement.

Then comes the Graphic Level, which covers the construction level.
This stage aims to show the participant the relevant flight dynamics
variables like position and orientation, then perform a flight connected
to the PC with a Motion Capture (MoCap) System© (This system is
explained in subsequent Chapters.) The intention is that the participant
can understand the variables and data behavior while performing the
flight.7 7 Luis F. Luque-Vega, Emmanuel Lopez-

Neri, Carlos A. Arellano-Muro, Luis E.
González-Jiménez, Jawhar Ghommam,
and Rocío Carrasco-Navarro. Uav flight
instructional design for industry 4.0
based on the framework of educational
mechatronics. In IECON 2020 The 46th
Annual Conference of the IEEE Industrial
Electronics Society, pages 2313–2318. IEEE,
2020

To finalize the construction level based on an abstract stage
represented from a mathematical model and established in a control
scheme where the participant can understand the rules that control the
flight of the quadrotor using Simulink© , called Control Scheme.

Mentioning this related work is so valuable because it opens the
gate to many applications. For example, once the participants have
experienced this process for getting the knowledge in different levels
for learning how to pilot a drone, now it is possible to reference this
and recreate a model to evaluate the abilities acquired for beginners
and advanced pilots. Also, this framework’s knowledge helped the
principal author of this thesis to understand all the variables involved
in a drone flight and the behavior. The tools used in this related work
helped during the acquisition process to retrieve the data, so they match
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as a perfect complement to this work.
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This Chapter presents the materials and Methodology selected for
constructing this project. The main intention is to find the equipment
and a step-by-step process with clear stages to define and organize the
work appropriately. The Methodology is based on the Team Data
Science Methodology (TDSM) proposed by Microsoft® , which is
an agile, iterative data science methodology that delivers predictive
analytics solutions and intelligent applications efficiently. It is focused
on teams but can also be applied for co-individual research. The
following sections present this information in a detailed manner.

3.1 Materials

3.1.1 DJI Panthom 4

DJI Phantom 4© is a quadcopter equipped with a collision-avoidance
system, called Obstacle Sensing System©, which uses two forward-
facing cameras to detect obstacles as far as 49.5 feet (15 m) ahead of the
drone.1 The drone comes, mainly with a remote controller, camera and 1 Phantom 4 - dji manual. URL https:

//www.dji.com/mx/phantom-4gimbal as in Figure 3.1

3.1.2 MoCap© System

First, as was introduced in Chapter 1.6, one of the co-related projects
by Ph.D. Luis F Luque Vega started a UAV Instructional Design effort
where process learning works on different construction levels. Finally,
it is good to mention that this study uses the same systems approaches
used for data acquisition.

https://www.dji.com/mx/phantom-4
https://www.dji.com/mx/phantom-4
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Figure 3.1: Drone Control

Digitally capturing the movement of humans can be done in many
ways. There exist different techniques for doing this, using Motion
Capture (MoCap)© systems that are marker-based. This system works
between 6 and 50 cameras placed in the walls and ceils of a recording
studio. There is competence between commercial systems to be the
precursors on this field, some of them there already leading as Vicon
Motion Systems® and Motion Analysis Corp® .2 2 Chris Bregler. Motion capture technol-

ogy for entertainment [in the spotlight].
IEEE Signal Processing Magazine, 24(6):160–
158, 2007

So, for this work, the MoCap© system used comes from Vicon
Motion Systems® and consists of the following elements:

• Eight Vantage V16, each camera contains a thermal sensor to detect
changes in temperature that could affect the system status.

• Lock Sync Box connects and synchronizes the cameras with the
Vision Tracker® through Poe Switch.

• Power over Ethernet (PoE) switch, where power and connectivity
are through PoE + protocol by CISCO Systems® .

• PC with Vicon Tracker Software® , created by Vicon Systems® , is a
motion tracking software application that is easy to learn and use.3 3 VICON. Vicon Tracker User Guide

- Prophysics, Sep 2020. URL
https://www.prophysics.ch/wp-

content/uploads/2017/06/Vicon-

Tracker-User-Guide.pdf

Designed specifically for engineering requirements and its workflows
are based on an analysis of the needs of typical engineering users.
Some features to mention like: tracking multiple objects, single-
camera tracking, and real-time system modeling with Simulink®.

The setup mentioned above gives the necessary setup for obtaining
the position and orientation of the drone in real-time and the data
stored from the flight. Figure 3.2 of a Drone in MoCap System©. In
Figure 3.3 there is a representation of the communication between PC-
Drone, MoCap and the PC-MoCap.

The test flights executed for the acquisition data were executed
Laboratory for Capture Movement, located in the University of the
Valley of Mexico campus in Guadalajara South, which contains all the
setup mentioned above in a closed- environment. As in Figure 3.4

https://www.prophysics.ch/wp-content/uploads/2017/06/Vicon-Tracker-User-Guide.pdf
https://www.prophysics.ch/wp-content/uploads/2017/06/Vicon-Tracker-User-Guide.pdf
https://www.prophysics.ch/wp-content/uploads/2017/06/Vicon-Tracker-User-Guide.pdf
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Figure 3.2: Drone in the MoCap
System©

Figure 3.3: Dron-PC to Dron-
MoCap©

there is a example of a Real Flight practice in inside the installation of
Laboratory for Capture Movement. 4 4 Luis F. Luque-Vega, Emmanuel Lopez-

Neri, Carlos A. Arellano-Muro, Luis E.
González-Jiménez, Jawhar Ghommam,
and Rocío Carrasco-Navarro. Uav flight
instructional design for industry 4.0
based on the framework of educational
mechatronics. In IECON 2020 The 46th
Annual Conference of the IEEE Industrial
Electronics Society, pages 2313–2318. IEEE,
2020

Flight data acquired by MoCap© are some variables collected as
position, velocity, linear acceleration, and angular acceleration. During
the testing of the defined trajectory, takes data such as ψ, ψ̇, z, ż, x, ẋ, y, ẏ
(Control Position, Angular Speed) [8 Variables] also the time the
duration of the flight at each point. For each flight, store sensor values
and store system output.

3.2 Teams Data Science Methodology (TDSM)

The importance of data science is increasing while the main complexity
of projects is getting more sophisticated. There is a necessity to employ
a methodology that contributes to the improvement to get step-by-step



32

Figure 3.4: Real flight practice.

approaches that can help us to improve the goals of a specific Data
Science Project. Therefore, the visual representation of the proposed
methodology in this thesis, based on the TDSM© , is shown in Figure
3.5 and it is called Team Data Science Methodology (TDSM) since .

Figure 3.5: Team Data Science
Methodology (TDSM)© .

Methodology TSDP improves the team collaboration and learning.
So it includes best practices from Microsoft and other industry players
to help successfully implement a data science project. TDSM© combines
the Cross Industry Standard Process for Data Mining (CRISP)-inspired
process into a down iterative five stages, stories (life-cycle substages),
and tasks ("assignable code or document work items in order to
complete a specific data science story"), this is designed to follow
a scrum-like framework.5 5 MicrosoftDocs. Architecture-center at

main microsoft docs. URL https://

github.com/Azure/Microsoft-TDSP
TDSM© also describes a life cycle for a data science project, defining

the following phases: business understanding, data acquisition, and
understanding, modeling, deployment, and customer acceptance. These
phases will be described in the next lines with more detail on how to
execute certain steps and what outputs they produce. The five steps of
Microsoft´s® TDSM© life cycle include:

1. Understanding of the business: The goal of this phase is to reveal
the business objectives, stakeholders, and business questions, also
to identify the correct variables and analysis needed to meet the
project’s purpose.

https://github.com/Azure/Microsoft-TDSP
https://github.com/Azure/Microsoft-TDSP
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2. Acquisition and Understanding of the Data: The goal is to
reproduce clean data, high quality for target variables, also include
a strategy of developing a pipeline to regularly have refresh data to
the model in the next phase.

3. Modeling: The modeling stage has the determination of having the
optimal data features like algorithm, model building, model training, and
validation ready for the next Deployment stage.

4. Deployment: Once the model is ready is time to deploy it with an
automated pipeline job into production, this has to be efficient for
every time it is needed.

5. Customer Acceptance: At last, this goal is to confirm the data
pipeline, model, and deployment into production, giving the
different results we are meeting the customer’s acceptance.

Finally, following this methodology will ensure to extract the
valuable knowledge of data, formulating the solutions, and evaluating
the results involving thinking carefully the context in which is used, as
it is specified below for this specific project.
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This Chapter has the intention of explain all the methodology of
TDSM applied for this study case, to evaluate the ability of flight that a
determined pilot has. As follows, this also gives a step-by-step of this
process in all the stages using the methodology in Chapter ??.

4.1 Understanding of Drone Flight Performance Evaluation

The previous tests described were the first point in touch to qualify
a pilot’s performance for this work. The objective of NIST© is to
gather the performance-based of point, but is it possible to evaluate
this performance from metrics thrown by the drone? In this case, is
it possible to recreate some scenarios taking the drone’s position and
angular movements? Maybe yes, and following the same methodology,
but let us understand the external involved to define this. So, primarily
in NIST© tests, we have external conditions like wheater, which can
partially affect the results; for example, given different wind speed
conditions, this might make more difficult the manipulation of the
drone. If there is an intention of capturing the learning rate of a specific
pilot, then it is needed to limit this external variable like weather
conditions. On the other hand, a critical aspect to consider is the
defined route for the pilot; this is a perfect point to consider to prepare
some specific scenarios for this work. A defined route helps define a
specific scenario and limit the areas where the flight could be measured.
Resuming what is explained before, for this work, there are some things
defined for sure:

• A closed environment without weather conditions can affect the test.

• Position and angular metrics captured in real-time through the drone
are the most convenient for this work.

• The pilot will need to accomplish a defined, specific, and
straightforward route.
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From here, there is also another thing to consider, and it is about
measuring the metrics obtained during the flight. In the case of NIST©
, there is using a system point gain in the base of the zooming of the
drone’s camera. For this work, is proposed position metric, so an area
error is convenient to implement as a list of errors in a determined
distance during the route, defined as how much the drone is away from
the mainline route the defined scenario, theoretically. In this way, it is
possible to measure the learning rate behavior between a timeline of
flight of a specific pilot and visualize this distance error during each
flight.

4.2 Acquisition and Understanding Data of the Flight Evaluation

4.2.1 Designed Experiment

These flights had executed by eight pilots, and the route designed
is as represented in Figure 2.3, described in words consists of a
zone considered as "Home" where the drone is its starting point and
"Landing" which is the endpoint for arrival, which marks the end of
the route. The drone should start from the "Home," elevating up to 1

meter in y-axis only; after this, it should advance 4 meters on the x-axis,
it should go down 1 meter in the y-axis until it reaches the "Landing"
zone. Below Figure 4.1 represents this scenario.

Figure 4.1: Scenario Flight Test
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For this route (please refer Figure 4.2 the origin coordinates) mentioned
above was the reference for each test flight which each pilot executed
this order of set flight like next,

Set of Flights:

Figure 4.2: Origin set up of the
MoCap System© workspace.

• A set of 10 flights with the nose of the drone pointing to the front
view from the pilot is situated; this type of flight is called Front Nose
Orientation Flight (FNOF) as data variable. Figure 4.3

Figure 4.3: Flight with Nose
oriented to Front. In data we can
find as FNOF
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• A set of 10 flights with the nose of the drone pointed to the right-
hand direction from the pilot is situated; this type of flight is called
Right Nose Orientation Flight (RNOF) as data variable. Figure 4.4

Figure 4.4: Flight with Nose
oriented to Right. In data we can
find as RNOF

• A set of 10 flights with the nose of the drone pointed to the left-hand
direction from the pilot is situated; this type of flight is called Left
Nose Orientation Flight (LNOF) as data variable. Figure 4.5

Figure 4.5: Flight with Nose
oriented to Right. In data we can
find as LNOF
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• A set of 10 flights with the nose of the drone pointed to the backward
view from the pilot is situated (nose will be face-to-face to pilot); this
type of flight is called Back Nose Orientation Flight (BNOF) as data
variable. Figure 4.6

Figure 4.6: Flight with Nose
oriented to Right. In data we can
find as BNOF

Each set of ten flights is performed with different nose orientations
of the drone to find this weakness-strongest response from the psycho-
motor abilities of pilots. One of the objectives mentioned in Chapter 1.5
is studying the learning rate of the pilots between a set of flights and
the abilities that need reinforcement.
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4.2.2 Data Acquisition

As mentioned in subsection 3.1, values captured such as control position
and angular speed from the drone using the Motion Capture (MoCap)
System and stored as a .csv file for each flight. A brief description
of this type of file canes as follows, it consists of the columns: Frame
(sequential number), Sub Frame, RX, RY, RZ (angular speed as radians),
TX, TY, TZ (control position as millimeter), Time (seconds), Euclidean Angle
(radians), and Euclidean Distance (millimeter). In Figure 4.7 there is a
representation of the Drone Trajectory in 3d graph and in Figures 4.7
and 4.8 are the representation of the flight in a spatial graph in respect
with the ground truth trace-line, and the behavior of the position of x,
y, z in time.

Figure 4.7: Graphic Representa-
tion of Drone trajectory in blue
line vs. the defined route as
ground truth with dotted black
line.



42

(a)

(b)

Figure 4.8: Flight #1 with Nose in
Front Orientation, (a) represents
the movement between x position
in relation with y position, (b)
represents the timelines behavioral
positions for x, y and z positions.

In Figure 4.8 (a) represents the visualization of the drone flight from
sky down view perspective in order to see the variation of the flight
when the drone reaches the top of the trace and travels to the opposite
side of the marked area. Please follow this explanation using Figure 4.7
for a better visualization.
In Figure 4.8 (b) is reflected that in the intervals of seconds 0 to 10
the position in y starts with 200 mm, meanwhile x remains with 0 mm
and z starts with 250 mm, this is the first part of the Flight, when the
Drone tries to go up 1 meter. The second part of the flight consists
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from seconds 10 to 16 approximately when z position is elevated to
800 mm an it tries to maintain during this time with some variations,
meanwhile y position value goes down from 2000 mm to −2000 mm
because is the part when the drone travels 2 meters to the other side of
the trace, and x position has little variations which is expected. Finally
during seconds 17 to 19 the drone has a quick descending, this can
be reflected with position z how this value goes down until it reaches
the start point from 750 mm to 250 mm approximately, meanwhile y
position reaches the opposite side of the marked trace. Please follow
this explanation using Figure 4.7 for a better visualization.

In Tables 4.1 and 4.2 there is an extract of a set of data captured
specifically for Flight #1 with Drone Nose in Front Orientation.

Objects
100

Sub DJI_1:DJI_1

Frame Frame RX RY RZ TX TY TZ
rad rad rad mm mm mm

1 0 -116.239 -240.183 -159.317 739.496 2245.51 223.694

2 0 -106.326 -237.183 -158.309 745.372 2245.55 223.69

3 0 -106.394 -235.396 -156.306 746.144 2245.59 223.705

4 0 -107.128 -199.088 -193.631 690.471 2246.29 223.392

5 0 -230.902 -205.318 -19.534 689.285 2246.28 223.354

6 0 -277.058 -201.255 -196.545 692.621 2246.23 223.354

7 0 -235.616 -168.467 -287.347 752.951 2244.83 223.677

8 0 -214.263 -170.587 -287.915 759.278 2244.88 223.727

9 0 -195.135 -175.381 -281.537 757.763 2244.96 223.72

10 0 -147.038 -198.618 -191.917 690.118 2246.3 223.409

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... .. ... ...
2190 0 -360.886 217.624 -341.503 569.667 -2147.9 197.26

2191 0 -348.314 215.974 -341.596 569.418 -2147.88 197.453

Table 4.1: Part I: Extract of File
Generated by MOCAP System
for Front Flight #1

For the processing part after all this analysis of the data collected
as mentioned in subsection 1.5.1 we want to calculate on first hand,
how separated was the pilot trace flight with the ground truth, obtain
a metric that can distinguish how distance was in total in the flight,
and after this for all flight with this metric find a model that interprets
for all flights the behavior of this distance error from the pilot flight to
the ground truth, and predicts if possible what would be this distance
error in a specific future flight and type flight with the nose orientation
of the drone specified.
In the first part its necessary to design a methodology for calculate
this distance error explained before, it need to exact, and covers
all the possible critical sides of the trace. So in this way we can
evaluate the most accuracy way possible the pilot ability. In next
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Objects
100

Ángulo Distance
Time (s) Euclideana (¡) Euclidieana (mm)
0.01 3.107.753 2.256.636.624

0.02 30.433.983 2.256.676.223

0.03 30.193.133 2.256.717.538

0.04 27.792.762 225.738.132

0.05 28.433.493 2.257.367.573

0.06 28.266.787 2.257.317.921

0.07 33.392.301 2.255.958.737

0.08 3.353.417 225.601.366

0.09 3.322.685 225.609.252

0.1 27.658.172 2.257.392.943

... ... ...

... ... ...

... .. ...
21.9 342.214.735 2.157.691.155

21.91 342.295.789 2.157.688.242

Table 4.2: Part II: Extract of File
Generated by MOCAP System
for Front Flight #1

subsection is explained Methodology proposed for this work, and the
designed checkpoints for measure this metric, and then in Chapter 4.2.4
in specifically in Table 4.6 in column DEE is the Distance Euclidean
Error for all this checkpoints error for each flight.

4.2.3 Assignment Checkpoints Convention

This methodology was created with the intention to give a step by step
details process of how assigned checkpoints will be located in a specific
route depending of the number of direction changes and longitude
measurement. The idea of this methodology is to being generic for
other types of flights in order to convey a general way to apply this
for other levels of experience pilot tests too. Also this Checkpoints will
establish the error distance that the pilot miss over the trace in an exact
measurement.

1. We locate a Checkpoint CP1 (3) at home position, then we locate the
Checkpoints at the points where there will be a change of direction
CPi+1 up to CP#CDD (4), and finally another Checkpoint on landing
position CPn. (5)

Refer to Figure 4.9 as visual representation.

A checkpoint is a defined sphere in space with a defined radius rCPi

Moreover, its center had defined with coordinates:

CPi = (xi, yi, zi)i = 1...n (4.1)
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Figure 4.9: Locating initial
Checkpoints (Home, Landing,
Change of Direction).

The change in any axis of the path either x, y, z is defined as a change
of direction where:

#CDD = # address change number (4.2)

The home is where the drone had located when it is ready for takeoff,
and there we label the CP1.

H = CP1 at home plate position (4.3)

Once the drone takes off, we assign a CP to each change of direction.

CPi+1 to CP#CDD where i = 1...#CDD (4.4)

Once we are in the last change of direction before landing. The
landing had defined as:

L = CPn at landing position (4.5)

And finally n is defined as the total number of checkpoints which is
defined as:

n = H + #CDD + L (4.6)

2. For each position CPi generate a uniform random number ECPi (7)
within a range (0− rCPi)

ECPi = random.generator(CPi, (0− rCPi)) (4.7)

3. We assign the trace Ti between CPi+1 and CPi and calculate its length.

Each trace is defined as:

−→
Ti =

−−−−−→
CPiCPi+1 (4.8)
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And its length as: ∣∣∣−→Ti

∣∣∣ = span length (4.9)

Applying to the case:

−→
T1 =

−−−−→
CP1CP2 =

−−−→
OCP2 −

−−−→
OCP1 = (0, 0, 1)− (0, 0, 0) = (0, 0, 1)

−→
T2 =

−−−−→
CP2CP3 =

−−−→
OCP3 −

−−−→
OCP2 = (1, 0, 1)− (0, 0, 1) = (1, 0, 0)

−→
T3 =

−−−−→
CP3CP4 =

−−−→
OCP4 −

−−−→
OCP3 = (1, 0, 0)− (1, 0, 1) = (0, 0,−1)

(4.10)

The visual representation of traces looks like Figure 4.10 in red
arrows.

Figure 4.10: Assignment of the
Traces.



drone flight performance evaluation methodology based on data science 47

4. Calculate the maximum number of intermediate checkpoints per
trace:

#CPITi =

∣∣∣−→Ti

∣∣∣− rCPi

2 ∗ rCPi
, i = 1, . . . , n− 1 (4.11)

Where applying to the case we have:

i = 1 #CPIT1 = 1−2(0.1)
2(0.1) = 4

i = 2 #CPIT2 = 1−2(0.1)
2(0.1) = 4

i = 3 #CPIT3 = 1−2(0.1)
2(0.1) = 4

(4.12)

5. Calculate the position of the intermediate checkpoints PCPIjTi (13):

CPIj Ti = j∆(i,j)
−→
Ti where ∆(i,j) =

∣∣∣−→Ti

∣∣∣
j̇ + 1

{ i = 1, . . . , n− 1
j = 1, . . . , k [ where the value of k = #CPITi]

(4.13)

Applying to the case:

For T1

With 1 intermediate checkpoint (k = 1) at T1 (i = 1)

∆(1,1) =

∣∣∣−→T1

∣∣∣
1 + 1

=
1
2

CPI1T1 = 1∆(1,1)
−→
T1 = (0, 0, 0.5)

(4.14)

With 2 intermediate checkpoints (k = 2) in T1 (i = 1)

∆(1,2) =

∣∣∣−→T1

∣∣∣
2 + 1

=
1
3

CPI1T1 = 1∆(1,2)
−→
T1 =

1
3

(0, 0, 1) = (0, 0, 0.3̃33)

CPI2T1 = 2∆(1,2)
−→
T1 =

2
3

(0, 0, 1) = (0, 0, 0.6̃66)

(4.15)

With 3 intermediate checkpoints (k = 3) in T1 (i = 1)

∆(1,3) =

∣∣∣−→T1

∣∣∣
3 + 1

=
1
4

CPI1T1 = 1∆(1,3)
−→
T1 =

1
4

(0, 0, 1) = (0, 0, 0.25)

CPI2T1 = 2∆(1,3)
−→
T1 =

2
4

(0, 0, 1) = (0, 0, 0.5)

CPI3T1 = 3∆(1,3)
−→
T1 =

3
4

(0, 0, 1) = (0, 0, 0.75)

(4.16)
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With 4 intermediate checkpoints (k = 4) in T1 (i = 1)

∆(1,4) =

∣∣∣−→T1

∣∣∣
4 + 1

=
1
5

CPI1T1 = 1∆(1,4)
−→
T1 =

1
5

(0, 0, 1) = (0, 0, 0.2)

CPI2T1 = 2∆(1,4)
−→
T1 =

2
5

(0, 0, 1) = (0, 0, 0.4)

CPI3T1 = 3∆(1,4)
−→
T1 =

3
5

(0, 0, 1) = (0, 0, 0.6)

CPI4T1 = 4∆(1,4)
−→
T1 =

4
5

(0, 0, 1) = (0, 0, 0.8)

(4.17)

For T2

With 1 intermediate checkpoint (k = 1) in T2 (i = 2)

∆(2,1) =

∣∣∣−→T2

∣∣∣
1 + 1

=
1
2

CPI1T2 = 1∆(2,1)
−→
T2 = (0.5, 0, 0)

(4.18)

With 2 intermediate checkpoints (k = 2) in T2 (i = 2)

∆(2,2) =

∣∣∣−→T2

∣∣∣
2 + 1

=
1
3

CPI1T2 = 1∆(2,2)
−→
T2 =

1
3

(1, 0, 0) = (0.3̃33, 0, 0)

CPI2T2 = 2∆(2,2)
−→
T2 =

2
3

(1, 0, 0) = (0.6̃66, 0, 0)

(4.19)

With 3 intermediate checkpoints (k = 3) in T2 (i = 2)

∆(2,3) =

∣∣∣−→T2

∣∣∣
3 + 1

=
1
4

CPI1T2 = 1∆(2,3)
−→
T2 =

1
4

(1, 0, 0) = (0.25, 0, 0)

CPI2T2 = 2∆(2,3)
−→
T2 =

2
4

(1, 0, 0) = (0.5, 0, 0)

CPI3T2 = 3∆(2,3)
−→
T2 =

3
4

(1, 0, 0) = (0.75, 0, 0)

(4.20)
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With 4 intermediate checkpoints (k = 4) in T2 (i = 2)

∆(2,4) =

∣∣∣−→T2

∣∣∣
4 + 1

=
1
5

CPI1T2 = 1∆(2,4)
−→
T2 =

1
5

(1, 0, 0) = (0.2, 0, 0)

CPI2T2 = 2∆(2,4)
−→
T2 =

2
5

(1, 0, 0) = (0.4, 0, 0)

CPI3T2 = 3∆(2,4)
−→
T2 =

3
5

(1, 0, 0) = (0.6, 0, 0)

CPI4T2 = 4∆(2,4)
−→
T2 =

4
5

(1, 0, 0) = (0.8, 0, 0)

(4.21)

For T3

With 1 intermediate checkpoint (k = 1) in T2 (i = 3)

∆(3,1) =

∣∣∣−→T3

∣∣∣
1 + 1

=
1
2

CPI1T3 = 1∆(3,1)
−→
T3 = (0, 0,−0.5)

(4.22)

With 2 intermediate checkpoints (k = 2) in T2 (i = 3)

∆(3,2) =

∣∣∣−→T3

∣∣∣
2 + 1

=
1
3

CPI1T3 = 1∆(3,2)
−→
T3 =

1
3

(0, 0,−1) = (0, 0,−0.3̃33)

CPI2T3 = 2∆(3,2)
−→
T3 =

2
3

(0, 0,−1) = (0, 0,−0.6̃66)

(4.23)

With 3 intermediate checkpoints (k = 3) in T2 (i = 3)

∆(3,3) =

∣∣∣−→T3

∣∣∣
3 + 1

=
1
4

CPI1T3 = 1∆(3,3)
−→
T3 =

1
4

(0, 0,−1) = (0, 0,−0.25)

CPI2T3 = 2∆(3,3)
−→
T3 =

2
4

(0, 0,−1) = (0, 0,−0.5)

CPI3T3 = 3∆(3,3)
−→
T3 =

3
4

(0, 0,−1) = (0, 0,−0.75)

(4.24)
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With 4 intermediate checkpoints (k = 4) in T2 (i = 3)

∆(3,4) =

∣∣∣−→T3

∣∣∣
4 + 1

=
1
5

CPI1T3 = 1∆(3,4)
−→
T3 =

1
5

(0, 0,−1) = (0, 0,−0.2)

CPI2T3 = 2∆(3,4)
−→
T3 =

2
5

(0, 0,−1) = (0, 0,−0.4)

CPI3T3 = 3∆(3,4)
−→
T3 =

3
5

(0, 0,−1) = (0, 0,−0.6)

CPI4T3 = 4∆(3,4)
−→
T3 =

4
5

(0, 0,−1) = (0, 0,−0.8)

(4.25)

Figure 4.11 represents graphically how the trace looks with the
middle checkpoints and the initial ones, after it finishes all iterations.

Figure 4.11: Final iteration
remaining with initial and one
intermediate checkpoints per
trace.
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4.2.4 Processing Checkpoints in Data

Distance CP 1 Time CP 1 Distance CP 1,1 Time CP 1,1 Distance CP 2

DJI_1.csv 0 0 0.09422685123 10.39 0.1230964143

DJI_1 1.csv 0 0 0.1072618008 10.63 0.1679795491

DJI_1 2.csv 0 0 0.1222917882 6.01 0.0448231698

DJI_1 3.csv 0 0 0.2022566183 8.28 0.04551918453

DJI_1 4.csv 0 0 0.173967196 5.38 0.1471906894

DJI_1 5.csv 0 0 0.07374948072 8.45 0.1536095659

DJI_1 6.csv 0 0 0.07664092966 6.91 0.080878208

DJI_1 7.csv 0 0 0.08266311678 5.77 0.05126018525

DJI_1 8.csv 0 0 0.0962524878 5.28 0.0743017463

DJI_1 9.csv 0 0 0.1462147332 5.43 0.1958881472

... ... ... ... ... ...

... ... ... ... ... ...
DJI_right 10.csv 0 0 0.193896614 2.9 0.1470736674

Table 4.3: Part I: Extract of
Data with distance error for
checkpoint calculated,(including
time) in Front Flight #1

Time CP 2 Distance CP 2,1 Time CP 2,1 Distance CP 2,2 Time CP 2,2
13.06 0.1063482472 13.99 0.1234759725 14.77

10.52 0.2830023798 11.51 0.3349848237 12.24

7.75 0.0388972473 9.15 0.08810078142 10.07

8.55 0.2853162584 9.92 0.328282967 11.07

7.38 0.1370842097 8.5 0.1212568685 9.44

10.03 0.03059313731 12.56 0.1874753611 13.44

7.24 0.1904778006 9.3 0.2001255687 10.08

6.38 0.07254837434 8.68 0.09209649279 9.77

6.29 0.1309726603 7.62 0.08980766257 8.53

5.89 0.1057668385 8.21 0.1034246115 9.03

... ... ... ... ...

... ... ... ... ...
4.49 0.1142192847 5.35 0.2179864112 6

Table 4.4: Part II: Extract of
Data with distance error for
checkpoint calculated,(including
time) in Front Flight #1

Distance CP 2,3 Time CP 2,3 Distance CP 3 Time CP 3 Distance CP 4

0.07591725505 15.78 0.1264816041 16.81 0.2618491739

0.2445824942 13.18 0.2007087463 15.34 0.3397884757

0.1144959564 11.08 0.1114939063 12.23 0.4146496652

0.3214861791 12.2 0.09669152362 15.13 0.1261417144

0.1174594085 10.46 0.1110417164 11.72 0.332883812

0.2063493372 14.29 0.05853862507 15.64 0.3573431177

0.1498789631 10.93 0.1277228716 12.34 0.4048202144

0.01871915043 10.78 0.04128619501 11.86 0.4679391111

0.09830709231 9.52 0.08221410745 10.74 0.3168416638

0.1058873561 9.77 0.05274039016 10.73 0.392489008

... ... ... ... ...

... ... ... ... ...
0.2335362941 7.04 0.1006436762 8.33 0.1789560913

Table 4.5: Part III: Extract of
Data with distance error for
checkpoint calculated,(including
time) in Front Flight #1
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The explained methodology in subsection 4.2.3 was coded using
Python Language, please find the code developed of on this link
repository http://t.ly/FGtk there is a Google Colab. file with name
checkpoints-methodology-assignment.py. This code takes data from tables
4.1 and 4.2 and after processed we will have an extract data as for
example in tables 4.3, 4.4 and 4.5. So going in detail in table 4.3
focusing in the first row this is the extract of Flight #1 with Front Nose
Orientation and the Checkpoint Error Distance and Time, for each one,
so its mentioned as Distance CP ID and Time CP ID and so on. In
Figure 4.12 is the visual representation of the flight with the checkpoints
were considered specific flight, in repository http://t.ly/FGtk there
are the rest of all graphs for each flight as reference. For finalize this
Chapter, and as introduction of Chapter 4.2.4 in table 4.6 is the finished
data set after processing, with the column DEE as this is equal to the
Euclidean Distance for all the Checkpoints error for the specific flight.

Figure 4.12: Graphic Rperesen-
tation of Drone Trajectory in
blue line vs the defined route
as ground truth with dotted
black line and including in pur-
ple ovals considered as check-
points counting the error dis-
tance.

http://t.ly/FGtk
http://t.ly/FGtk
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4.3 Drone Flight Performance Evaluation Model

This section presents all the process that involves analyzing, modeling,
and predicting the final data after being processed. The main intention,
as mentioned before, is first to have an analysis of the behavior of the
dependent and independent variables in each category. Then have
a precise examination of the variance between the different category
flights, then propose a model that can predict the distance error in
future flights for this selected pilot.

4.3.1 Data for Analysis

Next subsection explores the data set that has been processed, and
describes in first place the columns that are composed with, the
behavior of the data using scatterplots, and self-organized way to add
some dummy data in order to categorize the types of flights orientation.

4.3.2 Analysis for the final data after Processing for Modeling

In the first column of final data in Table 4.6, the ID Flight, which is a
variable that increments by, is the sequence that the pilot is performing
over and over to an expected less error distance, represented with
column DEE. This ID Flight resets the "Category Flight." As was
already mentioned, we have four types of flight; it depends on the
nose orientation of the drone to qualify the different psycho-motor
abilities of the pilot. Therefore, columns RNOF, LNOF, and BNOF are
dummy variables to get the best-categorized separation in the dataset
for analysis and modeling; the meanings are Right Nose Orientation
Flight, Left Nose Orientation Flight, and Back Nose Orientation Flight
consecutively. An explanation of dummy variables is in subsection
4.3.7.

The scatterplot Analysis, beginning with Front and Back Flights, has
unambiguous evidence that the Distance Euclidean Error decreases
the ID Flight. The relation between both variables is relational inverse,
in Figures 4.13 and 4.14, as mentioned before; expected because it
shows the evidence that this learning rate the causes the decrements
of Error during the Flight. Left Flight, Figure 4.15 seems to have the
most dispersed data behavior; it doesn’t have a particular behavior
sometimes; it increments and decrements, even though there are some
outliers data. Finally, Right Flight in Figure 4.16 has this behavior
explained as learning where the Error goes down as starting, but the
#6 flight before this data is not predictable. Left and Right Flights can
affect a model, assuming from here this dispersion may conflict some
accuracy, but first, let’s introduce with variance analysis.
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ID Flight Type Flight RNOF LNOF BNOF DEE
1 Front 0 0 0 0.985675149
2 Front 0 0 0 1.806739288
3 Front 0 0 0 1.047604871
4 Front 0 0 0 1.528641891
5 Front 0 0 0 1.234495717
6 Front 0 0 0 1.174186399
7 Front 0 0 0 1.343742274
8 Front 0 0 0 0.962990611
9 Front 0 0 0 0.972933571
10 Front 0 0 0 1.210365933
1 Back 0 0 1 2.365307062
2 Back 0 0 1 2.329833631
3 Back 0 0 1 1.052362288
4 Back 0 0 1 1.939221534
5 Back 0 0 1 1.992030662
6 Back 0 0 1 1.281841702
7 Back 0 0 1 1.387536712
8 Back 0 0 1 1.666399614
9 Back 0 0 1 1.645480065
10 Back 0 0 1 1.063678058
1 Left 0 1 0 1.694682341
2 Left 0 1 0 1.402926549
3 Left 0 1 0 1.342333974
4 Left 0 1 0 2.07969051
5 Left 0 1 0 1.534874568
6 Left 0 1 0 1.756106841
7 Left 0 1 0 0.974873673
8 Left 0 1 0 1.034750899
9 Left 0 1 0 2.01350065
10 Left 0 1 0 1.677935904
1 Right 1 0 0 1.771016853
2 Right 1 0 0 1.2398286
3 Right 1 0 0 2.084629454
4 Right 1 0 0 1.33609378
5 Right 1 0 0 1.35132887
6 Right 1 0 0 1.384263872
7 Right 1 0 0 1.411525773
8 Right 1 0 0 1.581860767
9 Right 1 0 0 1.461563516
10 Right 1 0 0 1.274292183

Table 4.6: Data Table after
processed, used for the modeling.
Columns shorted for the width
page, which follows: ID Flight,
Type Flight, RNOF (Right Nose
Orientation Flight), LNOF (Left
Nose Orientation Flight), BNOF
(Back Nose Orientation Flight),
DEE (Distance Euclidean Error)
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Figure 4.13: Graphic Scatterplot
for Front Nose Orientation
Flights

Figure 4.14: Graphic Scatter-
plot for Back Nose Orientation
Flights
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Figure 4.15: Graphic Scatterplot
for Left Nose Orientation Flights

Figure 4.16: Graphic Scatterplot
for Right Nose Orientation
Flights

4.3.3 Diagnosis of the Pilot Abilities in Flight Performance with different
Oriented Positions

Next subsection remarks all the variation between data with different
categories in order to do a diagnosis of what is the behavior of the
pilot while doing different orientations; in order to group the data and
how similarities can have. This subsection focus in the average for the
different types of flights, minimum and maximum values.

4.3.4 Tukey HSD Test. Multiple Comparisons method.

• For Back Nose Orientation we have the maximum value of Euclidean
Distance Error with 2.365m, and has also the most highest mean of
Distance Euclidean Error with 1.2267m from all the types of flights,
means that this was the flight with more difficulty to follow the trace
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line. Also has the highest Standard Deviation with a value of 0.480
which means that for this type of flight the Distance Euclidean Error
for the 10 flights is the most dispersed data in relation to the mean.

• For Front Nose Orientation we have the minimum value of Distance
Euclidean Error with 0.9630m, and has also the minimum mean of
Distance Euclidean Error from all the types of flights with 1.2267m,
means that this was the flight most controlled with the lowest
Distance Euclidean Error, so it was more near to the following trace
line.

• For Left Nose Orientation we have the second highest mean of
Distance Euclidean Error with 1.551m, the values from minimum
and maximum comes from 0.975m to 2.080m which it makes sense
because we have the second highest Standard Deviation in the
Distance Euclidean Error, so data has extensive range for each flight.
But it is the second hardest orientation for the pilot to be controlled.

• For Right Nose Orientation we have the second lowest mean of
Distance Euclidean Error with 1.4896m, so at simple view, can be
say that this is the second most controlled orientation for the pilot,
and this particular Type of Flight has the lowest Standard Deviation
with a value of 0.2606, so the dispersed Distance Euclidean Error in
relation to the mean is less than the other types of flight.

In conclusion, with this simple metrics it can be said that the pilot
has more domain in this orientation in order as follows, Front and
Right, but its more difficult to maintain a control in the drone when the
nose is oriented to Left and Back towards the pilot. So the pilot need
to work more on this orientations that will help in his psychometric
control. Now, lets compare this means to see if there is an "honestly
significant difference" from one type of flight to the other, or maybe
can be found that means are almost same there is no difference, but
this needs to be proved with the help of Tukey Test. 1 1 Douglas C Montgomery, Elizabeth A

Peck, and G Geoffrey Vining. Introduction
to linear regression analysis. John Wiley &
Sons, 2021

Variable
Drone
Nose
Orientation

Total
Count

Mean SE Mean StDev Min Max

Distance
Euclidean
Error

Back 10 1.672 0.152 0.480 1.052 2.365

Front 10 1.2267 0.0862 0.2725 0.9630 1.8067
Left 10 1.551 0.117 0.371 0.975 2.080
Right 10 1.4896 0.0824 0.2606 1.2398 2.0846

Table 4.7: Descriptive Statistics:
Distance Euclidean Error in base
of Type of Flight

Tukey Test is based in a Pair Wise Comparison this means determine if
the relationship between two sets of data is statistically significant, this
is part of the ANOVA analysis which is created a confidence intervals
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for all pair wise differences between the factor level (Types of Flights)
means while controlling also the family error rate to a specified level.
This study is based on the alpha value and a independent P value,
which comes from compares the differences between means and then
taking the absolute value of the this difference and dividing it by the
standard error of the mean (SE) as determined by a one-way ANOVA
test. The SE is in turn the sqaure root of (variance divided by sample
size).
Following the next steps:

1. Method
Null hypothesis: All means are equal
Alternative hypothesis: At least one mean is different
Significance level: α = 0.05 (Equal variances were assumed for the
analysis)2 2 William Mendenhall, Terry Sincich, and

Nancy S Boudreau. A second course in
statistics: regression analysis, volume 6.
Prentice Hall Upper Saddle River, NJ,
2003

From the result of one way ANOVA can be demonstrated that P
value is 0.055 which means that there is not a significant difference
exist in the Type of Flight with the different Drone Nose Orientation.
Plot 4.17 explains by itself that the mean values for the four groups
interval distributed not too far from their respective means. Using
Table 4.13 and Figure 4.17 it is identified that ANOVA detect not
a significant effect Type of Flight between the groups. Lets going
deep maybe it should be a remarked difference between pair of
groups of flights. In this case the pair wise multiple comparisons
test, also called as post hoc test, can explain us the mean differences
with a more detailed way, between groups, using Tukey Pair wise
Comparisons.

Factor Levels Values
Drone Nose
Orientation

4 Back, Front, Left, Right

Table 4.8: Factor Information

Source DF Adj SS Adj MS F-Value P-Value
Drone Nose
Orientation

3 1.062 0.3540 2.78 0.055

Error 36 4.591 0.1275
Total 39 5.653

Table 4.9: Analysis of variance
table

2. Tukey Pair wise Comparisons
The Tukey simultaneous with different error rate (90, 95 and 99%)
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Figure 4.17: One way ANOVA
plot of Distance Euclidean Error
vs Drone Nose Orientation (4
groups with 95% CI for the
mean)

Grouping information using the Tukey Method and 95% confidence
Drone Nose Orientation N Mean Grouping
Back 10 1.672 A
Left 10 1.551 A B
Right 10 1.4896 A B
Front 10 1.2267 B
Grouping information using the Tukey Method and 99% confidence

Drone Nose Orientation N Mean Grouping
Back 10 1.672 A
Left 10 1.551 A
Right 10 1.4896 A
Front 10 1.2267 A
Grouping information using the Tukey Method and 90% confidence

Drone Nose Orientation N Mean Grouping
Back 10 1.672 A
Left 10 1.551 A B
Right 10 1.4896 A B
Front 10 1.2267 B

Table 4.10: Grouping informa-
tion (4 groups) using the Tukey
Method with 90%, 95% and 99%
confidence

is presented in Table 4.10 and Table 4.11. So going forward in the
interpretation of the results in Table 4.10 highlights the significant
and non-significant comparisons for any pairs of groups subsist or
not. The Grouping column presented with alphabetical letters that
group the factor levels. Groups that do not share a letter have a
mean difference that is statistically significant. In Table 4.10 for 90%
and 95% there is the same grouping, in Left and Right Nose Oriented
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flights have both letters, so between this two types flights mean is
almost not significant different between them, but in Back and Front
flights does not share letter so this are significant different between
each other. In the 99% confidence level it was observed that in all the
types of flights are significantly different, it might be due to selection
of 1% error rate, so this makes more sensitive detective differences.
For this part in the moment, definitely can we conclude that Front
and Back are kindly opposite abilities for the pilot means are so
distinct and that is why there is a great significance difference. For
Left and Right there is not much difference between this means so
those are maintained with both letters, it can be seen like next, this
two types of flights are almost in same difficulty level for Pilot.

Analyzing Table 4.11 and Figure 4.18 there are some items to discuss:

i. The 95% simultaneous confidence level indicates that only this
groups contain the true differences: Front-Back, Left-Back, Right-
Back, Right-Left while Left-Front and Right-Front doesn’t presents
any significance difference at all. This also applies for 99% and
90% confidence levels.

ii. The 95% confidence level for the difference between means of: Left-
Back, Right-Back, Left-Front, Right-Front, Right-Left extends from
-0.551 to 0.309, -0.613 to 0.248, -0.106 to 0.755, -0.167 to 0.693, -0.492
to 0.369, as this ranges includes zero, indicates that the difference
between these means is not statistically significant.

iii. Also in the %95 confidence level for the difference between the
means of Front-Back which extends in range from -0.876 to -0.0.15
does not include zero that means, for this special levels is a
statistically significant difference.

iv. For the 99% confidence level the differences between means of
Left-Back, Right-Back, Left-Front, Right-Front, Right-Left, includes
the zero in their respective range, so this indicates that for this
means there is not a statistically significant difference between
them.

v. However, in Table is also observed that in 99% confidence level
the adjusted P value for the following group: Front-Back is 0.040,
which is lesser than the selected significance level α = 0.05. This P
value confirms in a more stronger sense that there is a significant
difference between this groups.

vi. In the 90% confidence level there is a conflict between groups
Front-Back this because the range of the CI Values comes from
-0.980 to 0.089 range and because this range include 0 it can be
interpreted that doesn’t has a level significance, however in the
Adjusted P-value can be seen that 0.040 which is lower than
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α = 0.05 shows the opposite, that there is a significant difference.
This is caused as by the probability of a type I error (false positive)
in 90% as consequence for a very low simultaneous confidence
level.

So, it was identified that with 95% and 99% error rate or
confidence level the probability of committing type I error is less.
However in 90% a type I error was observed. The probability of
committing a type I error depends of the number of groups, so if
groups to compare increases the difference between experiment wise
error proportions increases, so with a lower level confidence there
is a gap that can carry to have a type I error. The selection of error
rate or the confidence level plays a significant role while performing
HSD test in pair groups, and for this data we can conclude that 95%
and 99% are the best options.

3. As conclusion, this analysis for this point was conducted for obtained
raw data and sequential approach using Tukey’s HSD test to find
the suitable confidence level to minimize the type I error, which is
the rejection of a true null hypothesis (false positive). The error was
calculated and then significant of different significance level was
explained using P valueof ANOVA test. So, this study confirms
that there is a conflict results using 90% confidence for Front-Back
grouping, due to the lower individual confidence level. For the other
levels 95% and 99% can be concluded that Front-Back differences are
significant such as it can be considered as opposite, and also that
Back type flight has mean difference with the rest of the types of
flights orientation.Front type of flights is lightly similar with Right
and Left type of flights, but this was not confirmed by the P- value,
perhaps it can be said that least this two types of flights are more
similar of Front than from Back flight.

4.3.5 Kruskal-Wallis

Null hypothesis H0 : All medians are equal Alternative hypothesis H1 :
At least one median is different

As for the data in table 4.6 column DEE is considered as a Dependant
variable, sometimes called as response, this is the metric that express
evaluation flight of a determined pilot. So, as there are other variables
includes it was decided to judge into this relation between x with y, and
formulate a multiple regression analysis that can help also in order to
predict this DEE metric in near future for next flights that can perform,
the pilot. In this way, we will have an idea of a range of Euclidean
Distance Error will he pilot have in the next flights, during the learning
progress.
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(a)

(b)

(c)

Figure 4.18: Tukey Simultaneous
test for differences of mean of
score for 3 groups with (A) 95%
CI (B) 99% CI and (C) 90% CI
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Tukey simultaneous tests for differences of means for 95% confidence level
Difference of
Levels

Difference
of Means

SE of
Difference

95% Cl
Value

T-value Adjusted P-value

Front - Back −0.446 0.160 (−0.876,−0.015) −2.79 0.040
Left - Back −0.121 0.160 (−0.551, 0.309) −0.76 0.872
Right - Back −0.183 0.160 (−0.613, 0.248) −1.14 0.665
Left - Front 0.324 0.160 (−0.106, 0.755) 2.03 0.196
Right - Front 0.263 0.160 (−0.167, 0.693) 1.65 0.367
Right - Left −0.062 0.160 (−0.492, 0.369) −0.39 0.980

Tukey simultaneous tests for differences of means for 90% confidence level
Difference of
Levels

Difference
of Means

SE of
Difference

90% Cl
Value

T-value Adjusted P-value

Front - Back −0.446 0.160 (−0.980, 0.089) −2.79 0.040
Left - Back −0.121 0.160 (−0.655, 0.413) −0.76 0.872
Right - Back −0.183 0.160 (−0.717, 0.351) −1.14 0.665
Left - Front 0.324 0.160 (−0.210, 0.859) 2.03 0.196
Right - Front 0.263 0.160 (−0.271, 0.797) 1.65 0.367
Right - Left −0.062 0.160 (−0.596, 0.473) −0.39 0.980

Tukey simultaneous tests for differences of means for 99% confidence level
Difference of
Levels

Difference
of Means

SE of
Difference

99% Cl
Value

T-value Adjusted P-value

Front - Back −0.446 0.160 (−0.825,−0.066) −2.79 0.040
Left - Back −0.121 0.160 (−0.501, 0.258) −0.76 0.872
Right - Back −0.183 0.160 (−0.562, 0.197) −1.14 0.665
Left - Front 0.324 0.160 (−0.055, 0.704) 2.03 0.196
Right - Front 0.263 0.160 (−0.117, 0.642) 1.65 0.367
Right - Left −0.062 0.160 (−0.441, 0.318) −0.39 0.980

Table 4.11: Tukey simultaneous
tests differences means 95%, 90%
and 99%

Drone Nose
Orientation

N Median Mean Rank Z-Value

Back 10 1.65594 25.2 1.47
Front 10 1.19228 11.7 −2.75
Left 10 1.60641 23.3 0.87
Right 10 1.39789 21.8 0.41
Overall 40 20.5

Table 4.12: Analysis of variance
table

DF H-Value P-Value
3 7.98 0.046

Table 4.13: Analysis of variance
table

RNOF LNOF BNOF Regression Equation
0 0 0 DEE = 1.446− 0.0399 ID Flight
0 0 1 DEE = 1.892− 0.0399 ID Flight
0 1 0 DEE = 1.771− 0.0399 ID Flight
1 0 0 DEE = 1.709− 0.0399 ID Flight

Table 4.14: MINITAB© Regres-
sion Equations output.

4.3.6 Predictions in the Error Distance of Future Flights for Pilot
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Term Coef SE Coef T-Value P-Value VIF
Constant 1.446 0.149 9.69 0.000
ID Flight −0.0399 0.0188 −2.13 0.041 1.00

RNOF 0.263 0.152 1.72 0.093 1.50
LNOF 0.324 0.152 2.13 0.040 1.50
BNOF 0.446 0.152 2.92 0.006 1.50

Table 4.15: MINITAB© Coeffi-
cients output.

Source DF Adj SS Adj MS F-Value P-Value
Regression 4 1.5874 0.3969 3.42 0.018

Error 35 4.0659 0.1162
Total 39 5.6533

Table 4.16: MINITAB© Analysis
of Variance output.

S R− sq R− sq(adj) R− sq (pred)
0.340834 28.08% 19.86% 5.22%

Table 4.17: MINITAB© Model
Summary

4.3.7 Drone Flight Performance Evaluation Model: First-order model,
constant differences between all types of flights

E(y) =

Base Level
Front Flight︷︸︸︷

β0 +

Flight ID
value︷︸︸︷
β1x1 +

RNOF, LNOF
BNOF types of flights︷ ︸︸ ︷

β2x2 + β3x3 + β4x4

Writing a model relating E(y) to Type Flight. Since the qualitative
variable of interest, type of flight, has four levels, we must create
(4− 1) = 3 dummy variables. First, select one of the levels to be the
base level- say Front Nose Flight (because it is the natural way to pilot
a drone).3 Then each of the remaining levels is assigned the value 1 in 3 William Mendenhall, Terry Sincich, and

Nancy S Boudreau. A second course in
statistics: regression analysis, volume 6.
Prentice Hall Upper Saddle River, NJ,
2003

one of the three dummies variables as follows:

x2 =

 1 if Right Nose Flight
0 if not

x3 =

1 if Left Nose Flight

0 if not

x4 =

1 if Back Nose Flight

0 if not

(Note that for the base level, Front Nose Flight, x2 = x3 = x4 = 0).)
The values of x2, x3 and x4 for each flight are given in Table 4.6. Also,
consider that x1 values is the ID Flight which is an incremental value
from 1..10 for each type of flight. Then the appropriate model is:

E(y) = β0 + β1x1 + β2x2 + β3x3 + β4x4
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4.3.8 Drone Flight Performance Evaluation Model: Interpreting the
estimated β coefficients in the model.

To interpret the β’s, first, it explains the mean of the Distance Euclidean
Error E(y) for every four types of flights as a function of the β’s:

Right Nose Flight (x2 = 1, x3 = 0, x4 = 0) :

E(y) = β0 + β2(1) + β3(0) + β4(0) = β0 + β2 = µR

Left Nose Flight(x2 = 0, x3 = 1, x4 = 0) :

E(y) = β0 + β2(0) + β3(1) + β4(0) = β0 + β3 = µL

Back Nose Flight(x2 = 0, x3 = 0, x4 = 1) :

E(y) = β0 + β2(0) + β3(0) + β4(1) = β0 + β4 = µB

Front Nose Flight (x2 = 0, x3 = 0, x4 = 0) :

E(y) = β0 + β2(0) + β3(0) + β4(0) = β0 = µF

Then we have
β0 = µF( Mean of the base level)

β2 = µF − µR

β3 = µF − µL

β4 = µF − µB

Note that the β’s associated with the non-base levels of types of
flights(Right, Left, and Back) represents differences between a pair
of means. β0 represents a single mean response for the base level
flight (Front). Now, the estimated β’s (highlighted on the MINITAB© 4 4 Barbara F Ryan, Brian L Joiner, and

Jonathan D Cryer. MINITAB handbook:
update for release. Cengage Learning, 2012

printout in Table 4.15) are:

β̂0 = 1.446, β̂2 = 0.263, β̂3 = 0.324 β̂4 = 0.446

Note taking the constants of the single regressions equations of
table ref 4.2, its explained that the estimated mean Distance Error
for Front Nose Flight (β̂0) is 1.466 meters; the difference between
the estimated Distance Error for Front and Right Nose Flight (β̂2)
is 1.709− 1.446 = 0.263; the difference between the estimated Distance
Error for Front and Left Nose Flight (β̂3) is 1.771− 1.446 = 0.324 and
the difference between the estimated Distance Error for Front and Back
Nose Flight (β̂4) is 1.892− 1.446 = 0.446. Finally the (β̂1) with value
−0.0399 this is the Distance Error decreasing after each new flight, this
is applied generally for most of all flights and remains as a constant
in the linear regression equation. Now Table 4.15 with estimated
coefficients makes sense and how are calculated.
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4.3.9 Drone Flight Performance Evaluation Model: Conducting the F-Test
for overall model utility using α = .05, and explaining the practical
significance result.

The F-Test for overall model utility tests the null hypothesis

H0 : β1 = β2 = β3 = β4 = 0

Note that β2 = 0 implies that µF = µR, β3 = 0 implies that µF = µL

and β4 = 0 implies that µF = µB. Therefore, β2 = β3 = β4 = 0 implies
that µF = µL = µB = µR

H0 : µF = µL = µB = µR

From the MINITAB© printout, Table 4.18, F = 3.42. Since the p-
value of the test (0.018) is less than α = .05, the null hypothesis is
rejected. Thus, there is evidence of a difference between any three of
the four mean Distance Error, that is Type of Flight is useful predictor
of Distance Error in a flight.

4.3.10 Drone Flight Performance Evaluation Model: Detecting Residual
Correlation: The Durbin-Watson Test.

There is a variable on this set of data that is an observation that occurs
in an interval, which is called time serie. Regression models of time
series may pose a special problem. Introducing that this variable is
time t is an indicative of its same value at time t + 1. So in this way, the
value of time series at time t is correlated with its value at time (t + 1).
5 The problem here is that this will generate random errors correlated, 5 William Mendenhall, Terry Sincich, and

Nancy S Boudreau. A second course in
statistics: regression analysis, volume 6.
Prentice Hall Upper Saddle River, NJ,
2003

and of consequence standard errors of the β− estimates that are seriously
the underestimated. Considering our practical problem, following next
there is a variable which is β1t called as Flight ID, an incremental value
pointing in time, as its reflects flights in sequence while the increments
of each one its a consequence a progress in time. As remarking the
regression equation it looks like, where x1 = t:

E(y) = β0 + β1t + β2x2 + β3x3 + β4x4

As mentioned before, in last before steps the model seems to
fits, since the F-value (3.42) in table 4.18 that tests the adequacy
of the model is significant. The hypothesis that the coefficient β1

is positive is accepted at level alpha = .001. The residuals ε̂ =

y− (β0 + β1t+ β2x2 + β3x3 + β4x4) are plotted in Figure 4.19. Residuals
variate into positive and negative, so if the residual for a Flight ID t is
positive, there is a tendency for the residual for Flight ID (t + 1) to be
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positive. As starting point lets consider to test the null hypothesis:

H0 : No Residual correlation

against the alternative

Ha : Positive residual correlation

The presence of residual correlation is determined as d statistic as
Durbin-Watson as:

d =
∑n

t=2 (ε̂t − ε̂t−1)2

∑n
t=1 ε̂2

t

where n is the number of observations, and ε̂t − ε̂t−1 represents the
difference between a pair of successive residuals. Durbin-Watson value
is mentioned in Table 4.19 and to determine the correlation if exists in
the population of residuals, its necessary to find the rejection region for
the test. Using table of Durbin-Watson, for determine the limits using
α = .05, and for this example having k = 5 independent variables and
n = 39 observations. Using α = .05 for the one-tailed test for positive
residual correlation, the table values are dL = 1.22 and dU = 1.79.

n k = 1 k = 2 k = 3 k = 4 k = 5
dL dU dL dU dL dU dL dU dL dU

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

Table 4.18: MINITAB© Analysis
of Variance output.

Durbin-Watson Statistic 2.38714 Table 4.19: Extract of part of
Durbin-Watson Statistic Table
with (α = .05)TWO-TAILED TEST H0 : No residual correlation Ha : Positive or

negative residual correlation
Rejection region:

d < dL,α/2 or (4− d) < dL,α/2

Nonrejection region:

d > dU,α/2 or (4− d) > dU,α/2
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Figure 4.19: Residuals- Fitted
Values Model I.

Inconclusive region: Any other result where dL,α and dU,α are the
lower and upper tabulated values, respectively, corresponding to k
independent variables and n observations. Assumption: The residuals
are normally distributed.

Applying first for Rejection region, this is rejected because d = 2.38714
is greater than dL=1.22, even 4− 2.38714 = 1.6128 is still greater than
dL. For the Non-Rejection region, is accepting that d = 2.38714 is greater
than dU = 1.79 this is an evidence we are in the non-rejection region,
even that for 4− 2.38714 = 1.6128 is less than dU = 1.79, so this puts
an evidence an acceptance to the H0, so here is a prove that there in the
time series the residuals are not correlated. So this is a good point for
this model, and increments the confidence to this model.

4.3.11 Drone Flight Performance Evaluation Model: Summary Model &
Conclusions

In the model summary Table 4.17 can be interpreted as next:

1. S, represents the standard deviation, which is measured in the units
of the response variable and revealed how distant the data values
fall from the fitted values. A lower value results to have a better fit,
and higher values indicates a worse fit, in this case 0.340834 means a
that model is meeting the model assumptions, however checking the
residual plot in Figure 4.19 it can be improved for having residuals
more equally dispersed, for this is described in Model II, because S
value can improve.

2. R-sq, is the percentage of variation in the response that is explained
by the model, its determine how well the model fits the data, a higher
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value leads to have a better adjustment of the model in the data, in
this case having a 28.08% is not as higher as expected, but considering
that there is a small sample of data and few predictors, its high for
this scenario, and its one measure of how well he model fits the data,
but we can consider other metrics to make an assumption is a good
model.

3. R-sq (adj), this percentage express the variation in the response that
is explained by the model, adjusted for the number of predictors in
the model relative to the number of observations. For this reason if
it is added a predictor to the model then this metric will increase,
even if there no real improvement into it. In this is understandable
to have lower value of 19.86% as we have one predictor which is the
Flight ID, and three categorical ones, which are few to be considered.
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4.3.12 Model Predictions & Interpretations

ID Flight Drone Nose Orientation RNOF LNOF BNOF
11 Front 0 0 0
12 Front 0 0 0
13 Front 0 0 0
14 Front 0 0 0
15 Front 0 0 0
20 Front 0 0 0
25 Front 0 0 0
35 Front 0 0 0
50 Front 0 0 0

Fit SE Fit 95%Cl 95% PI
1.00729 0.149216 (0.70437, 1.31022) (0.25196, 1.76263)
0.96739 0.162757 (0.63698, 1.29781) (0.20062, 1.73416)
0.92749 0.177252 (0.56765, 1.28733) (0.14759, 1.7074)
0.88759 0.192485 (0.49683, 1.27836) (0.09295, 1.68224)
0.84769 0.208295 (0.42483, 1.27056) (0.03678, 1.65861)
0.6482 0.292626 (0.05414, 1.24226) (−0.26376, 1.56016)
0.4487 0.38141 (−0.3256, 1.22301) (−0.58972, 1.48712)

0.04971 0.563884 (−1.09504, 1.19445) (−1.2879, 1.38732)
−0.54878 0.84185 (−2.25783, 1.16027) (−2.39258, 1.29502)

Table 4.20: Predictions for Front
Nose Orientation Flights.

As Tables 4.20 there are some predictions using Model explained in
past subsection for future flights considering from #11 to #50 flights in
order to see the Euclidean Distance Error behavior in future. So starting
with Fit Column which estimates the mean of the response for given
values predictors, this works as the entering x-values into the model
equation for a response variable, it can be seen how it started by flight
1.00729 meters and how this goes down until -0.5 meters of error. So its
notable this decrements of error and proves an expected learning.
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ID Flight Drone Nose Orientation RNOF LNOF BNOF
11 Back 0 0 1
12 Back 0 0 1
13 Back 0 0 1
14 Back 0 0 1
15 Back 0 0 1
20 Back 0 0 1
25 Back 0 0 1
35 Back 0 0 1
50 Back 0 0 1

Fit SE Fit 95%CI 95% PI
1.45292 0.149216 (1.15, 1.75585) (0.69759, 2.20826)
1.41302 0.162757 (1.08261, 1.74344) (0.64625, 2.1798)
1.37312 0.177252 (1.01328, 1.73296) (0.59322, 2.15303)
1.33323 0.192485 (0.94246, 1.72399) (0.53858, 2.12787)
1.29333 0.208295 (0.87046, 1.71619) (0.48241, 2.10424)
1.09383 0.292626 (0.49977, 1.68789) (0.18187, 2.00579)
0.89433 0.38141 (0.12003, 1.66864) (−0.14409, 1.93275)
0.49534 0.563884 (−0.6494, 1.64009) (−0.84227, 1.83295)
−0.10315 0.84185 (−1.81219, 1.6059) (−1.94695, 1.74065)

Table 4.21: Predictions for Back
Nose Orientation Flights.

Meanwhile in SE Fit which is the standard error of the fit to measure
the precision of the estimate mean response, if it becomes smaller the
SE more precise the predicted mean response will be. Also with the
fitted value, it is used the standard error of the fit to create the intervals
for the mean response. The value of SE Fit is smaller almost near to
0 in some cases, that will react directly into the 95% CI which is the
confidence interval that proved the range of likely value we have 95%
confidence will be, so still ranges sometime variate even from a range
of 20% of its Fit value, but sometimes this standard error Fit value is
higher in the #35 and #50 flights, as those are the most far future flights
and its understandable, so also confidence level will impact. The PI
which is the prediction intervals can be more wider ranges because is
including this uncertainty involved in predicting, which in this case for
Front Flight for more of the half range is wider.
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ID Flight Drone Nose Orientation RNOF LNOF BNOF
11 Left 0 1 0
12 Left 0 1 0
13 Left 0 1 0
14 Left 0 1 0
15 Left 0 1 0
20 Left 0 1 0
25 Left 0 1 0
35 Left 0 1 0
50 Left 0 1 0

Fit SE Fit 95%Cl 95% PI
1.33172 0.149216 (1.0288, 1.63465) (0.57639, 2.08706)
1.29182 0.162757 (0.96141, 1.62224) (0.52505, 2.05859)
1.25192 0.177252 (0.89208, 1.61176) (0.47202, 2.03183)
1.21202 0.192485 (0.82126, 1.60279) (0.41738, 2.00667)
1.17212 0.208295 (0.74926, 1.59499) (0.36121, 1.98304)
0.97263 0.292626 (0.37857, 1.56669) (0.06067, 1.88459)
0.77313 0.38141 (−0.00117, 1.54744) (−0.26529, 1.81155)
0.37414 0.563884 (−0.77061, 1.51888) (−0.96347, 1.71175)
−0.22435 0.84185 (−1.9334, 1.4847) (−2.06815, 1.61945)

Table 4.22: Predictions for Left
Nose Orientation Flights.

For Table in 4.22 SE also maintains similar ranges as Front flight,
in the same range of future flights, this explains that for this up the
moment the model seems to be consistent in predictions, also the Fit
values are decrements as expected, meanwhile the 95% CI range values
varieties sometimes in half of meter from lower boundary to upper
boundary. And PI range goes wider in the flights more extends to
future like flights IDs #20, #25, #35 and #50.
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ID Flight Drone Nose Orientation RNOF LNOF BNOF
11 Right 1 0 0
12 Right 1 0 0
13 Right 1 0 0
14 Right 1 0 0
15 Right 1 0 0
20 Right 1 0 0
25 Right 1 0 0
35 Right 1 0 0
50 Right 1 0 0

Fit SE Fit 95%CI 95% PI
1.27019 0.149216 (0.96727, 1.57312) (0.51486, 2.02553)
1.2303 0.162757 (0.89988, 1.56071) (0.46352, 1.99707)
1.1904 0.177252 (0.83056, 1.55024) (0.41049, 1.9703)
1.1505 0.192485 (0.75973, 1.54126) (0.35585, 1.94514)
1.1106 0.208295 (0.68774, 1.53346) (0.29969, 1.92151)
0.9111 0.292626 (0.31704, 1.50516) (−0.00086, 1.82306)
0.7116 0.38141 (−0.0627, 1.48591) (−0.32681, 1.75002)

0.31261 0.563884 (−0.83213, 1.45736) (−1.025, 1.65023)
−0.28588 0.84185 (−1.99492, 1.42317) (−2.12968, 1.55792)

Table 4.23: Predictions for Right
Nose Orientation Flights.

For Table in 4.23 and 4.22 Fit values come similar in a decrements
error over each ID Flight, even the same case is negative in the #50

flight and ranges comes wider for CI and PI ranges.
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4.4 Deployment

The intention in this subsection is to emphasize that after the complete
process of developing the model, now its time to demonstrate some
results in a customer front-end user, without technicism, and to be clear.
The idea presenting is that after an evaluation of any pilot a system can
generated this typo graphics in Figures 4.20, 4.21, 4.22 and 4.23. The
technology can be a dashboard built in Grafana®using some special
builder with the predictions, in order to remarks, the Flights done by
the user, and the future flights with the estimations of the distance error
euclidean. In the graphs it can be showed a drone mark under the x-axis
over the 0 value, this means when the pilot just accomplish the learning
rate as expected and can perform a zero error flight, this means is a
perfect flight in order to the trace. Also there is a trend line the shows
the descending value of the error that proves the learning behavior.
After this it can be delivered to customer a special report paragraph
using IPython® or Jupyter Notebook© with the interpretation of the
results almost same as in next paragraph of Customer Acceptance.

Figure 4.20: Front Flight Graph
Results.
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Figure 4.21: Back Flight Graph
Results.

Figure 4.22: Left Flight Graph
Results.
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Figure 4.23: Right Flight Graph
Results.

4.4.1 Drone Pilot Diagnosis

In Figure 4.24 represents the values of the distance error flight for Front,
Left, Right & Back, with the average values. Lastly the average marks
the error distance for each flight so in the Figure can be representative
of the initial diagnosis of the first set of flights.

Figure 4.24: Initial Diagnosis for
Pilot in Flight.
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4.4.2 Drone Pilot Flight Improvement Estimation

After this there is a Figure as referenced as 4.25 which is the
representation of the flights currently made by the pilot and for each
category how many are missing to do in order to have less than 0.05 m
of error distance considering the complete flight.

Figure 4.25: Missing Flights for
obtain a distance error less than
0.05 meters.

4.5 Customer Acceptance

The results delivered to this determined pilot, first as an analysis of the
data generated from its flights, are generated in a data table with the
euclidean distance in determining points of the routing scenario. And
with it, the first analysis of the primary skill is with Front Flights, with
a minimum mean distance error of 1.22 m over the ten flights. In the
second place, the ability is Right Flights with a very similar value then
Left Flights which are also at the same level with an average error of
1.48 m and 1.51 m, consecutively. And in the last place, the ability that
needs more practice is the Back Flight with a mean of 1.672 m, closer
to Right Flight Error but too remote from Front Flight. The minimum
error in the 40 flights was in the Front Flight, to be precise, in-flight #8
with a 0.96 m value. Instead, the higher error distance value was in the
#1 Back Flight with an almost 2.35 m value.

Now, grouping the flights based on level of experience would be as
follows: Front (high experience level), Left & Right (middle experience
level), and Back (low experience level). The pilot has an average rate of
learning of 4% in each flight, which means that 0.04 m error decrements
on average for any new flight in any category. In the worst cases, after
ten flights, the pilot would increase the precision and reduce the error
to 0.4 m, generally independently of the category.

For Front flights, the prediction will start with 1.446 m, impossible
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based on the statistics to get an error higher than this for this category,
and with this value starting point, the error will go down. As a result,
flight #15 expects to get 0.84 m to value, and in its #35 flight value, the
learning curve will be overshooting with a minimum error of 0.04 m,
so it is an invisible error.

Predictions for Left and Right flights are almost similar because they
are considered a group with nearly the same variance and range of
error. So approximately at flight #35, it would be a minimum error of
0.37 m value.

Predictions for Back Flights explains that approximately after 35
flights, the error would be half of a meter that would be 0.5 m.

Recommendation for the pilot to first level left and right flights in
the same domain as the front flight. Then practice the back flight to
have a middle experience level, which this one will be the hardest.

So it consists of executing a range of 25 to 35 flights more than the
initial set performed, with left and right orientation to domain this abil-
ity. So then, for back flights, having an entire domain with a minimum
zero error will consist of 35 to 45 extra flights. And if the pilot wants to
improve the front ability in the route entirely, it will only need a range
of 15 to 20 flights additional to have a zero error in front flights. So, in
conclusion, this pilot will need, in total, counting all categories, a set of
special training of 80 flights to have an entire domain with zero error
in this route with all the types of flights that can schedule in a month
of intensive training.

The importance is to make the pilot aware of its progress so that
the learning involved by practice and practice is visible and tangible
in metrics and graphics. This project is an auxiliary for the pilot to
consciously obtain this learning and see the behavior of improvement
in real-time. In addition, predictor gives pilots a future scenario of the
goals to achieve specific knowledge.
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In this Chapter, the intention is to remark where the results can lead
to going forward and if there are other questions your results raise. The
idea is to set a way to sort of "claim" an area of research, so in this way,
people know what you’re thinking of doing next, and they may ask to
collaborate if your future research area crosses over theirs.

After this, the conclusion subsection reviews the main points of the
thesis and the importance of the work suggesting applications and
extensions. Finally, it highlights the significant accomplishments and
remarking how this research ties to the "real world."

5.1 Future Work

This work can extend to many horizons. However, it starts with
the point that gives the initiative from defining a Methodology for
calculating a valuable metric of the flight evaluation in a defined route
trace in a drone flight. This methodology determines the error distance
in the flying done by Checkpoints that work with any shapes and
critical positions. So in one part, this gives a starting point to establish a
better adequate methodology for other types of flights traces with more
complex transitions. The main idea has been presented in this thesis.
On the other hand, after the complete application of TDSM for this
particular case and a single pilot gives an entry opportunity to perform
this for a group of pilots categorized in different experience levels. This
new experiment will generate a complete diversification of a model
that can establish conclusions more generalized about pilots and their
behavior after repeating a trace over and over and how this learning
impacts their abilities. So in this way, after a segmented grouping of
how different pilots can learn, a new form established format for the
learning process will lead the learning process for pilots to improve
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their abilities in manual flights.

5.2 Conclusions

Humans acquire knowledge that implies "learning" is a complex
process that assumes a lot of variables, and more if there is involved
psychomotor variable in our body as a response for that learning.
However, there are standardized methods/forms for evaluating
machine performance, even human effort quantified, for many
applications and areas. This thesis intends to bring this effort of
establishing and giving tangible metrics for an evaluation pilot flight
using Data Science. The evidence proved in this work shows how
a drone flight evaluation presented in the way of metrics and a
standardized method is possible. Also, a predictive model can explain
the behavior of the learning process of an individual by tracking with
data the performed action of piloting a drone, which is the main
objective of data science. Indeed the complexity of this problem was
to establish a format for capturing the data and then processing it,
and then find if there is any logic in the data behavior. This thesis
presents that giving the correct format to data and establishing cautious
processing for expressing the data positions in distance error using
mathematic models is possible even to predict the data. In this way,
indicating the learning rate of piloting a drone for a single individual
is an excellent step of initiative that it’s essentially innovative, and no
other projects handle this. This thesis concludes that this particular
pilot has a more developed psychomotor ability than others, which can
be categorized to be improved by the way, and as the data expressed
itself. The learning proved by itself with only ten flights; it’s mainly
probably to give a quantified metric of the absolute knowledge.
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