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Abstract 
The range in topography, biodiversity, and agricultural technology has led to the 

emergence of precision agriculture. Precision agriculture is a farming management concept 

based on monitoring, measuring, and responding to crop variability. Computer vision, image 

analysis, and image processing are gaining considerable traction.  

For this paper, image analysis involves recognizing individual objects and providing insights 

from vegetation indices. The data acquired was remote-sensed multispectral images from 

blueberry, maguey, and pineapple. After computing vegetation indices, histograms were 

analyzed to choose thresholds. The masking of vegetation indices with threshold allowed the 

removal of areas with shadows and soil. The four leading vegetation indices used were the 

Normalized Difference Vegetation Index (NDVI), the Normalized Difference Red Edge 

(NDRE), the Simple Ratio, the Red Edge Chlorophyll Index, and the Visible 

Atmospherically Resistant Index (SAVI).  

This research reviews literature for acquiring, preprocessing, and analyzing remote-sensed 

multispectral images in precision agriculture. It compiles the theoretical framework for 

analyzing multispectral data. Also, it describes and implements radiometric calibration and 

image alignment using the custom code from the MicaSense repository.  

As a result, it was possible to segment the blueberry, tequila agave, and pineapple plants 

from the background regardless of the noisy images. Non-plant pixels were excluded and 

shown as transparent by masking areas with shadows and low NDVI pixels, 

which sometimes removed plant pixels. The NDVI and NDRE helped identify crop pixels. 

On the other hand, it was possible to identify the pineapple fruits from the agave plantation 

using the SAVI vegetation index and the thresholding method. Finally, the work identifies 

the problems associated with an incorrect data acquisition methodology and provides 

suggestions.  
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1. INTRODUCTION 

1.1 Background 

The range in topography, biodiversity, and agricultural technology has led to the 

emergence of precision agriculture. The USA National Research Council defines it as “a 

management strategy that uses information technology to bring data from multiple sources 

to bear on decisions associated with crop production.”[1] The concept promises increasing 

productivity while decreasing production costs and minimizing environmental impacts. The 

data collected is mainly on the stage and health of crops to then mapping features associated 

with harvestability and yield.  

In precision agriculture, computer vision, image analysis, and image processing are gaining 

considerable traction. Applications include fruit and plant detection, grading and counting 

fruits, leaf disease detection, quality characterization, crop yield prediction, and field 

inspection. However, there are no clear boundaries among researchers between the three 

areas. For this paper, image analysis involves recognizing individual objects and providing 

valuable insights from images. [2] The complexity level depends on the selected path to find 

insights, such as machine learning algorithms, statistical methods, and more straightforward 

mathematical calculations. On the other hand, remotely sensing alludes to obtaining 

information about objects or areas without being invasive or destructive.[3] Typically, raw 

images come from satellites, Unmanned Aerial Systems (UAS), LiDARs, webcams, or 

smartphones. 

1.2 Hypothesis 

The data acquisition and image processing methodologies affect the analysis of multispectral 

images.  
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1.3 Objectives 

This research reviews literature for acquiring, processing, and analyzing remote-sensed 

multispectral images in precision agriculture. Open-source tools were critical for processing 

and analyzing images, mainly the MicaSense repository. The data acquired was remote-

sensed multispectral images from several crops, such as blueberry, maguey, and pineapple. 

The studied crops have a high market share in Mexico´s agriculture production and exports. 

The research focuses on three main objectives:  

1) Review literature on remotely sensed images in precision agriculture. 

2) Create a theoretical framework for acquiring, processing, and analyzing multispectral 

images.  

3) Using open-source tools, implement a methodology to process and analyze 

multispectral images using vegetation indices. 
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2. STATE OF ART 

2.1 Fundamental Concepts 

Researchers have no general agreement regarding clear-cut boundaries between image 

processing, image analysis, and computer vision.  

In the book Computer Vision and Image Processing: Fundamentals and Applications, Ph.D. 

Manas Jamal Bhuyan summarizes the differences. In the 2020 edition, Professor Jamal 

Bhuyan distinguishes image processing as a discipline in which the input and output are 

images. Moreover, he defines computer vision as a field in computer science in which the 

input is an image, and the output is an interpretation. He also establishes computer vision, 

image analysis, image interpretation, and scene understanding as synonyms. [4] 

In the book Digital Image Processing, Ph.D. Rafael C. Gonzalez and Ph.D. Richard E. In the 

2018 edition, Woods states that the previous definitions are limiting and artificial. Richard 

and Rafael argue that, under these definitions, computing an image's average intensity would 

not be considered an image processing operation. [5] Henceforth, they propose considering 

the three types of computerized processes in the continuum: low-, mid-, and high-level.  

• In the low-level process, inputs and outputs are images. It addresses operations such 

as image preprocessing to crop, resize, contrast enhance,  filter noise, morphological 

operations, and color model conversions. [6] The goal is to prepare images to gain 

better results for later analysis. Researchers compensate for sensor characteristics and 

light and atmospheric conditions during this step. 

• In the mid-level process, inputs are images, and outputs are attributes extracted from 

the images. The most common attributes (also known as features) are color, contours, 

edges, shape, texture, and the identity of individual objects. Mid-level processing 

involves segmentation, description of objects, and classification (recognition) of 

individual objects. Image segmentation consists of grouping pixels according to 

specific features of the object to recognize.[7] It intends to isolate the Return of 

Investment (ROI) from an image's non-interesting pixels. 
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• In the high-level process, outputs are insights of recognized objects. Making sense 

of the objects is both in the domain of image analysis and computer vision. These can 

be biomass calculation and fruit counting in precision agriculture.  

From the previous paradigm shift, image processing and image analysis overlap in the area 

of recognition of individual regions or objects in an image. On the other hand, computer 

vision and image analysis overlap in "making sense" of the recognized objects.  

For this paper, image analysis involves recognizing individual objects and providing insights 

from an image. The complexity level depends on the selected path to find insights, such as 

machine learning algorithms, statistical methods, and more straightforward mathematical 

calculations.  

2.2  Image Sources in Precision Agriculture 

Raw images come from mainly four image sources: RGB (Red, Green, and Blue), 

Three-dimensional, hyperspectral, and multispectral cameras. Critical factors for selecting 

the right equipment include (a) camera's sensor resolution; (b) budget; (c) type of image 

sensors; (d) frame rate; and (e) image transfer rate. [8] The equipment for image acquisition 

also depends on the aim of the study and the resources available for researchers. 

The most cost-effective applications use the RGB channels. Image acquisition typically relies 

on digital or built-in cameras of mobile devices. An adequate mathematical representation of 

color is critical for processing the features of color independently.[5] The essential features 

are intensity and chromaticity. Regarding the color space, the RGB color space is less 

desirable for color processing because intensity and chromaticity are not decoupled. [9] 

Another reason is the high correlation between the red, green, and blue channels. Therefore, 

color model conversion or implementing advanced algorithms are essential for image 

analysis.[6] For instance, Pushkara Sharma, Pankaj Hans, and Subhash Chand converted 

their images from RGB to HSV color space because HSV separates color from intensity. [10] 

Then, they applied K-means clustering to separate the leaves from the background.  

In crop and plant monitoring and species discrimination applications, 3D images from 

stereoscopic cameras are helpful. This data source provides additional crop dimensions, such 

as depth information, crop height, and leaf shape. However, they have had less accuracy in 
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comparison with other data sources. Daeun Choi and Won Suk Lee analyzed the performance 

of RGB, NIR, and depth images for immature citrus fruit detection using machine vision 

techniques. [11] Choi and Lee conducted a performance comparison based on: 1) circular 

object detection to find potential fruit areas and 2) classifying citrus fruit from the 

background using deep learning. They applied circular Hough transform in the RGB and NIR 

images for circular object detection. On the other hand, they developed a new CHOI's Circle 

Estimation (CHOICE) algorithm to detect spherical objects for depth images. The CHOICE 

algorithm uses divergence and vorticity in a gradient vector field. The results showed that 

the NIR images had a 96% accuracy performance, contrasting with the 91.6% RGB images. 

The depth images had the worst performance, with 90.3% accuracy.[11] 

The remote sensing industry differentiates between multispectral and hyperspectral 

equipment based on the number of spectral bands. Multispectral sensors commonly capture 

less than ten bands. Hyperspectral sensors usually have bands in hundreds, so they capture 

more information than digital color and multispectral cameras. A drawback is that 

hyperspectral images contain redundancy since adjacent bands in the electromagnetic (EM) 

spectrum tend to have similar data. [12] Another disadvantage is that some bands are useless 

for classifying objects.  

Studies have been focusing on the feasibility of hyperspectral imagery in precision 

agriculture. In 2012, Ce Yang and Won Suk Lee analyzed the spectral signature of blueberry 

leaves, mature fruits, intermediate fruits, and young fruits. They measured the spectral 

reflectance in the 200–2500 nm with an increment of 1 nm. Yang and Lee used normalized 

indices for classification. Each index was composed of the two wavelengths with the most 

significant reflectance difference between the two classes. Their model of the five-class 

blueberry classification yielded very high prediction accuracy. [13] In follow-up research, 

Ce Yang, Won Suk Lee, and Han Li explored the feasibility of hyperspectral imagery for 

classifying background and blueberries of different growth stages. Figure 1 shows that 

mature berries have low reflectance in visible and NIR (717 nm) wavelengths. Intermediate 

berries have lower reflectance than young fruit in the green (560 nm) wavelength but higher 

reflectance in the red (668 nm) and NIR channels. They proposed a band selection method 
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using normalized histograms of classes to calculate the KullbackLeibler divergence (KLD). 

The wavelengths with the largest KLDs between every two classes were selected.[12]  

 

Figure 1 Spectral Signature of Four Pixels 

Multispectral sensors capture visible and near-infrared (VNIR) bands. They commonly 

include the red (R), green (G), blue (B), red-edge (rEdge), and near-infrared (NIR) channels. 

Some even extend into the thermal spectral range. Understanding the spectral behavior of 

features of selected objects in different bands is essential for multispectral image analysis. 

The spectral signature shows the amount of energy reflected in a particular wavelength. Long 

Qi, Xu Ma, Yanjun Zum, Xianglong Liao, and Hongjiang Guo exploited the spectral 

signatures of rice seedlings to segment them from the paddy field's background.[14] They 

calculated the Difference Vegetation Index (DVI) to reduce noise and highlight seedlings. 

Then, they implemented the fuzzy c-means clustering method to dynamically set the image 

segmentation threshold according to the DVI image's characteristics. The results showed an 

accuracy of segmentation of above 99%. Moreover, the spectral response also allows 

estimating objects' chemical and physical properties. Since growth state, stress levels, and 

plant vigor directly affect the plant´s reflected light. It helps determine crops' health status 

and soil properties by calculating the vegetation indices.[15]    

2.3 Applications and Challenges in Precision Agriculture 

Crop segmentation from the background is critical in precision agriculture. 

Applications include estimating the crops' fitness and monitoring plant diseases and insect 

pests [14]. Nonetheless, the segmentation process has its challenges. Variable outdoor 

lighting conditions induce changes in color features, leading to misclassification. Color space 
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transformation and the application of advanced algorithms are solutions at the expense of 

processing speed and increased complexity. Sajad Sabzia, Yousef Abbaspour-Gilandeha, and 

Hossein Javadikiab suggested a machine vision system based on a hybrid artificial neural 

network-harmony search (ANN-HS) classifiers. The system segments plants in different 

growth stages under different lighting conditions. [16] For classification, the authors selected 

five features among 126 extracting features of five color spaces: CMY (Cyan, Magenta, 

Yellow), HIS (Hue, Saturation, and Intensity), HSV (Hue, Saturation, and Value), YIQ 

(Intensity and Color information), and YCbCr.  

The health of plants and fruits is a concern for farmers. Reduction in production loss and crop 

damages can affect marketable yields. The most important facts to monitor the health of 

plants and fruits are weeds, insects, and diseases. In 2019, Alvaro Irias Tejeda and Rigo 

Castro proposed an algorithm that detects weed through binary classification.[17]  The 

algorithm detects weeds between the plants inside and outside the crop lines. Nonetheless, it 

loses effectiveness when the sizes of the weeds are like the sizes of plants. In 2021, A. 

Lakshmanarao, M. Raja Babu, and T. Srinivasa Ravi Kiran applied Convolutional Neural 

Networks (Convnets) for plant disease detection to a PlantVillage dataset from Kaggle. The 

dataset comprises 15 categories of plant leaf images of three types of potato leaves, two types 

of pepper leaves, and ten types of tomato leaves. The authors achieved an accuracy of 98.3%, 

98.5%, and 94% for potato disease detection, pepper bell disease detection, and tomato 

disease detection, respectively.[18] 

Fruit identification leverages image segmentation techniques for locating fruit from crops 

and the background. Juntao Deng and Zinje Niu compared random forests, support vector 

machines, and convolutional networks for segmenting kiwifruit vines from orthophotos 

images. [19] The results show an accuracy of 72.6% for random forests, 85.8% for the 

support vector machine, and 71.2% for deep semantic segmentation with the same dataset. 

However, shape irregularity, multiple sizes, and complex backgrounds make it hard to detect 

fruits.[8] Examples of complex backgrounds include hidden fruit in foliage and branches and 

similar color variants between the fruits and their background. Subhajit Sengupta and Won 

Suk Lee developed an algorithm to detect immature green Citrus within a green canopy under 

natural outdoor conditions. The proposed system uses shape analysis to detect fruits. Then, 
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Sengupta and Lee remove false positives based on texture classification and Hough line and 

Canny edge detection. Next, they detected Citrus using a scale-invariant feature transform 

algorithm for further removal of false positives. The algorithm accurately detected and count 

80.4% of citrus fruits under natural outdoor conditions. [20] 

Harvesting involves gathering ripe crops and fruits from fields. Manual counting and sorting 

of fruits are labor-intensive tasks, which lead to errors due to human involvement and 

variability in the quality of products.[8] While fruit counting allows for estimating yield, fruit 

grading refers to sorting fruit based on size, shape, and maturity level. Recent studies have 

focused on automating fruit counting and sorting. Xueping Ni, Changying Li, Huanyu Jiang, 

and Fumiomi Takeda proposed an approach for counting berries per cluster, measuring 

maturity, and evaluating cluster tightness. [21] They applied the Mask R-CNN model for 

segmenting individual blueberries, assessing individual fruit maturity, and cluster maturity 

indexes. The dataset contained outdoor color images of four southern highbush blueberry 

cultivars: Emerald, Farthing, Meadowlark, and Star. The mean average precision (mAP) for 

the validation and test dataset was 78.3% and 71.6% under the 0.5 intersection over union 

(IOU) threshold. Moreover, their accuracy was 90.6% and 90.4%, respectively. 
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3. THEORETICAL 

FRAMEWORK 

In remote sensing, sensors mounted on an aircraft or spacecraft platform capture the 

energy from the earth’s surface. Objects reflected light is often in the sun´s visible and non-

visible electromagnetic (EM) spectrum. Typically, sensors capture wavelengths from 400 to 

2500 nm, then construct an image based on the reflected energy. Spatially, an image is 

composed of discrete picture elements, known as pixels. Radiometrically, an image quantizes 

brightness into discrete values.  

A remotely sensed image's most significant technical characteristics are the wavelengths, 

the number of spectral bands, spatial resolution, and radiometric resolution. Chapter 3 

reviews the critical properties of multispectral image data. 

3.1 Spectral Bands 

Sensors measure emanating energy (radiation) at specific ranges of the EM spectrum, 

called spectral bands. Spectral bands, also known as bands or channels, refer to the location 

and bandwidth of the sensors´ spectral measurements.[22] For instance, visible light contains 

blue, green, and red bands ranging between 380 and 780 nanometers (nm) wavelengths. 

Additionally, spectral resolution refers to the number and location in the EM of spectral bands 

on a given remote sensing device. [2] 

In the remote sensing industry, multispectral cameras have a spectral resolution between 

three and ten spectral bands in the VIR spectrum range. The red, green, blue, near-infrared, 

and red-edge bands might be sufficient for information extraction processes such as plant 

and fruit segmentation and impervious surfaces. Table 1 shows the spectral bands, center 

wavelength, and bandwidth for the RedEdge-P Micasense Multispectral camera.[22] 
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Spectral Band Abbreviation Center Wavelength (nm) Bandwidth (nm) 

Blue B 475 32 

Green G 560 27 

Red R 668 14 

Red Edge rEdge 717 12 

Near InfraRed NIR 842 57 

Table 1 Spectral Resolution of the RedEdge-P Multispectral Camera 

Figure 2 shows the spectral resolution of the Micasense RedEdge-P camera. 

 

Figure 2 Spectral Resolution of MicaSense RedEdge-P Sensors 

 

3.2 Spatial Resolution 

Spatial resolution refers to the area covered on the ground by a single pixel, also 

known as pixel size.[2] It expresses the ground sampling distance (GSD), and the standard 

units are meters. Spatial resolution depends on various factors, as shown in Figure 3. The 

sensor field of view (FOV) is the angular extent of the view the sensor has across the earth’s 

surface; its unit is degrees. Similarly, the instantaneous field of view (IFOV) is the ground 

area sensed for a pixel at a given instant of time; its unit is m*rad.[23] The swath width (also 

known as frame size) refers to the kilometers the recorded image covers. [22] Finally, the 

sensor’s altitude affects the FOV, IFOV, and swath width.  
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Figure 3 Image Spatial Properties 

Spatial resolution plays a vital role in identifying objects using remote sensing imagery.  As 

pixel size decreases, images preserve more details and file size increases. In the book 

Multispectral Image Analysis Using the Object-Oriented Paradigm, author Kumar Navulur 

provides rough guidelines for definitions of spatial resolutions. Table 2 shows the guidelines 

for spatial resolution. 

Resolution Lower Limit GSD (m) Upper Limit GSD (m) File Size (kb) 

Low 30 > 30 4 

Medium 2.0 30 625 - 17 

High 0.5 2.0 10851 - 625 

Very High 0.15 0.5 173611 - 10851 
Table 2 Guidelines of Spatial Resolution 

Platform Spatial Resolution Field of View Data Acquisition Cost 

UAV 0.5 – 10 cm 50 – 500 m Very Low 

Helicopter 5 – 50 cm 0.2 – 2 km Medium 

Airborne 0.1 – 2 m 0.5 – 5 km High 

Satellite 1 – 25 m 10 – 50 km Very High 

Table 3 Comparison of Data Acquisition Platforms 

Imagining in remote sensing can be carried out from aircraft and satellite platforms. Typical 

examples include Unmanned Aerial Vehicles (UAVs), helicopters, airborne, and satellites. 
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In many ways, they capture images with similar characteristics. However, altitude and sensor 

technology differences can lead to differing image properties. In 2015, Sebastian Candiago 

and Fabio Remondino created a table to compare and contrast remote sensing platforms. [24] 

Candiago and Remondino found that UAVs have a better spatial and temporal resolution and 

lower costs than other aircraft and satellite platforms, as shown in Table 3. 

3.3 Radiometric Resolution 

In remote sensing, sensors capture the electromagnetic radiation of a relatively small 

area at every pixel location. Spectral radiance records the electromagnetic radiation at 

certain spectral bands, describing the power density of radiation per unit source area, IFOV 

angle, and unit wavelength. [25] It has the units of W*m-2*sr-1*um-1, where sr stands for 

steradian.  

Sensors convert the radiance their detectors see at each pixel into an analog signal. Then, 

detectors convert analog signals to brightness level values through a process referred to as 

analog-to-digital conversion. Radiometric resolution describes a range of available 

brightness values recorded for a pixel. It expresses the digital numbers (DN) or bits 

necessary to represent the range of available brightness values, as shown in Figure 4.  

 

Figure 4 Radiometric Resolution of Images 

The pixel DN values are affected by the spectral response of objects, ground spatial 

resolution, feature size, neighboring features, and more. Radiometric depth or dynamic 

range are alternative names. For example, data with the 8-bit radiometric resolution has 256 
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levels of brightness, from 0 to 255. Data with the 12-bit radiometric resolution has 4096 

brightness levels, from 0 to 4095. 

The equation to compute the radiometric resolution is: 

N = 2m, 

where N is the DN value range and m is the radiometric depth. 

The higher the radiometric resolution, the more information content is captured in each 

spectral band. Standard multispectral imagery formats store data in increments of 8 bits. It 

is worth mentioning that sensors store 11-bit or 12-bit radiometric resolution images in 16-

bit format with empty bits packed at the end. 

3.4 Radiometric Calibration 

The remote sensing image data contains geometric and radiometric distortions.[26] 

Geometric distortions are errors in the position of a pixel relative to other pixels in the scene. 

They can result from the sensors' characteristics, the uncontrolled remote sensing platform's 

position, velocity, and altitude, and the earth´s curvature and rotation. On the other hand, 

radiometric distortions are differences in the measured brightness values in pixels in objects 

or from band to band. They can result from sensor errors, the wavelength dependence of solar 

radiation, and atmospheric conditions. [22] 

Remote-sensing imagery requires radiometric calibration before analyzing data. 

Without a calibration process, researchers cannot compare and contrast data captured over 

different days or at different times. There are several radiometric calibration levels. As shown 

in Figure 5, radiometric calibration converts an image's raw digital pixel values to spectral 

radiance, then to surface reflectance values.  

 

Figure 5 Data flow for calibration of remote sensing images 
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The first level converts values of digital numbers (from raw imagery) to spectral radiance. 

Since it requires sensor calibration information, it is known as sensor calibration or 

calibration-to-radiance. The standard calibration coefficients are gain and offset. Gain refers 

to the slope of the detector curve. On the other side, offset results from residual electronic 

noise present in the detector at any temperature other than absolute zero, even when there 

is no radiation.[22] At this level, radiometric calibration can include compensation for dark 

pixel offset and optical chain vignette effects. 

The second level converts spectral radiance to reflectance, known as scene calibration or 

“calibration-to-reflectance.” Reflectance refers to the amount of light reflected and 

absorbed by an object.  This level requires information about atmospheric and lighting 

conditions and surface terrain at the time and location of capturing the images. When an 

atmosphere is present, two effects distort imagery. They are the absorption and scattering 

by the particles in the atmosphere. While absorption is a selective process that converts 

incoming energy into heat, radiation scattering depends on wavelength and particle size. 

[22] Moreover, variations in altitude and attitude of a remote sensing platform lead to a 

scale change at constant IFOV and image rotation. [22] 

3.5 Spectral Signature 

A spectral signature, also known as spectral response, refers to the amount of light 

reflected as a function of wavelength by an object.[25] The reflection characteristics of an 

ideal reflector would be a constant at 100% reflectance over the range. However,  every 

surface and object reflects and absorbs the sun's radiation differently. In an image, brighter 

pixels mean objects reflect more light, whereas darker pixels mean objects absorb light. 

Different objects tend to have different spectral responses in various bands. The selective 

absorption characteristics are associated with physical and biochemical composition. [27] 

Differences in spectral signatures are essential to identifying and segmenting surfaces and 

objects within each spectral band. [25] Figure 6 shows how three broad surface cover types 

of bare soil, vegetation, and water reflect light over the wavelengths between 400 and 2600 

nm. The illustration is from the book Multispectral Image Analysis Using the Object-

Oriented Paradigm.[2]  
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Clear water reflects less than 10 % in the blue and green channels, a smaller percentage in 

the red channel, and no energy in the infrared range. In the case of water containing 

suspended sediments, there is an increase in reflected light in the near-infrared region. The 

same applies to shallow water that allows reflection from the bottom material.  

 

Figure 6 Spectral Signatures of water, dry soil, and green vegetation 

Soils have a reflectance that increases approximately at the same rate from 400 and 1200 

nm; nonetheless, the spectral response differs afterward depending on water content. 

Moisturized soil shows noticeable dips centered at 1400, 1900, and 2700 nm, caused by 

liquid water absorption. Dry soil and sand present unnoticeable dips at 1400 and 1900 nm. 

At above 2000 nm, their reflectance decreases slowly as wavelength increases.  

Vegetations´ light reflectance is more complex and variable than soil or water. Its light 

reflectance depends heavily on growth state, stress levels, plant vigor, and moisture content. 

[15] Green and healthy vegetation, as shown in Figure 6, has a diverse spectral response. 

Water absorption bands (near 1400, 1900, and 2700 nm) dominate with downward trends 

in the middle infrared range. Plant cell structure influences the reflected light from 700 nm 

to 1300 nm. The reflectance of healthy vegetation is much stronger than the soil´s 

reflectance in the red-edge (717 nm) and near-infrared (842 nm) channels. Hence, 

differences in the reflected light in the NIR band are essential to map vegetation on the 

ground. Moreover, photosynthetic pigmentation is critical for low reflectance in visible 

wavelengths. Chlorophyll absorbs light in the blue (475 nm) and red (668 nm) bands for 

photosynthesis while leaving only a green reflection (560 nm).[28] Thus, chlorophyll 
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pigmented plants are visible as green, and Figure 6 displays a reflectance of less than 10% 

in blue and red bands. If the plant matter has different pigmentation, then the shape of the 

curve in the visible wavelength range will be different.  

Solar energy interacts with healthy and stressed vegetation across the visible and non-

visible spectrum to produce its optical properties. Since biochemical and biophysical 

characteristics determine vegetation absorption and reflectance properties. [3] Therefore, 

healthy and stressed plants have different spectral signatures.  

 

Figure 7 Spectral Signature of Healthy and Stressed Plants 

Reflectance patterns in the visible spectrum are primarily due to photosynthetic pigments 

that absorb about 90% or more of the incoming radiation. The mainly photosynthetic 

pigments are chlorophylls and carotenoids. However, stressed vegetation presents a loss of 

photosynthetic chlorophyll, so the absorption dips in the blue and red bands fill up.[25] As 

a result, leaves appear yellowish and brownish. Beyond the visible red bands, the pattern 

abruptly reverses, as shown in Figure 7. This region of rapid change in reflectance is called 

the red-edge band. High reflectance is characteristic of the NIR band because there are no 

strongly absorbing molecules. [28] Nonetheless, stressed plants absorb more energy than 

healthy plants on the NIR bands.  

3.6 Vegetation Indices 

Vegetation Indices (VI) are algebraic combinations of different spectral bands; 

constructed from reflectance measurements. They exploit the unique spectral signature of 

vegetation on different bands while minimizing the response of various background 
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materials. Background materials, around and under vegetation, include soil and body 

waters.  

Differences between spectral signatures relate to differences in biochemical composition 

and concentration of pigments, water, and cell wall structural materials. Therefore, 

researchers design each vegetation index to highlight specific plant properties in images, 

such as leaf area, canopy biomass, absorbed radiation, water stress, and chlorophyll content. 

[24] Variability in VIs can arise from atmospheric effects, viewing, and illumination angles, 

so radiometric calibration is critical. Regardless of variability, vegetation indices help 

monitor health conditions, map soil properties, calculate biomass, and segment plants and 

fruits from the background. [29] 

3.6.1 Simple Ratio or Ratio Vegetation Index (RVI) 

The Ratio Vegetation Index (RVI) captures the contrast between the red and 

infrared bands for vegetable pixels. It is also known as Simple Ratio (RS). Since the RVI is 

a ratio, the calculations reduce noise from variable illumination. Nonetheless, the Simple 

Ratio is susceptible to division by zero errors. [30] The equation for RVI is: 

𝑆𝑅 𝑜𝑟 𝑅𝑉𝐼 =  
𝑁𝐼𝑅

𝑅𝐸𝐷
   

SR values for bare soil generally are near 1. As the biomass or canopy cover increases, so 

do the SR values. It is susceptible to vegetation and has a good correlation with plant 

biomass.  

3.6.2 Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is the difference between the 

near-infrared and red bands, normalized by the sum of those bands. The normalization aims 

to balance out the effects of uneven illumination, such as shadows of clouds or hills. [31] The 

equation of NDVI is: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
   

The value of the NDVI ranges from -1 to +1. While close to zero values mean no vegetation, 

negative values indicate non-vegetated surfaces such as water, barren areas, ice, snow, or 

clouds. [30] Vegetated areas yield positive NDVI values due to high NIR and low red 



22 

 

reflectance. NDVI results close to a positive one (0.8 to 0.9) indicate the highest possible 

density of healthy green leaves. In contrast, NDVI values close to 0.2 and 0.3 represent 

unhealthy or sparse vegetation. Hence, the NDVI is commonly used for drought assessment, 

monitoring seasonal variation in vegetative vigor. Researchers also use it to segment 

vegetated from non-vegetated areas and estimate crop yield and biomass. [32] 

3.6.3 Normalized Difference Red Edge (NDRE) 

The Normalized Difference Red Edge (NDRE) is the difference between the near-

infrared and red-edge bands, normalized by the sum of those bands. Since red-edge light 

penetrates a leaf more deeply than blue and red wavelengths, it is sensitive to the medium 

and high chlorophyll content and leaf nitrogen. [33] The equation of NDRE is: 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷𝐺𝐸

𝑁𝐼𝑅 + 𝑅𝐸𝐷𝐺𝐸
   

The value of the NDRE ranges from -1 to +1. High values of NDRE represent higher levels 

of leaf chlorophyll content. Soil typically has the lowest values, whereas unhealthy plants 

have intermediate values. The uses of NDRE include monitoring plant vigor in mid to late 

seasons and detecting fertilizer demand (especially nitrogen).   

3.6.4 Chlorophyll Index (CI) 

The Chlorophyll Indexes (Cl) are responsive to chlorophyll content in leaves. The 

Green Chlorophyll Index (CIg) uses the reflectance ratio between the NIR and green bands. 

In contrast, the Red Edge Chlorophyll Index (Clr) uses the reflectance ratio between the 

NIR and red-edge channels. The equations of the CIs are: 

𝐶𝐼𝑔 =  
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1   

𝐶𝐼𝑟 =  
𝑁𝐼𝑅

𝑅𝐸𝐷𝐺𝐸
− 1   

The CIg and CIr values are sensitive to slight variations in the chlorophyll content and 

consistent across most species. Since chlorophyll content directly depends on nitrogen level 

in plants, both CIs help detect areas with yellow or shed foliage. Additional applications 

include estimating the leaf area index (LAI).[34] 
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3.6.5 Normalize Difference Water Index (NDWI) 

The Normalized Difference Water Index (NDWI) is susceptible to variations in 

hydrological conditions. It delineates open water bodies and assesses their turbidity, 

mitigating the reflectance of soil and land vegetation cover.[35] It is also helpful for 

monitoring leaves water content and displaying plant water stress. The index takes advantage 

that water bodies have low reflectance in green and near-infrared bands. The equation of 

NDWI is: 

𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

The value of the NDWI ranges from -1 to +1. NDWI values above 0 represent water bodies, 

whereas NDWI values indicate the absence of water bodies. Nevertheless, water bodies can 

also have NDWI values less than 0 due to bare sediment in some rivers, lakes, and seas. [36] 

3.6.6 Visible Atmospherically Resistant Index (VARI) 

The Visible Atmospherically Resistant Index (VARI) detects vegetation while 

mitigating illumination and atmospheric effects. It is ideal for color images because it uses 

bands of the visible electromagnetic spectrum. The following equation defines VARI: 

𝑉𝐴𝑅𝐼 =  
𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸
 

The value of the VARI ranges from -1 to +1. VARI is less sensitive than NDVI to 

atmospheric effects because it needs to subtract the blue channel in the denominator. [37] It 

is ideal for crop state assessment when minimum sensitivity to atmospheric effects is 

required.  
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4. Methodology 

Throughout the study, the datasets contained remote-sensed multispectral images from 

several crops, including blueberry, maguey, and pineapple. Each dataset corresponded to a 

particular experiment on a crop, and they had different environmental conditions. The 

following were the three datasets: 

1. Inoculated Blueberry with Ericoid Mycorrhizal (ErM) Fungi. 

2. Infected Agave with Cercospora Agavicola 

3. Pineapple Plantation 

Precision Agrícula, private company, lent the MicaSense multispectral cameras to take the 

images: RedEdge-MX and RedEdge-P. The lead researcher took the captures from the dataset 

of ‘Inoculated Blueberry with Ericoid Mycorrhizal (ErM) Fungi’ and ‘Infected Agave with 

Cercospora Agavicola’ with the RedEdge-MX. On the other hand, an expert from Precision 

Agricola used the RedEdge-P multispectral camera to capture the ‘Pineapple Plantation’ 

dataset. Table 4 compares the basic specifications of MicaSense RedEdge-MX and RedEdge-

P. For specific details of a dataset's image acquisition process, refer to each dataset's section.  

Specification RedEdge-MX RedEdge-P 
Spectral resolution 5 6 

Spectral bands 

Multispectral (MS) 

Panchromatic (PAN) 

Blue (475 nm) 

Green (560 nm) 

Red (668 nm) 

Red-Edge (717 nm) 

Near-Infrared (842 nm) 

Blue (475 nm) 

Green (560 nm) 

Red (668 nm) 

Red-Edge (717 nm) 

Near-Infrared (842 nm) 

Panchromatic (634.5 nm) 

Resolution per sensor 1280 x 960 px 1456 x 1088 px (MS bands) 

2464 x 2056 px (PAN) 

Output bit depth 12-bit 12-bit 

Ground Sample Distance at 

120m ( ~400ft ) 

8.2 cm/px 7.7 cm/px (MS bands) 

3.98 cm/px (PAN) 

Capture rate (all bands) One capture per second Three captures per second 

Field of View 47.2° HFOV 50° x 38 (MS bands) 

44° x 38° (PAN) 
Table 4 Basic Specifications of MicaSense RedEdge-MX and RedEdge-P 

The multispectral cameras stored files in the storage device in a folder structure. Each 

time the camera was powered up, it created a new folder, for example, ‘0000SET’ and 
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‘0001SET’. Within each folder, the camera created a subfolder with the images starting from 

‘000’. If more than 200 images were stored, the camera created a second folder named ‘001’, 

and so on. Each subfolder stored groups of TIFF files for each image capture. The suffix at 

the end of each file indicated the band name, center wavelength, and bandwidth, as shown in 

Table 5. Depending on the setting, the TIFF files are 12-bit resolution and stored in either 

12-bit or 16-bit TIFF RAW format. Metadata tags are embedded for each file in standard 

EXIF format.  

Band 

Number 

Band Name Center 

Wavelength 

Bandwidth (nm) 

RedEdge-MX 

Bandwidth (nm) 

RedEdge-P 

1 Blue 475 20 32 

2 Green 560 20 27 

3 Red 668 10 16 

4 Near Infrared 840 40 12 

5 Red Edge 717 10 57 

6 Panchromatic 634.5 Not Applicable 463 
Table 5 Spectral Bands of RedEdge-MX and RedEdge-P 

4.1 Processing Workflow 

For RedEdge or Altum imagery, MicaSense partners provide plug-and-play software 

for processing and analysis, including Pix4D, Agisoft Photoscan, ENVI, and Solvi. The study 

implemented an image processing workflow using the MicaSense Image Processing 

repository. The repository contains tutorials, examples, and libraries for processing RedEdge 

and Altum images using Python, OpenCV, Matplot, and more. The intention was to control 

the entire radiometric workflow and implement a methodology for processing imagery using 

open-source tools. 

Multispectral cameras measured each band's radiation and converted the radiance into 

raw images. Raw images are composed of pixels containing a digital number (DN) describing 

the radiation intensity through a range of brightness values. Figure 8 shows the raw images 

of blueberry crop 0001 from the Blueberry dataset with the vintage color map. The colorbars 

on the right represent the mapping of digital numbers to colors in each channel. The images 

required 0 to 65536 digital numbers because the camera stored the bands in 16-bit TIFF files. 

In alignment with crop spectral response, the NIR and RedEdge images measured higher 

radiation than the RGB spectrum. 
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Figure 8 Blueberry 0001 Raw Images 

Since pixel’s DN values were relative to captured lighting conditions, radiometric calibration 

was necessary. The radiometric workflow enabled comparing and contrasting reflectance 

data over flights, dates, and weather conditions. According to Micasense, their custom 

radiometric calibration model has two levels, as shown in Figure 5: sensor´s calibration and 

calibration-to-reflectance. 
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Figure 9 Blueberry 0001 Radiance Images 

The first level converted raw digital numbers to spectral radiance values, with W/m2/sr/nm 

units. The sensor´s calibration level compensated for dark pixel offset, electro-optical effects 

of sensors, lens vignette effects, and incident light at the time of capture. It also removed the 

lens distortion. Correcting the lens distortion ensured that straight lines in the images were 

straight.  The parameters required for the sensor´s calibration were in the metadata inside 

each image. Exiftool, an open-source tool package, allowed reading image metadata. 

According to MicaSense´s documentation, the formula for computing the spectral radiance 

L from pixel value p is: 
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𝐿 = 𝑉(𝑥, 𝑦) ∗  
𝑎1

𝑔
∗  

𝑝 −  𝑝𝐵𝐿

𝑡𝑒  + 𝑎2 − 𝑎3 ∗ 𝑡𝑒 ∗ 𝑦
  

Table 6 defines and describes each symbol for computing the spectral radiance L from pixel 

value p. Figure 9 displays the undistorted radiance images of blueberry crop 0001 from the 

Blueberry dataset with the vintage color map. The radiance images have values from 0 to 

0.09 W/m2/sr/nm, as shown in the colorbars. 

Symbol Name Description 

𝑝 Normalized raw pixel 

value 
𝑝 =

𝐷𝑁 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙

𝑟𝑎𝑑𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=  

𝐷𝑁(𝑥,𝑦)

2𝑚
 

Where m was the number of bits in the images. 

𝑝𝐵𝐿 Normalized black level 

offset 

It corrected the small random charge generation in 

each pixel, independent of incoming light. 

𝑎1, 𝑎2, 𝑎3 Radiometric calibration 

coefficients. 

It compensated for imager-specific effects due to 

inaccuracies of the CMOS imager pixels.  

𝑉(𝑥, 𝑦) Vignette polynomial 

function 

It corrected the fall-off in light sensitivity that 

occurs in pixels further from the center of the 

image, known as dark corners.  

𝑡𝑒 Image exposure time The camera adjusted the exposure time to prevent 

pixel saturation. 

𝑔 Sensor gain setting Gain is based on the photographic parameter ISO 

of 100. 

x,y Pixel location X is the column number, and Y is the row number 

inside an image. 
Table 6 Spectral Radiance L 

The second level converted calibrated spectral radiance into reflectance, which refers to an 

object's amount of light reflected and absorbed. For the “calibration-to-reflectance” level, 

collecting solar irradiance data for each flight was critical. MicaSense provides a Calibrated 

Reflectance Panel (CPR), a gray plastic box containing an albedo panel (white square), a QR 

code, and certified reflectance data.  

Images of the calibrated panel pre- and post-flight accurately represented the amount of light 

reaching the ground at the date, time, and location. The albedo panel is a unique material that 

reflects incident light equally in all directions. Hence, the calibrated panel images helped 

determine the transfer function of radiance to reflectance for each band. 
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Figure 10 Calibrated Reflectance Panels (CRP) 

Before calculating the transfer functions, panel images went through the sensor´s calibration 

level. Then, the code extracted the average radiance for the pixels inside the albedo panel, as 

shown in Figure 10. The code displays a blue square per channel, representing the smaller 

region used to extract the radiance of the albedo. The QR code helped locate the albedo 

panel's position automatically. Since MicaSense provides the panel reflectance values of each 

channel, we calculated the transfer function using the formula: 

𝐹𝑖 =
𝑝𝑖

𝑎𝑣𝑔(𝐿𝑖)
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Where 𝐹𝑖 is the reflectance calibration factor for the ith band, 𝑝𝑖 is the average reflectance of 

the calibrated reflectance panel, and 𝑎𝑣𝑔(𝐿𝑖) is the average radiance value for the pixels 

inside the panel for the ith band.  

 

Figure 11 Blueberry 0001 Reflectance Images 

The transfer function was used for the ith band to scale radiance into reflectance images by 

multiplying the radiance values of any image by the factor 𝐹𝑖. This method is the standard 

scientific calibration method of surface reflectance. Since it is straightforward, repeatable, 

and sufficient for this study, the Downwelling Light Sensor (DLS) was not incorporated into 
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the calibration process. The DLS measures the spectral irradiance from the sky for the 

camera's spectral bands. So, its data helps to account for changing irradiance over time. 

The output of the radiometric calibration is a reflectance image for each band. Figure 11 

shows the reflectance images of blueberry crop 0001 from the Blueberry dataset with the 

vintage color map.  The reflectance images have values from 0 to 0.6 (or 60%). Reflectance 

higher than 1.0 (or 100%) occurs when objects in images reflect most incident light in one 

direction. Examples include the reflectance of the sun on a car's surface or an extensive body 

of water.   

The next step was band-to-band alignment, also called image alignment. Since RedEdge 

cameras have an independent lens for each band, the camera captured the images from 

slightly different viewing angles. MicaSense specifies that its cameras do not align the five 

bands mechanically. As a result, the location of objects in one channel is different from the 

others.  

Image alignment involves the techniques for manipulating an image so that objects (features) 

in the two lines up. A warp matrix relates two images with different views of the same scene. 

Image alignment algorithms estimated the warp matrix based on motion models such as 

translation, Euclidean, affine, and homography. The transformation matrix, as it is also 

known, contained the parameters to shift from the first to the second view. In other words, 

multiplying the warp matrix with the points in the first view made it possible to find the 

corresponding locations in the second.  

The MicaSense repository and custom code helped with the image alignment. The code found 

a transformation matrix to align each band to a reference band, using the lens in the middle 

as a reference. The lens in the middle corresponded to the Red Edge band, image number 

four. After the band-to-band alignment, algorithms removed pixels around the edges which 

did not overlap in all bands. Also, the code cropped pixels at the edges, as shown in Figure 

12. Suitable transformation matrices are stable over a planned flight unless the camera 

undergoes a shock event. 
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Figure 12 Blueberry 0001 Aligned Images without cropping 

Image alignment allowed the combinations of bands into true-color (RGB) and false color 

(CIR) composites. They were helpful for scouting and visualizing using single images. In 

addition, image alignment helped to compute vegetation indices to analyze images. The 

computed vegetation indices were the NDVI, NDRE, CIg, Cir, and simple ratio.  Also, the 

code computed the histogram, which was used to pick colormap ranges for improving 

visualization. 
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4.2 Dataset: Inoculated Blueberry with Ericoid Mycorrhizal 

(ErM) Fungi. 

Mexico has become an emerging power in the blueberry market in the last ten years, 

as shown in  

Figure 13. According to the 2021 Food and Agricultural Overview of SIAP, Mexico 

was the 6th world producer, with 50,293 tons in 2020. [38] Moreover, the blueberry exports 

represented the total trade flow of 398.6 million. The crop is a deciduous shrub of 20 to 60 

cm in height. Its fruits are light-blue spherical berries measuring 1 to 3cm in diameter. The 

factors driving the production and commercialization of blueberries in Mexico include the 

rapid return of the investment (ROI), high profitability, good versatility for its fruit 

consumption, and high export potential. [39] 

 

Figure 13 Mexican Blueberry 2009-2020 National Production Volume, retrieved from the Food and Agriculture Organization of 

the United Nations 

Several studies showed the benefits of the symbiosis between blueberry plants and ericoid 

mycorrhizal fungi. Ericoid Mycorrhizal (ErM) fungi enhance Ericaceous plants' growth. The 
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ErM fungi increase access to water and nutrients in exchange for aboveground photosynthate. 

[40] Moreover, the addition of organic fertilizers to inoculated cultivated blueberries 

increased nutrient uptake and nutrient use efficiency in several cultivars.[41] Another study 

demonstrated that inoculating highbush blueberries with ErM fungi enhanced flowering and 

significantly altered floral traits and reproduction in several cultivars. [42]  

The dataset corresponded to an experiment that took place in a greenhouse at Centro 

Universitatio de Ciencias Biologicas y Agropecuarias (CUCBA) of the University of 

Guadalajara, Jalisco, Mexico. The experimental area had a topological arrangement of 2.2 m 

between rows and 0.6 m between pots. The study aimed to compare ErM fungi and fertilizer's 

potential role in fruit production and plant development in two blueberry variants (Biloxi and 

Sharp blue). The researcher inoculated with commercial ErM fungus Oidiodendron sp. and 

Rhizoscyphus Ericae and manually measured temperature, soil ph, and leaves features. 

The experiment started in September 2020 and was supposedly going to produce fruits three 

times per year. Unfortunately, four factors led to the experiment's termination in November 

2020. First, the COVID19 pandemic made it challenging to access the greenhouse, nurture 

the crops, and capture images. Second, federal budget cuts in public funding shrank the 

number of projects running at the University of Guadalajara. Third, the principal researcher 

dropped his master´s degree in agriculture due to financial problems. Finally, outsiders from 

the experiments pruned the blueberry trees incorrectly and contaminated the plantation with 

a disease. By November, the experiment area had been cleaned and sanitized. 

 

Figure 14 Blueberry RGB and CIR Composites 
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The dataset contained the captures of four 2020 dates: September 22, September 28, October 

6, and October 12. Each capture contained five images corresponding to the spectral bands 

of blue, green, red, red-edge, and near-infrared. Before processing the captures, images were 

relabeled based on the date of capture. Duplicates were manually deleted from the dataset. 

Since images did not have an identification number, images were reorganized based on visual 

inspection. Without an image acquisition methodology, the captures contained several issues, 

problematic for image processing and analysis, as shown in Figure 14. 

4.3 Dataset: Infected Tequila Agave with Cercospora 

Agavicola  

 Mexico leads in the production of tequila agave, with 1519 tons of tequila agave in 

2020. [43] The tequila agave is a bushy plant distinguished by long and rigid sword-shaped 

leaves. A heart or pineapple is at the center, with the natural juice required for obtaining 

tequila. In the same year, the foreign trade of tequila was 2,355 million USD dollars. Thus, 

the factors driving the cultivation of tequila agave in Mexico include high profitability with 

tequila. 

The dataset corresponds to an experiment in an open field at CUCBA of the University of 

Guadalajara, Jalisco, Mexico. The researcher bio-stimulated tequila agave through different 

treatments, such as bacteria, Trichoderma, seaweed, or a combination. The study aimed to 

monitor the propagation and resistance of plants against a disease called Cercospora 

Agavicola. The fungus’s infection causes black oval lesions of up to 1-3 cm commonly found 

in the middle to the upper third of non-expanded leaves of the agave’s head.[44] It develops 

rapidly, producing coalescing, depressed brown-grey spots. It ends with the head's collapse 

and the plant’s death.  

ID Treatment ID Treatment ID Treatment 

T1 Bacteria T4 Bacteria T7 Seaweed 

T2 Trichoderma T5 Seaweed T8 Seaweed 

T3 Bacteria and 

Trichoderma 

T6 Silicon T9 No Treatment 

Table 7 Treatment ID and Description 
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The experiment started on September 6, 2019; agave plants had an average height of 12 cm, 

without roots. Table 7 shows the nine groups formed, five plants per group; eight received 

treatment while T9 was the control group. The researcher applied four doses at intervals of 

15 days between doses. On March 4, 2020, the researcher inoculated the plants with the 

pathogen Cercospora Agavicola and captured the first images. The original intent of the 

multispectral images was to support the researcher's findings. Nonetheless, the lack of 

funding and collaboration between universities led to the termination of the association. 

 

Figure 15 Tequila Agave RGB and CIR Composites 

The dataset contained captures from March 4 to April 1, 2020. The researcher took images 

only for fifteen days in the morning and noon. After inspecting captures, the images in the 

morning seemed better taken. Figure 15 displays a sample of RGB and CIR composites after 

calibration. Without an image acquisition methodology, the captures contained several 

issues, problematic for image processing and analysis.  

4.4 Dataset: Pineapple Plantation 

Mexico stands as the ninth pineapple world producer, with a production of 1,200,000 

tonnes in 2020. [45] In the same year, the foreign trade was 34.6 million USD dollars. The 

plant is a perennial herb that grows 1 to 1.5 m tall, with 70 to 80 leaves arranged in a spiral. 

The fruit is oval and thick, measuring 30 cm long and 15 cm in diameter on average. 

The dataset corresponds to Precision Agricola's capture at the Dole pineapple plantation in 

San Carlos, Colombia. The crops were eight weeks, nine weeks, ten weeks, thirteen weeks, 
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fourteen weeks, and fifteen weeks old. Only the dataset of nine weeks old crops was shared. 

The main goal was fruit identification using vegetation indices. The experiment ended 

because Dole wanted to focus on banana plantations.  

 

 

Figure 16 Pineapple RGB and CIR Composites 

Each capture contained five multispectral images and one panchromatic image. In contrast 

with the other datasets, images required relabeling and reorganization. The subsample 

contained several images of the same subsection, taken from altitudes that range from 20 to  

60 meters. Figure 16 shows the RGB and CIR composites of a sample of the pineapple 

plantation.  
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5. RESULTS AND DISCUSSION 

5.1 Results 

The dataset’s captures from blueberry and tequila agave had several issues that generated 

high noisy composites and vegetation indices. Without a methodology for acquiring images, 

the reflectance images limited analysis. 

 

Figure 17 Blueberry 0002 enhanced RGB composite with alignment for high altitudes 

Captures taken at low and high altitudes require different band-to-band alignment processes. 

Images captured from low altitudes generated unreliable results on the band-to-band 

alignment algorithm for high altitudes. At a 2-meter altitude, the composites and vegetation 

indices presented duplicates of leaves and branches, as shown in Figure 17. Duplicates were 

more apparent on leaves close to the upper and lower left sides than on the right. Aligning 
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bands considering the low altitude instead of the high significantly reduced the parallax 

errors, as displayed in Figure 18.  

 

Figure 18 Blueberry 0002 enhanced RGB composite with alignment for low altitudes 

White objects, such as tubes and papers, highlighted errors in the alignment of bands. On the 

RGB composite of blueberries, the white tube broke down into a green, a blue, and a red 

tube, as seen in Figure 17. With alignment for low altitudes, the tube presented fewer parallax 

errors; nonetheless, they were more visible at the tube ends, as shown in Figure 18. In the 

tequila agave dataset, the alignment errors were observable at the edges of the white papers 

used for labeling crops. In Figure 19, the paper's edges presented red, green, blue, or yellow 

colors. 
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Figure 19 Tequila Agave 0002 enhanced RGB composite with alignment for low altitudes 

The blueberry and agave images contained objects unrelated to the study, generating 

significant noise in vegetation indices. Examples include grass, rocks, trash, shoes, and jeans, 

as displayed in Figure 19. After computing the vegetation indices, histograms of each 

vegetation indices helped identify crop pixels from the background. Then, the algorithm 

removed soil and shadowed areas based on reflectance values. Figure 22 shows the before 

and after masking the NVDI of sample 002 of tequila agave. The algorithm filtered out the 

white paper, soil, pot, wooden stick, and rocks. 

Nevertheless, several pixels of shoes, jeans, and grass stayed. The blueberry NDVI, NDRE, 

Simple Ratio, and Red Edge Chlorophyll Index also presented the shoes and jeans on the 

right of the plant, as shown in Figure 20 and Figure 21. The masked NDVI displayed the 

plant´s vigor better than the masked NDRE because the blueberry was in an early 

development stage. The Simple Ration displayed that the plant segmented on pixels greater 

than 3. 
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Figure 20 Blueber

ry 003 Masked NDVI and Masked NDRE 

 

Figure 21 Blueberry 003 Masked Simple Ratio and Masked Red Edge Chlorophyll Index 

Image analysis based on vegetation indices presented a disadvantage. The vegetation indices 

and histograms were analyzed previously to understand and manually fine-tune the 

reflectance values for masking pixels. For instance, NDVI values lower than 0.1 were bare 

soil, while above 0.1 and below 0.5 are unhealthy plants, and healthy crops had NDVI values 

above 0.5. The algorithm filtered pixels of unwanted objects and pixels related to the biomass 

of crops, as shown in Figure 22. Since grass and agave had a similar spectral signature, it was 

impossible to neutralize the noise of grass without removing pixels from agave plants. Hence, 

further noise removal directly affected the number of pixels related to the plant's biomass. 
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Figure 22 Tequila Agave 002 Unmasked and Masked NDVI 

Vegetation indices exploited the spectral signature of crops on different bands to extract 

insights from multispectral data. Beforehand, a good understanding of the study´s goal and 

vegetation indices applications were a requirement.  

 

Figure 23 Tequila Agave 002 Masked NDVI and Masked NDRE 

Literature and experimentation firstly suggested calculating the NDVI because of its 

effectiveness in distinguishing vegetation from the soil. After inspecting the NDVI 

histogram, the code replaced pixels with NIR reflectance of less than 20 percent to zero for 

removing non-plant and shadows. Then, the algorithm calculated the NDRE, the Red Edge 

Chlorophyll Index, and the Simple Ratio. Non-plant pixels were excluded and shown as 

transparent by masking areas with shadows and low NDVI pixels, which sometimes removed 

plant pixels. On the masked NDVI, the agave´s pixels had values between 0.6 and 0.9. The 

crops were identifiable regardless of the noisy images, as shown in Figure 23. Since the 

tequila agave plants were in an early stage and the NDRE is for mid/late-stage plants, the 

NDRE results were less meaningful than the NDVI. The plant´s pixels were between 0.1 and 
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0.3 in the NDRE, reflecting the minimum chlorophyll content in leaves. The Red-Edge 

Chlorophyll Index showed the same low chlorophyll content in Figure 24.  

 

Figure 24 Tequila Agave 002 Masked Simple Ratio and Masked Red-Edge Chlorophyll Index 

In the pineapple dataset, the aim was to identify fruits. The masked NDVI showed the 

segmentation of plants with values above 0.7, while the masked NDRE displayed plants 

between 0.6 and 0.8.  However, the identification of fruits was unsuccessful in the NDVI, 

NDVI, Simple Ratio and Red Edge Chlorophyll Index, as shown in Figure 25 and Figure 26. 

 

Figure 25 Pineapple 002 Masked NDVI and Masked NDRE 

 

Figure 26 Pineapple 002 Masked Simple Ratio and Masked Red-Edge Chlorophyll Index 
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The other vegetation indices computed were the Green Chlorophyll Index (CIg), the Structure 

Insensitive Pigment Index (SIPI), the Normalized Difference Water Index (NDWI), and the 

Visible Atmospherically Resistant Index (VARI).  After experimentation, the VARI showed 

promising results. Throughout understanding the histogram, the masked VARI showed the 

dots related to the location of fruits, as shown in Figure 27. In the RGB composite, the fruit 

is the black and white dots surrounded the leaves, as displayed in Figure 28. Further research 

is needed to understand the reach for using thresholding for identifying fruits in dense 

plantations.  

 

Figure 27 Masked VARI Isolated Pineapples 
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Figure 28 Pineapple 002 enhanced RGB Composite 

5.2 Discussion 

The blueberry and tequila agave datasets required heavy manual data cleaning. Since there 

was no data acquisition methodology, the captures contained objects which generated noise 

for the image analysis. Examples of the objects include shoes, jeans, and rocks. The code 

partially filtered the unwanted objects, but the downside was that it also removed some ROI 

pixels. External objects make it harder to segment crops and fruits from other pixels. Third, 

the crop images should be captured far away from white objects. White objects generate 

distortion in the band-to-band alignment process and cause problems filtering them out. 

Fourth, the white labels and the white tube hindered results and plant categorization because 

they hid leaves and branches. Fifth, the blueberry dataset contained captures with only four 

TIFF files instead of five. 

The Pineapple Plantation dataset was captured at an altitude of more than 30 meters and using 

the knowledge acquired from the previous dataset. It contained duplicates, but the number of 
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issues was significantly less. The dataset contained a few captures, so the orthomosaic map 

was not created. Further research is needed to understand the reach for using thresholding for 

identifying fruits in dense plantations. Nonetheless, the NDVI and NDRE successfully 

segmented the crops from the background using thresholding.  

The data acquisition methodology is critical to reducing noise in image analysis. A correct 

data acquisition methodology includes capturing panel images before and after the flight. The 

panel should be placed flat on the ground and away from objects affecting lighting conditions. 

They are critical for radiometric calibration. Moreover, the time of day for capturing data is 

essential. Captures should be taken within two and a half hours of local solar noon. In case 

the day is very sunny, fly while the sun is at an angle lower than 90 degrees. In the case of 

cloudy days, the sun may partly obscure sections of the images. Finally, images should be 

taken with the same sequence or planning route on different days.   
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6. CONCLUSIONS 

The range in topography, biodiversity, and agricultural technology has led to the 

emergence of precision agriculture. In precision agriculture, computer vision, image analysis, 

and image processing are gaining considerable traction. For this work, image analysis 

involves recognizing individual objects and providing insights from an image. For image 

analysis, vegetation indices were implemented using thresholding to segment plants and 

fruits from the background.  The data acquired was remote-sensed multispectral images from 

blueberry, maguey, and pineapple. The studied crops have a high market share in Mexico´s 

agriculture production and exports. 

In the State of Art section, the study summarizes applications and aspects of remotely sensed 

images in precision agriculture. The data source can be RGB, multispectral, hyperspectral, 

and 3D images. Applications include fruit and plant detection, grading and counting fruits, 

leaf disease detection, quality characterization, crop yield prediction, and field inspection. In 

the Theoretical Framework section, the research compiles the concepts for acquiring, 

processing, and analyzing remote-sensed multispectral images. The main concepts are 

spectral bands, spatial resolution, radiometric resolution, radiometric calibration, spectral 

signature, and vegetation indices. Radiometric calibration allows researchers to compare and 

contrast data captured over different days or at different times. The two levels of radiometric 

calibration involved converting an image's raw digital pixel values to spectral radiance and 

then from spectral radiance to surface reflectance values.  

The Methodology section describes the blueberry, tequila agave, and pineapple datasets and 

the economic importance of the crops. While the blueberry and tequila agave datasets contain 

single captures of plants on pots at low altitudes, the pineapple dataset has images from a 

nine-week-old plantation. Moreover, the processing flow guides and explains the radiometric 

calibration and image alignment using the custom code from the MicaSense repository. It 

was built using open-source tools including python, OpenCV, Matplot, Numpy, and more. 

At the start of the research, custom algorithms and libraries were coded to read and process 

images using OpenCV, Pandas, and Numpy. After the MicaSense repository was found and 
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checked, it was a perfect match to use for the implementation of a methodology to process 

and analyze multispectral images using vegetation indices. 

The Results section presents insights from the RGB composites and vegetation indices. A 

fundamental finding is that the methodology for acquiring data affected the image post-

processing. The blueberry and tequila agave captures contained objects which generated 

noise, such as shoes, jeans, white labels, white tubes, and rocks. The code partially filtered 

the unwanted objects, but the downside was that it also removed plant pixels. Furthermore, 

external objects make it harder to segment crops and fruits from other pixels when they have 

a similar spectral signature.  

The four leading vegetation indices used were the Normalized Difference Vegetation Index 

(NDVI), the Normalized Difference Red Edge (NDRE), the Simple Ratio, the Red Edge 

Chlorophyll Index, and the Visible Atmospherically Resistant Index (SAVI). After 

computing vegetation indices, histograms were analyzed to choose thresholds. The masking 

of vegetation indices with threshold allowed the removal of areas with shadows and soil. The 

NDVI was particularly useful for removing soil pixels. So it was used as a baseline to soil 

from other vegetation indices. Moreover, the NDVI and NDRE were the most useful for 

segmenting the background from the crops. There is no formula for identifying fruits; 

vegetation indices should be tested and analyzed.  

The top leadership group of Precisión Agrícola was closely involved with this work. A 

valuable outcome of this endeavor is a series of good practices and recommendations that 

Precisión Agrícola can apply to its methodology for acquiring and analyzing images. The 

most valuable recommendations include using radiometric calibration, capturing images at 

high altitudes (more than meters), removing unnecessary objects in the scene before 

capturing images, and using NDVI and NDRE to segment crops from the background. 

Undoubtedly, it contributes to its quest to achieve food safety for Mexico.   
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