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ABSTRACT 

Public studies on the dynamics of food staples as important as cereals (grains) are relatively 
scarce. Here we undertake a preliminary analysis of the time series for corn, wheat, soybean, 
and oat prices first via classical ARIMA/GARCH models, and later complementing with the 
more complex Stochastic Volatility (SV) models. The goal is to improve upon the classical 
results by implementing a Bayesian analysis through the construction of a suitable Markov 
Chain Monte Carlo Model with improved volatility analysis and forecasting capabilities. The 
performance of the SV model is benchmarked against the classical ARMA/GARCH approach, 
and both are discussed as monitoring tools for the volatility prices. 
 
 
 
 
  



 8 

 

RESUMEN 

Estudios sobre la dinámica de alimentos básicos tan importantes como los cereales (granos) 
son relativamente escasos. En este trabajo llevamos a cabo un análisis preliminar de la serie 
de tiempo de los precios del maíz, el trigo, la soya y la avena, primero a través de los modelos 
clásicos ARIMA/GARCH, y con los modelos más complejos de volatilidad estocástica (SV). El 
objetivo es mejorar los resultados clásicos mediante la implementación de un análisis 
bayesiano a través de la construcción de un modelo Monte Carlo de cadena de Markov 
adecuado con capacidades mejoradas de análisis de volatilidad y pronóstico. El rendimiento 
del modelo SV se compara con el enfoque clásico ARMA/GARCH, y ambos se analizan como 
herramientas de seguimiento de la volatilidad de los precios. 
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The conflict in Ukraine has led to a raise in the prices of basic goods globally and an 
exacerbated increase in their variability. Food prices have been especially affected[1], 
worsening an already delicate economic situation resulting from the COVID-19 pandemic.  
According to a 2020 report by the International Monetary Fund (IMF), the recession caused 
by the pandemic has been the worst since the Great Depression[2]. Extraordinary fiscal 
support was extended to business and people by governments globally, reaching an amount 
of around $11.5 trillion as of September 2020[2].  
 
It is then of high relevance to invest effort in detailed studies of the price evolution for the 
most relevant food sources, known as food staples. Grains (cereals) are by far the most 
important of staple foods, comprising an average of 48% of the total caloric intake for 
humans[3].  
 
Despite the clear importance of grains for humans, specialized literature on detailed studies 
of their price dynamics is not abundant, and there are few efforts to monitor the behavior of 
the price of these staple foods whose results are public. The most notable example of a public 
monitor is the online tool called Excessive Food Price Variability Early Warning System, 
available at the Food Security Portal[4] of the International Food Policy Research Institute 
(IFPRI)[5]. Although this monitor is well-implemented and based on a non-parametric quantile 
estimation regression model[6], there is still room for model testing and selection for the 
study of grain prices.  
 
 
To this end, and to guarantee a worldwide perspective, we take the price time series for the 
following grains:1 
 

• Corn. It represents the highest production of all the cereals with 817 million tons 
being produced in 2009[8]. The largest producer of corn is USA[8]. 

• Wheat. In 2007 it was the third most produced cereal after maize and rice with a 
world production of over 600 million tons[8] China has the largest land area devoted 
to wheat production, followed closely by the United States, India, and the Russian 
Federation[9]. 

• Soybean. It is a useful oil and protein source and can be used to improve the 
nutritional value of traditional foods. The main producers are Argentina and Brazil[8]. 

• Oat. This grain ranks around sixth in world cereal production statistics[10]. In 2020, 
Russia was the second leading global oat producer, after the European Union[11].  

 
This work is divided in two main parts. In the first part we present a descriptive overview of 
the series and perform a detailed analysis with classic autoregressive models whose 

 
1 Data was taken from MacroTrends https://www.macrotrends.net/ 
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parameters are estimated via log-likelihood maximization. In the second part we undertake 
a Bayesian approach to the problem via Markov Chain Monte Carlo (MCMC) sampling.  
 
The power of MCMC allows us to estimate the posterior of the Autoregressive Moving 
Average (ARMA) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
parameters, obtaining a deeper picture of the parameter space of the models that were fitted 
on the first part.  
 
Moreover, MCMC also enables us to fit a Stochastic Volatility (SV) model. Finally, we compare 
the performance of ARCH/GARCH  and SV models to explain the price series and their 
volatility and close by discussing which model would be better to implement for monitoring 
the volatility of the grain prices.   
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PART 1. AUTOREGRESSIVE 
MODELING USING ARIMA/GARCH 

MODELS 
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1.1. Descriptive statistics of the series 
	
In Table 1 we include a summary of the simplest most important descriptive statistical 
features for the price series considered in the rest of this study. There we can appreciate in 
red the record maximum values of the prices for wheat and oat, both crops whose main 
producers are also affected by the Russia-Ukraine conflict (e.g., EU, Russia, and Ukraine 
itself). 
 
Table 1. Main descriptive statistics of the price (USD/bushel) series 

Series Corn Wheat Soybean Oat 
Date start 
Date end  

1959-07-01 
2022-09-16 

1959-07-01 
2022-09-16 

1968-12-05 
2022-09-16 

1970-01-05 
2022-09-16 

Length, days 15,935 15,936 13,551 13,283 
Date 
Min 

1960-11-21 
1.007 

1968-08-12 
1.171  

1969-03-18 
2.375 

1970-02-06 
0.582 

Date  
Max  

2012-08-21 
8.3125 

2022-03-07 
12.94 

2022-06-09 
17.69 

2022-04-12 
8.07 

 
 
In Figure 1, we show the rolling mean (simple moving average) superimposed to the price 
time series of the four crops in Table 1. Due to the daily frequency of the data, we chose a 
130-day rolling window, representing half a business year (260 days per business year in the 
US).   
 
The rolling mean provides a very simple and useful way to visualize the trend of the time 
series at different time scales. From Figure 1, we see that there are many changes of level at 
many time scales. There is a tendency of this price level to increase in the long run, and no 
obvious seasonality or cyclicality, despite the cyclic nature of the crops. We can also see how 
the four series appear to move together in a very similar fashion. 
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Figure 1. Price series and superimposed 130-day rolling mean 

	
	

1.2. Autoregressive modeling 
	

1.2.1. Preliminaries 
	
Let us denote the price of the asset 𝑥	 at time 𝑡	 as 𝑥!, and the corresponding time series as 
{𝑥!}!∈#$ , with 𝑖 = 𝑐𝑜𝑟𝑛,  𝑤ℎ𝑒𝑎𝑡,  𝑠𝑜𝑦𝑏𝑒𝑎𝑛,  𝑜𝑎𝑡𝑠	and 𝐼 	the index set corresponding to discrete 
𝐼 ⊂ 𝑁, 	or continuous time 𝐼 ⊂ 𝑅	. The plot below shows the time series for all four grains. It 
is evident that all series are non-stationary since a stepwise upwards trend is clearly visible.  
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Figure 2. Corn, wheat, soybean, and oat prices, reported in USD per bushel2 

	
	
However, to rigorously check for non-stationary behavior, we implemented an Augmented 
Dickey-Fuller (ADF) test.  If the increments Δ𝑥! = 𝑥! − 𝑥!%& of the series {𝑥!}!∈#$  can be 
modeled by an AR(p) process[12], 
 

𝒙𝒕 = 𝝁𝒕  +  𝜷𝒙𝒕%𝟏  + ∑ 𝝓𝒊
𝒑%𝟏
𝒊,𝟏 𝜟𝒙𝒕%𝒊 + 𝝐𝒕   ( 1 ) 

 
where 𝜇! represents the trend (a deterministic function of time), and 𝜖! ∼ 𝑁(0,1) are the 
error terms, then the ADF test works under the null hypothesis that there is a unit root, this 
is, the test contrasts the hypotheses 
 

𝑯𝟎:  𝜷 = 𝟏,  𝒗𝒔 𝑯𝒂:  |𝜷| < 𝟏 

by building a t-statistic for the parameter 𝛽. Then, we can conclude that a series possesses a 
unit root according to the ADF test if the null hypothesis cannot be rejected at the selected 
level of confidence. This is taken as a strong indication that the series is non-stationary.   
 
	

 
2 Bushel is a unit of measurement for grain created many years ago to facilitate grain trade, it corresponded to 
how much grain would fit in a bushel basket. Nowadays, the United States Department of Agriculture (USDA) 
created a weight equivalent for a bushel, different for every commodity. Corn was assigned a bushel weight of 
56 pounds, while soybeans and wheat were assigned bushel weights of 60 pounds. Oat bushel weight is 32 pounds. 
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The plots below show the differenced series Δ𝑥!, which clearly display volatility clustering 
(heteroscedasticity). The Augmented Dickey-Fuller test indicates that the differenced series 
are stationary, meaning that the integrated component of the ARIMA model is 𝑑 = 1	, as we 
explain in Sec. 1.2.2 

 

 
Figure 3. Variances of grain prices 

 
 
 
Transformations such as logarithms, and then differencing of the log-transformed series can 
help stabilize the variance of a price series. The following figure shows the time plots for the 
differences of adjacent points in time for the price logarithms   
 

𝑟! = 𝑙𝑜𝑔(𝑥!) − 𝑙𝑜𝑔(𝑥!%&)  ( 2 ) 

 
for all series. The differenced logarithms in Eq. (2) above are known as log-returns of the 
prices, but we can also call them simply returns instead[13].  
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Figure 4. Price return series for the selected grains. 

 
Even under this transformation, it is possible to note the presence of heteroscedasticity in 
the series.  
	
	

1.2.2. ARIMA Analysis 
	
The Autoregressive Integrated Moving Average or ARIMA models are a family of statistical 
models for time series that incorporate linear correlations in the series data, as well as 
nonstationary effects of integer order. The main goal in the implementation of the ARIMA 
models, is to describe the conditional mean of the process 𝑥! 
 
 

𝐸[𝑥!  |𝐹!%&] = 𝜇!    ( 3 ) 
 
 
where 𝜇! is the mean function of the process at time 𝑡	, and 𝐹!%&is the complete history of 
the process available at time 𝑡 − 1	[13]. These methods were popularized in the work of Box 
and Jenkins[14]. An ARIMA model is completely characterized by the orders and corresponding 
coefficients of each of the modeling components, denoted as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞), where 𝑝	is the 
order of the autoregressive or 𝐴𝑅(𝑝) component  
 
 



 23 

𝑥! = 𝑤! + ∑ 𝜙$
/
$,& 𝑥!%$     ( 4 ) 

 
 
where 𝑥! is the observed series (it can also represent transformed data such as 𝑟!), 𝑤! is white 
noise (commonly assumed as Gaussian, but also heavy-tailed noise can be used) and 𝜙$  are 
real coefficients[12]. The index 𝑑	is the order of the integrated component and is estimated by 
the ADF test discussed in Sec. 1.2.1. The order 𝑑	of integration indicates the order of 
differencing Δ0 𝑥!  that we need to perform on the series to make it stationary. Finally, the 
index 𝑞	represents the order of the moving average or 𝑀𝐴(𝑞) component 
 

𝑥! = 𝑤! + ∑ 𝜃$
1
$,& 𝑤!%$       ( 5 ) 

 
 
 which represents a simple description of the series purely in terms of errors 𝑤! that become 
correlated by the summation and weighting procedure. Put together, for a given differencing 
order,  the 𝐴𝑅(𝑝) and 𝑀𝐴(𝑞) components conform the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) models 
 
 

𝑥! = 𝜇! + ∑ 𝜙$
/
$,& 𝑥!%$ + ∑ 𝜃$

1
$,& 𝑤!%$   + 𝑤!			( 6 ) 

 
 
We choose the R language as the computational tool for doing the ARIMA analysis, due to its 
practical use and reliable, well-maintained libraries containing tested and efficient estimation 
methods.  In particular, the auto.arima() function in R[15] was used to find the best fit for the 
series according to the ARIMA model. This function performs the following steps to select the 
best fit based on the AIC (Akaike Information Criterion): 
 
 

1. It determines if the series have unit root (Dickey Fuller test). If they do, then it differentiates 
it, so it becomes a stationary time series.   

2. Then calculates the Auto Correlation Function (ACF) for the series, to find the MA component 
(q) 

3. It calculates the Partial Auto Correlation Function (PACF) for the series, to find the AR 
component (p) 

4. Afterwards tries different combination of parameters that may adjust the model. 
5. Finally calculates some estimators to compare the different possible fits and chooses de best 

option. The estimator considered for this analysis was the AIC (Akaike Information Criterion); 
the lower the value, the better is the model. This estimator is likelihood based. The greater 
the likelihood, the better. 

	
The auto.arima() outcomes for the original series are presented in Table 2  
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Table 2. Results of auto.arima() fit for all grain original series 

Price Series Corn Wheat Soybean Oat 
ARIMA best fit (0,1,3) (4,1,0) (0,1,1) (0,1,2) 
AIC -48381.52 -33234.3 -16891.91 -44502.87 
AR coefficients - AR1 0.0260   

AR2 -0.0171   
AR3 -0.0358   
AR4  0.0257 

- - 

Integrate order 1 1 1 1 
MA coefficients MA1  0.0699 

MA2 -0.0155 
MA3  0.0455 

- MA1 0.0756 MA1 0.1335   
MA2 -0.0404 
 

	
 
 

1.2.2.1. Analysis of ARIMA residuals 
	
Residuals show all the information not recovered by the proposed model, reflected on the 
behavior of their ACF. Since the objective for all models is to be able to recuperate most of 
the behavior of a series, the expected performance for the residuals for a good fit must be 
like white noise.  
 
The next figure shows the ACF graph for the residuals obtained after fitting the original series 
to the ARIMA models. 
 

	
Figure 5. ACF for the ARIMA residuals for the original series 
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Despite the significant peaks around lag 15th for most plots, we can conclude that the 
behavior of the residuals is close to a white noise. These significant lags can be explained 
from spurious correlation in the original data introduced by the finite precision in the price 
values.  
	
	

1.2.3. ARCH/GARCH Analysis 
	
Analogous to the ARIMA models, the goal of the ARCH/GARCH processes is to model the 
observed conditional covariance of the time series, encoded in the empirical autocovariance 
function 𝜎! 
 

𝑉𝑎𝑟[𝑟!  | 𝐹!%&] = 𝐸[(𝑟! − 𝜇!)2 | 𝐹!%&] = 𝐸[𝜂!2 | 𝐹!%&] = 𝜎!2     ( 7 ) 
  

 
where 𝜂! = 𝑟! − 𝜇! are the excess returns or return residuals. This is done by expressing the 
returns directly in terms of the conditional variance 𝜎! and then setting a model for its time 
evolution as a separate equation, thus obtaining the following extended model 
 

𝜂! = 𝜎!𝑤!  ( 8.1 ) 
 

𝜎!2 = 𝛼3 +∑ 𝛼$4
$,& 𝜂!%$2   + ∑ 𝛽5

6
5,& 𝜎!%52   ( 8.2 )  

 
where    𝛼3,  𝛼$ ,  𝛽5  are real coefficients, and 𝑤!  ∼  𝑁(0,1). The equations above are known 
as GARCH(P,Q) equations. 
 
 
In Figure 6 below, we show the ACF plot for the squared residuals from the ARIMA fit. This 
plot gives information to determine if an ARCH-GARCH approach is necessary to as a better 
model for the series. In this case, the persistent correlation implies that it is necessary to 
consider an ARCH/GARCH model for the conditional variance. [13] 
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Figure 6. ACF for the ARIMA squared return residuals 

 
 
Several different GARCH models were evaluated for the differenced log-series for corn. The 
next chart shows the AIC obtained for each fit.  
 
 

Table 3. AIC obtained for different GARCH models for the corn series 

GARCH Model AIC 
(1,0) -5.811610 
(2,0) -5.882341 
(1,1) -6.078745 
(2,2) -6.079809 
(1,2) -6.079934 
(2,1) -6.078534 
(10,10) -6.079830 

 
In Table 3 AIC stands for Akaike Information Criterion. It is used as a model selection tool, 
defined as 

𝐴𝐼𝐶  =   𝑙𝑜𝑔(𝜎7d) +
8927
8

    ( 9.1 ) 

 
𝜎72e = ::;(7)

8
     ( 9.2 ) 
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where 𝑆𝑆𝐸(𝑘) is the residual sum of squares under the given model with 𝑘	regression 
coefficients. AIC is then a balance between the estimation error given by the model, 𝜎72e, and 
the number of parameters of the model. Then the criterion is to choose the model with the 
smaller AIC between the proposals, meaning that this would be the model that balances 
estimation error and complexity. 
 
The smallest AIC obtained corresponds to the GARCH(1,2) model. However, given the small 
difference between its AIC and the corresponding to the GARCH(1,1) fit, we select the 
GARCH(1,1) to reduce the complexity of the analysis without jeopardizing the results.  
 
The GARCH(1,1) model was taken to fit all log-return series. In Table 4 below, we show the 
coefficients obtained for the GARCH(1,1) fit for each grain.  
	
	
Table 4. Coefficients obtained for the GARCH (1,1) fit for all logarithm series 

Coefficient Corn Wheat Soybean Oat 
𝜇 9.731e-05 5.7192e-05 1.6760e-04 8.3816e-05 
𝛼! 6.657e-07 3.1707e-07 6.8336e-07 4.8887e-06 
𝛼" 8.607e-02 7.0819e-02 7.3940e-02 7.4681e-02  
𝛽" 9.158e-01  9.3247e-01 9.2711e-01 9.1358e-01 
AIC -6.078745 -5.763724 -5.872564 -5.248908 
	
	

1.2.4. Models for different time scales 
 
The time-series for all four grains have data for more than 50 years. We already adjust the 
models for the entire series; in this section we intend to model them with different time 
scales to see how they behave by considering different amount of historical data.  
 

1.2.4.1. ARIMA  
 
Table 5. auto.arima() coefficients for 5-year data 

Price Series Corn Wheat Soybean Oat 
ARIMA best fit (0,1,0) (1,1,2) (0,1,0) (0,1,2) 
AIC -2660.2 -1295.98 -819.19 -2633.54 
AR coefficients - AR1 -0.6342   - - 
Integrate order 1 1 1 1 
MA coefficients - MA1 0.6717  

MA2 0.1052 
 

- MA1 0.1425 
MA2 -0.0825 
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Table 6. auto.arima() coefficients for 10-year data 

Price Series Corn Wheat Soybean Oat 
ARIMA best fit (1,2,0) (2,1,3) (1,1,1) (2,1,0) 
AIC -4785.4 -3402.58 -1981.71 -6077.86 
AR coefficients AR1 -0.4891 AR1   0.4056 

AR2   0.5190 
AR1 -0.2241 AR1 0.1438 

AR2 -0.1032 
Integrate order 2 1 1 1 
MA coefficients - MA1 -0.3953  

MA2 -0.4747 
MA3 -0.9785 

MA1 0.2518 - 
 

 
 
Table 7. auto.arima() coefficients for 20-year data 

Price Series Corn Wheat Soybean Oat 
ARIMA best fit (1,1,1) (3,1,3) (0,1,1) (0,1,2) 
AIC -10799.65 -5979.22 -3711.45 -13443.13 
AR coefficients AR1 -0.7075 AR1  -0.4080 

AR2  -0.4134 
AR3 -0.9489 

- - 

Integrate order 1 1 1 1 
MA coefficients MA1 0.7609 MA1 0.4161  

MA2 0.4192 
MA3 0.9239 

MA1 0.0359 MA1 0.1360 
MA2 -0.0505 
 

 
 

1.2.4.2. GARCH (1,1) 
 
Table 8. GARCH (1,1) coefficients for 5-year data 

Coefficient Corn Wheat Soybean Oat 
𝜇 5.761e-04 5.443e-04 4.177e-04 6.360e-04 
𝛼! 5.121e-06 1.257e-05 9.346e-07 3.684e-10 
𝛼" 8.422e-02 8.951e-02 6.186e-02 1.719e-02  
𝛽" 8.977e-01  8.747e-01 9.377e-01 9.842e-01 
AIC -5.672156 -5.225858 -6.003328 -5.149235 

 
 
Table 9. GARCH (1,1) coefficients for 10-year data 

Coefficient Corn Wheat Soybean Oat 
𝜇 9.330e-05 -1.417e-04 9.680e-05 6.913e-05 
𝛼! 7.362e-06 9.533e-06 2.060e-06 5.918e-06 
𝛼" 8.299e-02 7.435e-02 6.177e-02 3.152e-02  
𝛽" 8.861e-01  8.966e-01 9.285e-01 9.522e-01 
AIC -5.670364 -5.306098 -5.970762 -5.146528 
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Table 10. GARCH (1,1) coefficients for 20-year data 

Coefficient Corn Wheat Soybean Oat 
𝜇 2.172e-04 6.169e-05 3.296e-04 2.319e-04 
𝛼! 4.097e-06 6.341e-06 2.083e-06 1.907e-05 
𝛼" 6.186e-02 5.914e-02 5.8370e-02 5.574e-02  
𝛽" 9.258e-01  9.260e-01 9.339e-01 8.961e-01 
AIC -5.404566 -5.07244 -5.713074 -5.040362 

 

1.2.5. Model validation (5, 10 and 20 years) 
	
We divide the data into an initial training segment and a validation final segment. We use the 
first 98% of the data to train the models, then make predictions and compare them with the 
last 2% of the data that we set aside for testing. This 2% corresponds to 30 days for 
predictions. 
 

1.2.5.1. Short-term forecasting with ARIMA – 10 years 
 
The following graphs show the training segment of the time series in black, and the 
predictions in color blue with the confidence interval highlighted in gray. It is easy to visually 
compare the forecast obtained by comparing these blue lines versus the test segment which 
is shown in red3.  
 
 

 
Figure 7. Forecast Corn Arima (1,2,0) 

 
3 See appendix A for graphs with zoom in the predict segment. 
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Figure 8. Forecast Wheat Arima (2,1,3) 

 
 
 

 
Figure 9. Forecast Soybean Arima (1,1,0) 
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Figure 10. Forecast Oat Arima (2,1,0) 

 
 
The comparison between the complexities of the models for the 5, 10, and 20-year periods 
would give us a reasonable parsimony argument for picking the 10-year period models, since 
they have the best compromise of parameter orders among the three groups. In other words, 
the 10-year models are not as simple as the 5-year models and not as complicated as the 20-
year models. However, we resort in an additional argument to help us in the selection. We 
consider the MAD (Mean Absolute Deviation) between two series 𝑋 and 𝑌 of length 𝑛, 
defined as  
 

𝑀𝐴𝐷(𝑋, 𝑌) = &
8
∑ |𝑋$ − 𝑌$|8
$,& 		( 10 ) 

 
as a simple criterion to evaluate the performance of these models. The results are as follows: 
 
Table 11. MAD for all grains 

Grain 5 years 10 years 20 years 
Corn 0.4766 0.6121 0.4759 
Wheat 0.3293 0.4062 0.3136 
Soybean 0.9783 0.9981 0.9777 
Oat 0.2759 0.2213 0.2770 

 
 
We evaluate the MAD since it makes the results between different time periods comparable. 
The choice of mean squared errors (MSE) would not be the best choice since the variance 
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itself is a dynamical quantity for the present series, as shown by the GARCH(1,1) fit. In 
contrast, the MAD is a more robust estimator[16].  
 
Despite not having the best MAD (see table 11), we decide to pick the models for the 10-
years period for benchmarks in Section 2.4 with the MCMC estimation, for two main reasons: 
1. We need a longer period of data to have better statistics and  2. The models for the 10-
year period are the more parsimonious, as discussed previously.  
 

 
1.2.5.2. GARCH(1,1) 

 
As the GARCH analysis intend to predict volatility, the following graphs show the volatility of 
the training segment of the time series in black, and the predictions in color red, with the 
confidence interval marked with blue. 
 

 
Figure 11. Volatility prediction GARCH (1,1) Corn 
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Figure 12. Volatility prediction GARCH (1,1) Wheat 

 

 
Figure 13. Volatility prediction GARCH (1,1) Soybean 
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Figure 14. Volatility prediction GARCH (1,1) Oat 

 
 
The above results show that there is room for another model approach that might capture 
better the complex dynamics of the volatility. The next part of this study presents an 
alternative based on a Bayesian approach to estimate the parameters of a Stochastic 
Volatility (SV) model via Markov Chain Monte Carlo (MCMC).  
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PART 2. BAYESIAN APPROACH: 
MARKOV CHAIN MONTE CARLO 
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2.1 Bayesian statistics and sampling 
 
The central idea in Bayesian statistics is to update our knowledge on some conditional 
aspects of a model, such as the conditional probability of observing a set of parameters Θ 
and a collection of state variables 𝑆	given a set of observations 𝑋, this is 𝑝(Θ,  𝑆 |𝑋). We then 
consider that it is possible to have a pre-existent a priori knowledge or belief about the 
distribution of  Θ, encapsulated in the so-called prior distribution  𝑝(Θ). The former means 
that, in the Bayesian view, we treat parameters and other components of the model as 
random variables themselves.  
 
The goal is now to take this prior knowledge to estimate the distribution of the unknown 
parameters of the model conditional on the observations 𝑋 and take samples from it and 
performing the computation of the likelihood function 𝑝(𝑋 | Θ,  𝑆). The conditional 
probability distribution 𝑝(Θ,  𝑆 | 𝑋)	corresponding to the updated target information is called 
posterior probability distribution and represents the updated knowledge of the model 
parameters and state variables. The previous statements are summarized in the formula  
 

𝑝(Θ,  𝑆 |𝑋)  =   />𝑋 ? Θ,  𝑆@/>𝑆 ? Θ@/(A)
/(B)

      ( 11 ) 

 
known as Bayes’ theorem or Bayes’ formula[17]. We can build powerful models for analysis 
and forecasting by merging the Bayesian approach with dynamical models from the theory 
of stochastic processes and combining with time series analysis techniques. 
 
 

2.2 Dynamic asset pricing models 
 
To take advantage of the updating scheme of the Bayesian approach, we need to incorporate 
a specific pricing model for finding its parameters. The best candidate lies within the family 
of dynamic asset pricing models. In dynamic asset price modelling, the objective is to propose 
dynamical models to explain the general asset price behavior in time: The parameters Θ and 
state variables 𝑆	are considered as given, and the dynamic model describes the evolution of 
the observations 𝑋	. The converse problem emerges when analyzing data: Given a set of 
observations 𝑋	, a model must be proposed. Hence, the goal is to obtain information about 
the corresponding parameters Θ and other variables of interest (state variables 𝑆	), such that 
they explain best the observations 𝑋[18]. This means that the empirical analysis is an inverse 
statistical inference problem. A realistic but minimal (i.e., parsimonious) stochastic volatility 
model is given by 
 



 37 

𝑑𝑋!   = 𝑋!(𝑟! + 𝑝!)𝑑𝑡  +  𝑋!l𝑉!	𝑑𝑊!
C + 𝑑 n∑ 𝑋D!

E"
5,& − (𝑒F! − 1)o     ( 12.1 ) 

𝑑𝑉!   = 𝜅G(𝜃G + 𝑉!)𝑑𝑡  +  𝜎!l𝑉!	𝑑𝑊!
G       (12.2) 

 
 
where 𝑊!

C and  𝑊!
G are independent Brownian motions for the asset price and the volatility, 

respectively, 𝑁! counts the number of jump times 𝜏5, prior to time t, 𝑍! are the jump sizes, 𝑝! 
is the equity risk premium, and 𝑟! is the spot interest rate[18]. 
 
Despite their solid theoretical basis, continuous time models like Eq. (12.1) are tricky to 
implement in real world situations due to the discrete nature of the actual financial time 
series. Although methods for making a proper connection between data and models can be 
utilized[18], the interpretations of the results can be obscured by details and the parameter 
estimation is many times not robust even with MCMC methods due to the very large times 
necessary for the chains to convergence[13].  
 
Therefore, instead of Eq. (12.1) we resort in the equivalent discrete-time version of SV 
models, resulting in something like a model of the GARCH family. We could stick to the 
GARCH(1,1) model studied in Section 1.2.3, but the poor predictive power and wide 
confidence intervals provided by the GARCH(1,1) model (see Figs 11 to 14) conform sufficient 
justification for the comparison with a more complete approach.  
 
This is not a surprise, since the modeling and forecasting of financial volatility is inherently 
difficult due to the fact that the volatility is a latent quantity and thus not possible to observe 
directly. This fact is one of the main reasons (and necessity) for the incorporation of MCMC 
into our analysis: A latent variable can be easily incorporated into a Markov model, more 
precisely a Hidden Markov Model (HMM)[19] with the important advantage that discrete-time 
SV models incorporate two independent innovations[20] [13], and model both the process value 
(mean equation) and its volatility (variance equation) through the following pair of 
expressions common in the literature (with variations) [13][21]  
 
 

𝑦!  =  𝜖! exp v
H"
2
w	( 13 ) 

 
ℎ!9&  =  𝜇 + 𝜙(ℎ! − 𝜇) + 𝜎𝛿!	( 14 ) 

 

ℎ& ∼ 𝑁 n𝜇, I
J&%K#

o ( 15 ) 

 
𝜖! ∼ 𝑁(0,1) 

 
𝛿! ∼ 𝑁(0,1) 
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where 𝜇 is the mean log volatility; 𝜙 represents the persistence of the volatility term (as in 
a usual AR model); 𝜖! is a white noise shock on the asset return at time 𝑡 and 𝛿! models the 
corresponding error on the volatility at time 𝑡. Finally, the most interesting term and the key 
to the SV model is ℎ!, that represents the log-volatility as a latent variable.  We introduce this 
model in the R-language[22] implementation of Stan[23] the multiplatform Software for 
Bayesian analysis. The results of these simulations are discussed later in Section 2.4.2 
 

2.3 Markov Chains and Monte Carlo methods: MCMC 
 
It can be argued that the origin of MCMC methods lies within physics, with the development 
of the Monte Carlo method by von Neumann, Ulam and Metropolis for the study of Neutron 
diffusion during the late 1940’s[24] [25] in Los Alamos, culminating in a paper demonstrating 
the final form of the Metropolis algorithm in 1953[26], and an important later extension due 
to Hastings[27]. 
 
The use of MCMC methods gained strength in the mathematical statistics literature until 
1990’s due to Gelfand, Smith and others[28]. 
 
Nowadays, MCMC are well-established methods of increasing popularity in many 
applications for its power to sample unknown dynamic variables for complex, high 
dimensional systems[17]. 
 
Our goal is to choose an appropriate dynamic asset pricing model, such as a minimal 
stochastic volatility model that coupled to MCMC can be solved for its parameters and state 
variables describing the price series treated in the previous sections.  A candidate stochastic 
volatility model is given in previous section in Eq. (12.2)  
 
We can perform a comparison between the model in Eqs. (12), with the distributions in the 
denominator in Eq. (11) sampled by MCMC, and the classical approach treated in previous 
sections. Finally, we will be able to conclude whether there is an improvement in capabilities 
or if the classical models are sufficient for forecasting and volatility monitoring.  
	
	

2.4 RStan 
	
Just like the first part of this study, we choose the R language as the computational tool for 
running the SV models described in section 2.2. Particularly, we used the RStan library, which 
is the R interface to Stan.  
 
Stan is a C++ probabilistic library that implements Bayesian statistical inference via Markov 
Chain Monte Carlo[29].  
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2.4.1 Benchmark of Libraries 
 
To compare the results between the function auto.arima() from the stats library and the 
RStan package (the implementation of Stan in R), we first run the selected ARIMA models 
fitted from the 10-year datasets for all four grains and compare the coefficients obtained 
versus the ones calculated in Table 6. section 1.2.4.1 with the auto.arima() function.  
 
Below are the results for each grain price series. The tables include the coefficients fitted 
from both approaches to make the comparison easy. Tables also include the standard error 
for each parameter calculated with the auto.arima() function. This metric helps understand 
the level of looseness of the coefficients from the frequentist approach and let us confirm 
that the Bayesian approach delivers indeed similar results in most cases when considering 
the standard error of the estimation in the auto.arima() fit.  
 
The results from MCMC through Stan were all computed with 4 chains and 1000 iterations 
for each chain, giving the corresponding average values and histograms below. We discuss 
the results afterwards.  
 

Table 12. RStan CORN Arima coefficients vs Auto.arima() 

CORN 1,2,0 

Approach 
Auto.arima() 

RStan 
Coef Stand error 

Phi 
Sigma 

-0.4891 
- 

0.0174 
- 

-0.4878 
0.0938 

 
 

 
  Figure 15. RStan Phi histogram (corn) 
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Figure 16. RStan Sigma histogram (corn) 

 
 
We can clearly appreciate that the result from Stan MCMC estimation provides an  AR 
coefficient 𝜙 that is approximately equal to the one given by maximum likelihood estimation 
(MLE) in auto.arima().  
 
 

Table 13. RStan WHEAT Arima coefficients vs Auto.arima() 

WHEAT 2,1,3 

Approach 
Auto.arima() 

RStan 
Coef Stand error 

Phi1 
Phi2 
Theta1 
Theta2 
Theta3 
Sigma 

0.4056 
0.5190 
-0.3953 
-0.4747 
-0.0785 

- 

0.1419 
0.1392 
0.1420 
0.1429 
0.0209 

- 

 

 
 
We were not able to run the code for this grain. This might be an issue of convergence of the 
chains in the MCMC method.  
 
 

Table 14. RStan SOYBEAN Arima coefficients vs Auto.arima() 

SOYBEAN 1,1,1 

Approach Auto.arima() RStan 
Coef Stand error 

Phi 
Theta 
Sigma 

-0.2241 
0.2518   

- 

0.6432 
0.6317 

- 

-0.1454 
0.1679 
0.1633 
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Figure 17. Rstan Phi histogram (soybean) 

 

 
Figure 18. RStan Theta histogram (soybean) 

 

 
Figure 19. RStan Sigma histogram (soybean) 

 
 
For this case, the MCMC chains computed with Stan give a result that, even if not close, it is  
within the margin of error provided by the standard error of MLE from auto.arima(). As it can 
be appreciated in this example, the MLE estimation gives a very large standard error, 
contrasting shockingly with the very small value for the first example, but we are talking of 
the same kind of time series. This just tells us how complicated these time series are and how 
tricky is to make interpretations based only in one type of models and with one method of 
parameter estimation. We can observe the skewness and large spread of the histograms, a 
symptom of bad convergence.  
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Table 15. RStan OAT Arima coefficients vs Auto.arima() 

OAT 2,1,0 

Approach 
Auto.arima() 

RStan 
Coef Stand error 

Phi1 
Phi2 
Sigma 

0.1438 
-0.1032 

- 

0.0198 
0.0198 

- 

0.1443 
-0.1035 
0.0725 

 
 

 
Figure 20. RStan Phi1 histogram (oat) 

 

 
Figure 21. RStan Phi2 histogram (oat) 

 
 

 
Figure 22. RStan Sigma histogram (oat) 

 
We observe matching coefficients very well contained within the standard error margin. It is 
worth noting that we observed convergence also when treating the whole time series. 
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2.4.2 SV model analysis 
 
As the RStan library can also fit the coefficients for the classic models and the results are 
reasonable whenever there is an agreement, and, furthermore, since it gives us a more 
complete and detailed perspective thanks to the ensemble nature of the MCMC approach 
(histograms), we will use it for the estimation of the parameters of the SV models, for which 
we don’t have a way to estimate the parameters via frequentist (MLE) approach to cross 
validate. The results are as follows: 
 

Table 16. SV model coefficients 

 Corn Wheat Soybean Oat 
Phi 0.9957 0.9955 0.9937 0.9960 
Sigma 0.1402 0.1439 0.1246 0.1473 

	
	

 
Figure 23. SV model Corn Phi histogram 

 

 
Figure 24. SV model Corn Sigma histogram 

 

 
Figure 25. SV model Wheat Phi histogram 
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Figure 26. SV model Wheat Sigma histogram 

	

 
Figure 27. SV model Soybean Phi histogram 

 
Figure 28. SV model Soybean Sigma histogram 

 

 
Figure 29. SV model Oat Phi histogram 

	

 
Figure 30. SV model Oat Sigma histogram 
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The skewness and large spread of the histograms show limited convergence of the iterations 
of the 4 chains of 1000 iterations used to estimate this SV model parameters. We also know 
that for the specific algorithm used by Stan called NUTS (stands for no U-turn sampler) [21] [13] 
there is significant autocorrelation between the MCMC samples, and thus the convergence 
is compromised.  
 
The parameter phi in the SV used indicates the persistence of the volatility. Here this 
persistence is indicated as very strong for all the series (significantly close to 1) and that 
means that when the volatility is high in the price series, it tends to stay high, and when it is 
low, it tends to stay low, for an unpredictable length of time, until some random event or 
shock makes it change behavior again.  
 
The parameter sigma is the instantaneous. Sigma has a less intuitive interpretation, being the 
standard deviation of the latent variable ℎ& in the SV model, which corresponds to the log-
volatility, that as mentioned previously, it is not directly observable. However, the direct 
observation we can draw from table 16 is that  that 𝜎, the expected amplitude of the 
logarithm of the volatility is similar for all the price series. This is something that is not 
necessarily intuitively clear, but it is also not a crazy idea, considering that all of them are the 
same kind of product and, although they are produced in different regions in the world, they 
are so fundamental in the economy and in the financial system in general, that they are part 
of the global market with a similar strength. This intuition makes sense as they are even very 
correlated, as it can be appreciated from the plot in Fig. 2. Thus, it is not that surprising that 
they display the same scale of the log- volatility even though the particular dynamics of their 
volatilities are different. 
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CONCLUSIONS 
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Conclusions 
 
We have achieved a (perhaps deceivingly) satisfactory classical analysis of the four series.  
The classical analysis performed in the first part of the Thesis provides better results 
statistically speaking because of the larger series considered for the implementation of the 
MLE estimation of the orders and parameters of the autoregressive models and the volatility 
analysis through the GARCH models. However, a word of caution is in order, and although 
the estimations are reasonable and statistically significant, we should not merely accept the 
first results only because we had large series to work with and easy methods of estimation 
that give simple outputs, as it is the typical use and “easy” interpretation of the ARIMA or 
GARCH models.  
 
As the contrasted MCMC results in the second part showed, time series analysis is not a 
simple task in general, and specifically in finance is a very tricky endeavor. The very reason of 
this is the extremely complex nature of financial time series, due among many things to the 
multiple and mixed stochastic processes coupled to each other at several time and even 
different spatial scales.  
 
Therefore, it is better to resort on more than one model and, in turn, on more than one 
method of estimation of the parameters of those models, and then make benchmarks, which 
is basically the approach taken in this Thesis.  
 
Finally, the person or persons performing the modeling will decide based on information that 
might escape the capabilities of the methods and the mathematical analysis and careful 
comparison of approaches will serve as a conscious ground for decision making, but not as 
an absolute truth to follow blindly. As it could be seen in Part II, the Bayesian approach 
through the MCMC method for estimating the same parameters of the  ARIMA models gives 
us a more detailed picture of the parameter estimation problem, and it helped us to 
corroborate some of the models and to take a second look to others, or even to disregard 
them until a more detailed analysis is made.  
 
Although more detailed in principle, we observed that there were potential issues of 
convergence of the MCMC method, attributed in part to the short chains and low number of 
them, and the short original data series of 10 years. But it is worth noting that we observed 
convergence of the MLE approach from auto.arima() when treating the whole time series is 
not completely appropriate. Using the whole time series of more than 50 years for 
forecasting the prices and/or volatilities ahead for few days would give nonsensical results, 
since the full time series contains very mixed information, from very different periods in time, 
very different historical events and different technology, different economic policies and 
even a different dynamics in the financial markets and different rules in the financial 
operations since various kinds of financial instruments have been implemented in the 
financial markets in the last decades[30]. 
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That is so far for the price series itself.  The issue of volatility modeling is even more complex 
and the field of research on this direction is very active and rather young[13][20], since standard 
modeling techniques are not capable of capturing the huge complexity of the problem, as 
could be seen by simple comparison of two simple modeling approaches of volatility.   
 
Nevertheless, these simplified models can give reasonable approximations when properly 
selected, estimated, and benchmarked, and a monitor for volatility could be built from a 
combination between GARCH and SV models in the future, once convergence problems are 
solved and the reasons for the discrepancies, when they occurred, are properly clarified. I 
consider this a satisfactory first exploration of the fascinating world of mathematical finance 
and its empirical problems, thanks to which I realize more and more how rich, and complex 
are the problems in real-world data analysis.   
 
 

Future work 
 

1. Clarify the reasons for the nonconvergence or the errors from the Stan library for some of the 
model parameter estimates. 

2. Run the MCMC analysis on Stan but with much more iterations and more chains. For time and 
computational constraints, we did not do it for this Thesis.  

3. Use the results to try to build an actual monitor that can be updated automatically with the daily 
price data. This of course represented a lot of time and effort that we could not provide for the 
purpose of this thesis, but remains as a nice idea to implement, if possible, in the future.  
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APENDIX A.  

 
Figure 31. Zoom Forecast Corn ARIMA 

 
Figure 32. Zoom Forecast Wheat ARIMA 

 
Figure 33. Zoom Forecast Soybean ARIMA 
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Figure 34. Zoom Forecast Oat ARIMA 


