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A Generalized Lagrange Multiplier Method for Support Vector
Regression with Imposed Symmetry

Luis Alfonso Guerrero Montaño

Abstract
This thesis presents an approach to support vector regression that extends the classic Vapnik’s formulation.

After recalling that the classic formulation contains a Lasso regularization structure in its dual form, we
propose a generalized Lagrangian function with additional terms to include the Ridge regularization in the
dual problem for the case with symmetry. By including both regularization methods, the resulting dual
problem with the generalized Lagrangian comprises an elastic net regularization structure. Hence, as an
immediate consequence, the classical formulation is a particular case of the current proposal. Finally, to
demonstrate the capabilities of this approach, the document includes examples of predicting some benchmark
problems. keywords: SVM, Symmetry, SVR, GLMM.
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1 Introduction
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1.1 Motivation

Nowadays, using different methodologies to predict results is essential
in every field of study and business. These tools are used in medical
research, finance predictions, natural language processing, and many
more. Even sports are gambling are also common users.

Predictive Analytics is a type of data analysis that helps forecast
outcomes or identify trends using a computer model based on a set of
known variables.

In particular, the SVR methodology is an example of a predictive
algorithm that produces accurate and statistically significant results
when applied to various domains. The SVR method is a classic machine-
learning technique that has been used for decades. In this thesis, I will
propose a new approach to the method using a symmetric kernel
function and compare the results with the ones obtained using the
classic Levenberg-Marquardt algorithm1. The Levenberg-Marquardt 1 Jorge J. Moré. The Levenberg-

Marquardt algorithm: Implementation
and theory. In Lecture Notes in
Mathematics, Berlin Springer Verlag, vol-
ume 630, pages 105–116. 1978. doi:
10.1007/BFb0067700

algorithm is based on the least squares method, and the Gauss-Newton
optimization technique was developed in the early 1960s to solve
nonlinear least squares problems.

1.2 Objective

This work aims to produce an SVR with Symmetric conditions and
implement it in Python.

The objective of this thesis was to formulate and release the new
SVR methodology with the Symmetric kernel for regression.
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In specific, create a mathematical model, implement it and test it in
two different datasets (Boston house price 2 and Diabetes 3) to compare 2 scikit-learn developers.

sklearn.datasets.load_boston, 2020a. URL
https://scikit-learn.org/stable/

modules/generated/sklearn.datasets.

load_boston.html
3 scikit-learn developers.
sklearn.datasets.load_diabetes, 2020b.
URL https://scikit-learn.org/

stable/modules/generated/sklearn.

datasets.load_diabetes.html

the results against other known methodologies thus as:

• Linear Regression

• Random Forest

• XGBoost Regressor

• Classic SVR

1.3 Previous works

This work is mainly based on the following works, listed without any
specific order:

• Support Vector Machines for Pattern Classification 4 4 Shigeo Abe. Support Vector Machines
for Pattern Classification. Springer, second
edition, 2004. ISBN 978-1-84996-097-7• Generalized Lagrange multiplier method for solving problems of

optimum allocation of resources Support Vector Machines for Pattern
Classification 5 5 Hugh Everett III. Generalized lagrange

multiplier method for solving problems
of optimum allocation of resources.
Operations research, 11(3):399–417, 1963

• Generalized Lagrange multiplier method and KKT conditions with
an application to distributed optimization. 6

6 Mengmou Li. Generalized Lagrange
multiplier method and KKT conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

• An Extended Lagrangian Approach to Support Vector Regression
Based on the MAPE Loss 7

7 Sara Eugenia Rodríguez-Reyes, Pablo
Benavides-Herrera, Gregorio Alberto
Álvarez-Álvarez, Riemann Ruiz-Cruz,
and Juan Diego Sánchez-Torres. An ex-
tended Lagrangian approach to support
vector regression based on the MAPE
loss. In 20th Mexican International Confer-
ence on Artificial Intelligence (MICAI 2021),
oct 2021

• Imposing Symmetry in Least Squares Support Vector Machines
Regression 8

8 M. Espinoza, J.A.K. Suykens, and
B. De Moor. Imposing symmetry in
least squares support vector machines
regression. In Proceedings of the
44th IEEE Conference on Decision and
Control, pages 5716–5721, 2005a. doi:
10.1109/CDC.2005.1583074

1.4 Document Outline

The Chapter 2 "Preliminaries and previous results" presents the
foundations of the SVR with the mathematical representation, including
a Generalized Lagrangian Multiplier Method using an elastic net
regularization.

The Chapter 3 "Main Results" included the development of the
formulation of the Symmetric kernel approach based on the work of
chapter two. This is the main chapter of the thesis and the core of the
work.

The Chapter 4 "Applications to real datasets" uses the results 3to
apply the method for the first time in two datasets, measuring the
performance against other classic methodologies.

Finally, in the Chapter 5 "Conclusions and future work," I expose
the conclusion of the work done and make some suggestions for future
work to keep improving the development of the proposed method and
formulation.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
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2.1 Effectiveness of a regression model

To measure the effectiveness of the SVR with Symmetric conditions
model, I will be using different measures that I briefly introduce in this
section.

Effectiveness of a regression model
There are many different ways to measure the effectiveness of a

regression model. One way is to use the R2 statistic or coefficient of
determination. R2 measures how well the regression model fits the
data. A high R2 indicates a strong correlation between the datasets’
input and output variables. An R2 close to 1 indicates that the model
provides a good representation of the data. Also, a high value of R2

means that you have used the right predictor variables. The R2 value
tells you about the goodness of fit of a statistical model, i.e., how the
statistical relationship between your independent variable(s) and your
target variable looks after model building. Another measure is the
"adjusted R2". Adjusted R2 can be between 0 and 1 and measures the
amount of variance in the response variable that the regression model
explains. Values of adjusted R2 closer to 1 indicate a high correlation
between the response and the predictors in the model. A value of
adjusted R2 close to 0 indicates a low correlation between the response
and the predictors in the model.

MAE is another measure that tells you how close your predictions
are to the actual values of your output variable. This measure gives
you an idea of the uncertainty associated with the model’s predictions.
This quantity might be very small for large datasets and, therefore,
not worth considering. However, for small sample sizes, this statistic
can provide valuable information about how the model behaves under
real-world conditions. The term "mean absolute error" (MAE) refers to
a measurement of the accuracy of a forecast or prediction. It measures
the average of the absolute differences between actual values and values
predicted by the model. The higher the MAE value is, the greater the
error in predicting the target variable is. Other is the MSE value which
is defined as the root-mean-squared difference between the actual value
and the value predicted by the model. MSE also takes into account
both the mean and standard deviation of the errors. So, you can think
of MSE as a measure of the average squared error in your predictions.
If the value of the MSE is relatively large, it means that your model is
generating a lot of errors, which may be an indication that you need
to modify your model in some way. On the other hand, if the value of
the MSE is small, then your model may be providing you with accurate
predictions, but this does not mean that your model is perfect. A variant
of the MSE models is the RMSE which is defined as the average value
of the squared difference between the predicted value and the actual
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value. This statistic is sometimes preferred over the MSE because it
is less sensitive to outliers. An outlier refers to an observation that is
either very high or very low compared to the rest of the observations
in the dataset. The main difference between MSE and RMSE is the
location of the average. The MSE statistics is located in the center of
the dataset, whereas the RMSE statistics is located at the sample means.
When calculating the RMSE, you will multiply each observation by its
value and sum the results up. Finally, since you will need to calculate
two values for the RMSE, this method will be slower than the MSE
method. Finally, the mean absolute percentage error (MAPE) measures
the model’s accuracy. It is very similar to the MAE in its calculation,
but it measures the percentage of error rather than just the absolute
amount. This means that a high MAPE value indicates that there is a
fairly large amount of error in the data that the model is generating.
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2.2 SVR Based on a Generalized Lagrangian

2.2.1 Support vector regression

Support vector regression (SVR) has shown to be a powerful method
for proposing empirical models for predicting continuous variables 1. 1 Vladimir N. Vapnik. The nature of

statistical learning theory. Springer-Verlag
New York, Inc., 1995. ISBN 0-387-94559-
8; and Alex J. Smola and Bernhard
Schölkopf. A tutorial on support vector
regression. Statistics and Computing, 14

(3):199–222, 2004. ISSN 1573-1375. doi:
10.1023/B:STCO.0000035301.49549.88

The interpretability, the formulation as a convex optimization problem2,

2 S. Boyd and L.Vandenberghe. Convex
Optimization. Cambridge University
Press, 2004. ISBN 978-0-521-83378-3

the use of kernels3, and its relationships to other models make the

3 Bernhard Schölkopf and Alexander J.
Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, 2001.
ISBN 9780262256933; and John Shawe-
Taylor and Nello Cristianini. Kernel
Methods for Pattern Analysis. Cam-
bridge University Press, 2004. doi:
10.1017/CBO9780511809682

SVR a robust and reliable method for several industrial and research
problems.

A well-known fact about the classic formulation of SVR is that it
exhibits a Lasso regularization4 in its dual optimization problem5.

4 Robert Tibshirani. Regression shrinkage
and selection via the Lasso. Journal
of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996. doi:
10.1111/j.2517-6161.1996.tb02080.x
5 Shigeo Abe. Support Vector Machines
for Pattern Classification. Springer, sec-
ond edition, 2004. ISBN 978-1-84996-
097-7; and Xixuan Han and Line Clem-
mensen. On weighted support vector
regression. Quality and Reliability Engi-
neering International, 30(6):891–903, 2014.
doi: https://doi.org/10.1002/qre.1654

This event coincides with Lagrange multipliers equal to zero and the
appearance of support values and vectors. Besides, the support vector
methods and the Lasso regularization present substantial equivalences6.

6 Martin Jaggi. An equivalence between
the Lasso and support vector machines.
Arxiv, abs/1303.1152, 2013

On the other hand, the simultaneous use of two different regularization
schemes provides desirable models characteristics7.

7 L. Wang, J. Zhu, and H. Zou. The dou-
bly regularized support vector machine.
Statistica Sinica, 16(2):589–615, 2006; and
Julio López, Sebastián Maldonado, and
Miguel Carrasco. Double regularization
methods for robust feature selection and
svm classification via dc programming.
Information Sciences, 429:377–389, 2018.
ISSN 0020-0255

A remarkable case of this approach is the elastic net, where the Ridge
regularization8 works together with the Lasso9. Moreover, similarly to

8 A. N. Tikhonov. On the solution of
ill-posed problems and the method of
regularization. Dokl. Akad. Nauk SSSR,
151(3):501–504, 1963

9 Hui Zou and Trevor Hastie. Regulariza-
tion and variable selection via the elastic
net. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 67

(2):301–320, 2005. doi: 10.1111/j.1467-
9868.2005.00503.x

the previous case, the support vector models with two regularizations
present important equivalences to the elastic net regularization10.

10 Quan Zhou, Wenlin Chen, Shiji Song,
Jacob Gardner, Kilian Weinberger, and
Yixin Chen. A reduction of the elastic
net to support vector machines with an
application to GPU computing. 2015

In this chapter, I describe some of the basic concepts like Norms an
L1 and L2 regularization, which are the base for setting the base to use
of a new SVR model.

The chapter also proposes a new SVR by introducing a Ridge
regularization term in the dual through the definition of a generalized
Lagrangian function.

In this form, the current proposal considers the advantages of
the simultaneous use of two different regularization structures while
keeping the formality with the generalized Lagrangian approach.
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The Generalized Lagrange Multiplier Method (GLMM) 11 helps to 11 Stephen Boyd, Stephen P Boyd, and
Lieven Vandenberghe. Convex optimiza-
tion. Cambridge university press, 2004

connect constrained optimization, and saddle-point problems since
saddle points of Lagrangians provide solutions to corresponding
constrained optimization problems, as in the case of the SVR12 based 12 Diego Feijer and Fernando Paganini.

Stability of primal-dual gradient dynam-
ics and applications to network optimiza-
tion. Automatica, 46(12):1974–1981, 2010;
and Peng Yi, Yiguang Hong, and Feng
Liu. Distributed gradient algorithm for
constrained optimization with applica-
tion to load sharing in power systems.
Systems & Control Letters, 83:45–52, 2015

on this saddle-point dynamics.
GLMM was first suggested in the Everett work13 and then extensively

13 Hugh Everett III. Generalized lagrange
multiplier method for solving problems
of optimum allocation of resources.
Operations research, 11(3):399–417, 1963

developed in the Gould and Nakayama works 14, primarily to reduce

14 FJ Gould. Extensions of lagrange
multipliers in nonlinear programming.
SIAM Journal on Applied Mathematics, 17

(6):1280–1297, 1969; and H Nakayama,
H Sayama, and Y Sawaragi. A
generalized lagrangian function and
multiplier method. Journal of Optimization
Theory and Apps., 17(3):211–227, 1975

the duality gap between primal and dual issues in non-convex
optimization.

Many approaches for constrained optimization have been proposed
throughout the years, including penalty function methods and
Augmented Lagrangian 15. However, no comprehensive framework for

15 Stephen Boyd, Neal Parikh, and Eric
Chu. Distributed optimization and statistical
learning via the alternating direction method
of multipliers. Now Publishers Inc, 2011

these strategies has been proposed. With some relaxed conditions, the
GLMM could be useful.

Recently, suggested a unique smooth saddle-point dynamics as a
fast provable convergent method 16 that assures the constraints and

16 Hans-Bernd Dürr, Chen Zeng, and
Christian Ebenbauer. Saddle point seek-
ing for convex optimization problems.
IFAC Proceedings Volumes, 46(23):540–545,
2013

positivity of the Lagrange multipliers without using projections. It has
a concept that is very similar to the GLMM.

In recent years, distributed optimization has become one of the most
popular study subjects 17. Consensus protocols, which have also been

17 Peng Yi, Yiguang Hong, and Feng Liu.
Distributed gradient algorithm for con-
strained optimization with application
to load sharing in power systems. Sys-
tems & Control Letters, 83:45–52, 2015;
Peng Yi, Yiguang Hong, and Feng Liu.
Initialization-free distributed algorithms
for optimal resource allocation with feasi-
bility constraints and application to eco-
nomic dispatch of power systems. Auto-
matica, 74:259–269, 2016; and

extensively explored 18, connect centralized and distributed algorithms.

18 Dongkun Han, Graziano Chesi, and
Yeung Sam Hung. Robust consensus
for a class of uncertain multi-agent
dynamical systems. IEEE Transactions on
Industrial Informatics, 9(1):306–312, 2012;
and Yu Zhao, Yongfang Liu, Zhongkui Li,
and Zhisheng Duan. Distributed average
tracking for multiple signals generated by
linear dynamical systems: An edge-based
framework. Automatica, 75:158–166, 2017

Classic Lagrangian 19 is closely related to the linear consensus protocol.

19 Peng Yi, Yiguang Hong, and Feng Liu.
Distributed gradient algorithm for con-
strained optimization with application
to load sharing in power systems. Sys-
tems & Control Letters, 83:45–52, 2015; and
Peng Yi, Yiguang Hong, and Feng Liu.
Initialization-free distributed algorithms
for optimal resource allocation with feasi-
bility constraints and application to eco-
nomic dispatch of power systems. Auto-
matica, 74:259–269, 2016

Since convergence performance is affected by the consensus protocols
between agents, they are not restricted to the linear type. As a result, it
is important to reintroduce the GLMM.

The underlying idea of this thesis is to present an approach to SVR,
first developed by Vladimir Vapnik, adding an extended Lagrangian
function that includes a weighted elastic net regularization structure,
which enables to perform support vector selection and also reduces the
influence of correlated support vectors at once.
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2.3 Norms

A norm is a function from a real to a complex vector space to the
non-negative real numbers such that for every vector in the space, there
exists a unique real number called the norm of that vector20. 20 E. Prugovecki. Quantum Mechanics

in Hilbert Space. ISSN. Elsevier Science,
1982. ISBN 9780080874081. URL
https://books.google.com.mx/books?

id=GxmQxn2PF3IC

Given a vector space V over a subfield J of the complex numbers
C, a norm on V is a real-valued function p : V → R with the following
properties, where |s| denotes the usual absolute value of a scalar s :

1. Subadditivity/Triangle inequality: p(x + y) ≤ p(x) + p(y) for all
x, y ∈ V

2. Absolute homogeneity: p(sx) = |s|p(x) for all x ∈ V and all scalars
s.

3. Positive definiteness/Point-separating: for all x ∈ V , if p(x) = 0
then x = 0.

Due to property 2. implying p(0) = 0, some authors replace property
3 . with the equivalent condition: for all x ∈ V , p(x) = 0 if only if x = 0.
Considering p ∈ N, p ≥ 1, the p the root of the sum (or integral) of the
p the-powers of the absolute values of the vector components gives the
p-norm on suitable real vector spaces, defined as follows.

∥x∥p :=

(
n

∑
k=1

|xk|p
)1/p

(2.1)

For p = 1, the p − norm is the Absolute-value norm, which is a norm
on the one-dimensional vector spaces formed by the real or complex
numbers.

∥x∥1 :=
n

∑
k=1

|xk| (2.2)

This norm 1 is also known as the L1norm.
For p = 2, the p − norm is the standard Euclidean norm, which gives

the ordinary distance from the origin to the point x.

∥x∥2 :=

(
n

∑
k=1

|xk|2
)1/2

(2.3)

This norm 2 is also known as the L2norm.

2.4 L1 Regularization

LASSO regularization follows the representation:

https://books.google.com.mx/books?id=GxmQxn2PF3IC
https://books.google.com.mx/books?id=GxmQxn2PF3IC
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N

∑
k=1

(
yk − wT φ(xk)− b

)2
− λ

M

∑
k=1

|wk| (2.4)

Or in terms of the norm

N

∑
k=1

(
yk − wT φ(xk)− b

)2
− λ||wk||1 (2.5)

LASSO is a regularization that only penalizes the positions far away
from the training data points, which are the high coefficients. The
original LASSO was proposed by Rubin and Scheinberg (1988) as a
supervised learning algorithm. It only uses the |w| (modulus) and |b|
(bias) to determine the optimal coefficients w and b, which minimize
the regularized objective function given, instead of squares of w, as its
penalty, LASSO is known as the L1 norm. It has the effect of forcing
the coefficients of the predictors to tend to zero. This means when
the independent variables have a linear relationship with the response
variable, and then more variables can be used to predict the response
variable better

2.5 L2 Regularization

RIDGE regularization follows the representation:

min
w

N

∑
k=1

(
yk − wT φ(xk)− b

)2
− λ

2

M

∑
k=1

w2
k (2.6)

Or in terms of the Euclidean norm:

min
w

N

∑
k=1

(
yk − wT φ(xk)− b

)2
− λ

2
||w||22 (2.7)

RIDGE is a regularization where points are moved to a neighboring
grid point if it is closer or added if it is further away. The coefficients
are estimated by minimizing the Euclidean distance between each point
and its regularized grid. RIDGE was proposed by Jean-Marie Hullot
in 1981 and is used to solve both elliptic PDEs and practical problems
involving large linear systems, e.g., finding the point with the largest
absolute residual in an undetermined system.

RIDGE is known as the L2 method because it is an L2 − norm
regularizer.

This method has the effect of moving the points to points that are
closer to the original data.
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2.6 Classical Support Vector Regression

For the case let the set D = (x1, y1), . . . , (xN , yN), where xk ∈ Rn

and yk ∈ R. Let φ : X → F be the function that makes each input
point x correspond to a point in the feature space F , where F is a
Hilbert space. This feature space can be of high dimension or even
infinite. However, is common to define X = Rn and F = Rm. In this
form, the approximating function, namely the model, has the form
ŷk = f (xk) = wT φ(xk) + b with w ∈ Rm and b ∈ R.

The following problem statement considers such a regression
problem as a convex optimization problem.

min
w,b,ξ,ξ∗

Pϵ (w, b, ξ, ξ∗) =
1
2

wTw + C
N

∑
k=1

(
ξ

p
k + ξ

∗p
k

)
s.t. yk − wT φ (xk)− b ≤ ϵ + ξk, k = 1, . . . , N

wT φ (xk) + b − yk ≤ ϵ + ξ∗k , k = 1, . . . , N

ξk, ξ∗k ≥ 0, k = 1, . . . , N

(2.8)

where φ(·) : Rn → Rm and the regularization parameter C > 0
determines the balance between the regularity of f and the quantity up
to which we tolerate deviations more significant than ϵ. Consider ξk

and ξ∗k as slack variables that control the error between the prediction
ŷk and the k-th sample yk. The number p is either 1 or 2. If p = 1, the
support vector regressor is called L1 soft-margin support vector regressor
(L1 SVR) and p = 2, the L2 soft-margin support vector regressor (L2 SVR)
21. 21 Shigeo Abe. Support Vector Machines

for Pattern Classification. Springer, second
edition, 2004. ISBN 978-1-84996-097-7Remark 1 For the present work, only the case L1 will be considered since it

can be easily proven that for the aim of this paper, the L2 provides an equivalent
result.

Theorem 1 The primal problem (2.8) with the Lagrangian L (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =
1
2 wTw+C ∑N

k=1
(
ξk + ξ∗k

)
−∑N

k=1 αk
(
ϵ + ξk − yk + wT φ(xk) + b

)
−∑N

i=k α∗k
(
ϵ + ξ∗k + yk − wT φ(xk)− b

)
−

∑N
k=1 ηkξk − ∑N

i=k η∗
k ξ∗k − ∑N

i=k µk (), with αk, α∗k , ηk, η∗
k ≥ 0 results in the

following dual problem:

max
αk ,α∗k

D (α, α∗) =− 1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )φT(xk)φ(xl)

+
N

∑
k=1

(αk − α∗k )yk − ϵ
N

∑
k=1

(αk + α∗k )

s.t.
N

∑
k=1

(αk − α∗k ) = 0

αk, α∗k ∈ [0, C] , k = 1, . . . , N

(2.9)

Proof 1 See Suykens et. al.22 and Abe23. 22 Johan A K Suykens, Tony Van Gestel,
Jos De Brabanter, Bart De Moor, and
Joos Vandewalle. Least Squares Support
Vector Machines. World Scientific,
2002. ISBN 9789812381514. URL
https://www.worldscientific.com/

worldscibooks/10.1142/5089
23 Shigeo Abe. Support Vector Machines
for Pattern Classification. Springer, second
edition, 2004. ISBN 978-1-84996-097-7

https://www.worldscientific.com/worldscibooks/10.1142/5089
https://www.worldscientific.com/worldscibooks/10.1142/5089
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Defining βk = αk − α∗k . Then, βk ∈ [−C, C] Similarly, defining
|βk| = αk + α∗k , where |βk| ∈ [0, C]. Reformulating the dual problem in
terms of βk in a matrix form:

max
β

D (β) = −1
2

βTKβ + yT β − ϵ∥β∥1

s.t. βT1v = 0

|β| ⪯ C

(2.10)

Remark 2 The equation (2.10) shows the connection between the LASSO
and the SVR due to the appearance of a term with the L1 norm 24. 24 Shigeo Abe. Support Vector Machines

for Pattern Classification. Springer, sec-
ond edition, 2004. ISBN 978-1-84996-
097-7; and Xixuan Han and Line Clem-
mensen. On weighted support vector
regression. Quality and Reliability Engi-
neering International, 30(6):891–903, 2014.
doi: https://doi.org/10.1002/qre.1654

2.7 A GLMM for the Lϵ
1-SVR

To propose a new type of ϵ-SVR, consider the primal problem (2.8) with
the following Lagrangian based on the generalized Lagrange multiplier
method (GLMM) 25: 25 Mengmou Li. Generalized Lagrange

multiplier method and KKT conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗
k ) =

1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

−
N

∑
k=1

αk

(
ξk − yk + wT φ(xk) + b

)
−

N

∑
i=k

α∗k

(
ξ∗k + yk − wT φ(xk)− b

)
−

N

∑
k=1

ηkξk −
N

∑
i=k

η∗
k ξ∗k

− λ

[
(1 − ϵ)

N

∑
k=1

(αk + α∗k ) +
ϵ

2

N

∑
k=1

(αk + α∗k )
2

]

(2.11)

Proposition 1 The function (2.11) fulfills all the conditions of the GLMM
26. 26 Mengmou Li. Generalized Lagrange

multiplier method and KKT conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

Proof 2 The proof follows directly from the definition; see 27.

27 Mengmou Li. Generalized Lagrange
multiplier method and KKT conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

Theorem 2 The primal problem (2.8) with the Lagrangian (2.11) leads to the
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following dual problem:

max
αk ,α∗k

D (α, α∗) =

− 1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l )φT(xk)φ(xl)

+
N

∑
k=1

(αk − α∗k )yk

− λ

[
(1 − ϵ)

N

∑
k=1

(αk + α∗k ) +
ϵ

2

N

∑
k=1

(αk + α∗k )
2

]

s.t.
N

∑
k=1

(αk − α∗k ) = 0

αk, α∗k ∈ [0, C] , k = 1, . . . , N.

(2.12)

Proof 3 The proof follows from the stationary conditions:

• The first order condition on the parameter w, ∇wL(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗
k ) =

0, implies w = ∑N
k=1(αk − α∗k )φ(xk).

• The first order condition on the parameter b, ∂
∂bL(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗

k ) =

0, implies ∑N
k=1(αk − α∗k ) = 0.

• The first order condition on the parameter ξk, ∂
∂ξk

L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗
k ) =

0, implies αk + ηk = C

• The first order condition on the parameter ξ∗k , ∂
∂ξ∗k

L(w, b, ξk, ξ∗k ; αk, α∗k , ηk, η∗
k ) =

0, implies α∗k + η∗
k = C

Then, replacing these critical points in the Lagrangian (2.11).

Besides, the optimal solution must satisfy the Karush Kuhn Tucker
(KKT) complementary slackness conditions:

αk

(
ϵ + ξk − yk + wT φ(xk) + b

)
= 0 (2.13)

α∗k

(
ϵ + ξ∗k + yk − wT φ(xk)− b

)
= 0 (2.14)

ηkξk = (C − αk)ξk = 0 (2.15)

η∗
k ξ∗k = (C − α∗k )ξ

∗
k = 0. (2.16)

Hence, using the complementary slackness conditions, it follows the
calculation of b:

b =yk − wT φ(xk)− ϵ, such that

αk ∈ (0, C)
(2.17)

Finally, defining βk = αk − α∗k . Then, βk ∈ [−C, C] Similarly, defining
|βk| = αk + α∗k , where |βk| ∈ [0, C]. Reformulating the dual problem in
terms of βk in a matrix form:
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max
β

D (β) = −1
2

βTKβ + yT β

− λ
[
(1 − ϵ)∥β∥1 +

ϵ

2
∥β∥2

2

]
s.t. βT1v = 0

|β| ⪯ C

(2.18)

Remark 3 It is shown in (2.18) the connection between the LASSO, the
Ridge, and the Lϵ

1-SVR due to the appearance of a term with the L1 norm and a
squared term with the L2 norm. This is enough to show that the Lϵ

1-SVR is in
nature a LASSO problem. This new proposal of ϵ-SVR based on the Lϵ

1-SVR
offers a new structure that proposes an Elastic net regularization keeping the
box constraints where 0 ≤ αk, α∗k ≤ C which makes easier to calculate the b
parameter.28 28 Sara Eugenia Rodríguez-Reyes, Pablo

Benavides-Herrera, Gregorio Alberto
Álvarez-Álvarez, Riemann Ruiz-Cruz,
and Juan Diego Sánchez-Torres. An ex-
tended Lagrangian approach to support
vector regression based on the MAPE
loss. In 20th Mexican International Confer-
ence on Artificial Intelligence (MICAI 2021),
oct 2021

Remark 4 In the dual problem (2.18), if ϵ = 0 and λ > 0, the original
formulation (2.9) is recovered. This implies that the solution of (2.9) is a lower
bound of the solution of (2.18) i.e., when tuning the hyper-parameters, the
worst case scenario for (2.18) is (2.9).
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3.1 SVR with Symmetric conditions

The main proposal of this thesis is to introduce the SVR with Symmetric
conditions model.

Let the set D = (x1, y1), . . . , (xN , yN), where xk ∈ Rn and yk ∈ R. Let
φ : X → F be the function that makes each input point x correspond to
a point in the feature space F , where F is a Hilbert space 1. This feature 1 Shigeo Abe. Support Vector Machines for

Pattern Classification. Springer, second
edition, 2004. ISBN 978-1-84996-097-7

space can be of high dimension or even infinite. However, is common
to define X = Rn and F = Rm. In this form, the approximating
function, namely the model, has the form ŷk = f (xk) = wT φ(xk) + b
with w ∈ Rm and b ∈ R.

Consider the following optimization problem:

min
w,b,ξ,ξ∗

Pϵ (w, b, ξ, ξ∗) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k ) (3.1.1)

s.t.
yk − wT φ (xk)− b ≤ ϵ + ξk, k = 1, . . . , N

wT φ (xk) + b − yk ≤ ϵ + ξ∗k , k = 1, . . . , N

wT φ (xk) = awT φ (−xk) , a ∈ {−1, 1}
ξk, ξ∗k ≥ 0, k = 1, . . . , N

(3.1.2)

where φ(·) : Rn → Rm and the regularization parameter C > 0
determines the balance between the regularity of f and the quantity up
to which we tolerate deviations more significant than ϵ. Consider ξk

and ξ∗k as slack variables that control the error between the prediction
ŷk and the k-th sample yk.

The constraint wT φ (xk) = awT φ (−xk) helps imposing symmetry
features in the function f .
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For the primal problem (3.1.1), consider the Lagrangian

L (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

−
N

∑
k=1

αk

(
ϵ + ξk − yk + wT φ(xk) + b

)
−

N

∑
i=k

α∗k

(
ϵ + ξ∗k + yk − wT φ(xk)− b

)
−

N

∑
k=1

ηkξk −
N

∑
i=k

η∗
k ξ∗k

−
N

∑
k=1

µk

(
wT φ (xk)− awT φ (−xk)

)

(3.1.3)

with αk, α∗k , ηk, η∗
k ≥ 0 and µk ∈ R, Lagrange multipliers.

Remark 5 The primal problem (3.1.1) with the Lagrangian (3.1.3) results in
a dual problem that contains inner products of the form φT(xk)φ(xl). The
kernel trick allows writing those products as kernel functions K (xk, xl) =

φT(xk)φ(xl).

Assumption 1 To impose the constraint wT φ (xk) = awT φ (−xk), it will
be assumed the use of kernels which fulfill the following symmetry conditions:

1. K (−xk, xl) = K (xk,−xl)

2. K (−xk,−xl) = K (xk, xl)

Having established the necessary elements, the following theorem
provides the dual optimization problem that relates the primal problem
(3.1.1) with the Lagrangian (3.1.3).

Theorem 3 Under the Assumption 1, the primal problem (3.1.1) with the
Lagrangian (3.1.3) results in the following dual problem:

maxαk ,α∗k
D (α, α∗) =

− 1
2

N

∑
k,l=1

(αk − α∗k )(αl − α∗l ) (K (xk, xl) + aK (xk,−xl))

+
N

∑
k=1

(αk − α∗k )yk − ϵ
N

∑
k=1

(αk + α∗k )

s.t.
N

∑
k=1

(αk − α∗k ) = 0

αk, α∗k ∈ [0, C] , k = 1, . . . , N

(3.1.4)

Proof 4 The proof follows from the stationary conditions:
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• The first order condition on the parameter w, ∇wL (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies

w =
N

∑
k=1

(αk − α∗k )φ(xk) +
N

∑
k=1

µk (φ(xk)− aφ(−xk)) . (3.1.5)

• The first order condition on the parameter b, ∂
∂bL (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
N

∑
k=1

(αk − α∗k ) = 0. (3.1.6)

• The first order condition on the parameter ξk, ∂
∂ξk

L (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
αk + ηk = C (3.1.7)

for all k.

• The first order condition on the parameter ξ∗k , ∂
∂ξ∗k

L (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
α∗k + η∗

k = C (3.1.8)

for all k.

• The first order condition on the parameter µk, ∂
∂µL (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
wT φ (xk) = awT φ (−xk) (3.1.9)

for all k.

From (3.1.9)

φ (xk) =
1
2

wT (φ (xk) + φ (−xk)) (3.1.10)

Then, replacing the critical points (3.1.5), (3.1.6), (3.1.7), (3.1.8), (3.1.9),
and the identity (3.1.10) in the Lagrangian (3.1.3), the dual optimization
problem (3.1.4) follows.

Defining βk = αk − α∗k . Then, βk ∈ [−C, C] and |βk| = αk + α∗k , where
|βk| ∈ [0, C]. Besides, let K (xk, xl) = 1

2 (K (xk, xl) + aK (xk,−xl)).
Those previous definitions permits formulating the dual problem (3.1.4)
in terms of βk in a matrix form:

max
β

D (β) = −1
2

βTKβ + yT β − ϵ∥β∥1

s.t. βT1v = 0

|β| ⪯ C

(3.1.11)

Remark 6 The equation (3.1.11) shows the connection between the LASSO
and the SVR due to the appearance of a term with the L1 norm 2. 2 Shigeo Abe. Support Vector Machines

for Pattern Classification. Springer, sec-
ond edition, 2004. ISBN 978-1-84996-
097-7; and Xixuan Han and Line Clem-
mensen. On weighted support vector
regression. Quality and Reliability Engi-
neering International, 30(6):891–903, 2014.
doi: https://doi.org/10.1002/qre.1654
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3.2 A Generalized Lagrangian Formulation of SVR with
Symmetric conditions

To propose a new type of ϵ-SVR, consider the primal problem (3.1.1)
with the following Lagrangian based on the generalized Lagrange
multiplier method (GLMM) 3, adding an Elastic net regularization term 3 Mengmou Li. Generalized Lagrange

multiplier method and KKT conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

to the SVR with Symmetric conditions formulation4:

4 M. Espinoza, J.A.K. Suykens, and
B. De Moor. Imposing symmetry in
least squares support vector machines
regression. In Proceedings of the 44th
IEEE Conference on Decision and Con-
trol, pages 5716–5721, 2005a. doi:
10.1109/CDC.2005.1583074; and M. Es-
pinoza, J.A.K. Suykens, and B. De Moor.
Short term chaotic time series predic-
tion using symmetric ls-svm regression.
In International Symposium on Nonlinear
Theory and its Applications (NOLTA2005),
pages 606–609, October 2005b. doi:
10.34385/proc.40.3-4-3-1

L (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =
1
2

wTw + C
N

∑
k=1

(ξk + ξ∗k )

−
N

∑
k=1

αk

(
ϵ + ξk − yk + wT φ(xk) + b

)
−

N

∑
i=k

α∗k

(
ϵ + ξ∗k + yk − wT φ(xk)− b

)
−

N

∑
k=1

ηkξk −
N

∑
i=k

η∗
k ξ∗k

− λ

[
(1 − ϵ)

N

∑
k=1

(αk + α∗k ) +
ϵ

2

N

∑
k=1

(αk + α∗k )
2

]

−
N

∑
k=1

µk

(
wT φ (xk)− awT φ (−xk)

)

(3.2.1)

Proposition 2 The function (3.2.1) fulfills all the conditions of the GLMM 5. 5 Mengmou Li. Generalized Lagrange
multiplier method and KKT conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

Proof 5 The proof follows directly from the definition; see 6.

6 Mengmou Li. Generalized Lagrange
multiplier method and KKT conditions
with an application to distributed op-
timization. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 66

(2):252–256, 2019. doi: 10.1109/TC-
SII.2018.2842085

Theorem 4 The primal problem (3.1.1) with the Lagrangian (3.2.1) leads to
the following dual problem:

maxαk ,α∗k
D (α, α∗) =

− 1
4

N

∑
k,l=1

(αk − α∗k )(αl − α∗l ) (K (xk, xl) + aK (xk,−xl))

+
N

∑
k=1

(αk − α∗k )yk − ϵ
N

∑
k=1

(αk + α∗k )

− λ

[
(1 − ϵ)

N

∑
k=1

(αk + α∗k ) +
ϵ

2

N

∑
k=1

(αk + α∗k )
2

]

s.t.
N

∑
k=1

(αk − α∗k ) = 0

αk, α∗k ∈ [0, C] , k = 1, . . . , N

(3.2.2)

Proof 6 The proof follows from the stationary conditions:

• The first order condition on the parameter w, ∇wL (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =
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0, implies

w =
N

∑
k=1

(αk − α∗k )φ(xk) +
N

∑
k=1

µk (φ(xk)− aφ(−xk)) . (3.2.3)

• The first order condition on the parameter b, ∂
∂bL (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
N

∑
k=1

(αk − α∗k ) = 0. (3.2.4)

• The first order condition on the parameter ξk, ∂
∂ξk

L (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
αk + ηk = C (3.2.5)

for all k.

• The first order condition on the parameter ξ∗k , ∂
∂ξ∗k

L (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
α∗k + η∗

k = C (3.2.6)

for all k.

• The first order condition on the parameter µk, ∂
∂µL (w, b, ξ, ξ∗; α, α∗, η, η∗, µ) =

0, implies
wT φ (xk) = awT φ (−xk) (3.2.7)

for all k.

From (3.2.7)

φ (xk) =
1
2

wT (φ (xk) + φ (−xk)) (3.2.8)

Then, replacing the critical points (3.1.5), (3.2.4), (3.2.5), (3.2.6), (3.2.7),
and the identity (3.2.8) in the Lagrangian (3.2.1), the dual optimization
problem (3.2.2) follows.

Defining βk = αk − α∗k . Then, βk ∈ [−C, C] and |βk| = αk + α∗k , where
|βk| ∈ [0, C]. Besides, let K (xk, xl) = 1

2 (K (xk, xl) + aK (xk,−xl)).
Those previous definitions permits formulating the dual problem (3.2.2)
in terms of βk in a matrix form:

max
β

D (β) = −1
2

βTKβ + yT β − ϵ∥β∥1

− λ
[
(1 − ϵ)∥β∥1 +

ϵ

2
∥β∥2

2

]
s.t. βT1v = 0

|β| ⪯ C

(3.2.9)

Where the kernel K:
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wT φ (xk) = awT φ (−xk) (3.2.10)

Which can be represented by the following equation:

K̄
(

xk, xj
)
=

K
(

xk, xj
)
+ aK

(
xk,−xj

)
2

(3.2.11)

Remark 7 The equation (3.2.9) shows the connection between the LASSO
and the SVR due to the appearance of a term with the L1 norm and RIDGE
due to the appearance of a term with the L2 norm 7. 7 Shigeo Abe. Support Vector Machines

for Pattern Classification. Springer, sec-
ond edition, 2004. ISBN 978-1-84996-
097-7; and Xixuan Han and Line Clem-
mensen. On weighted support vector
regression. Quality and Reliability Engi-
neering International, 30(6):891–903, 2014.
doi: https://doi.org/10.1002/qre.1654

The equation (3.2.9) is the main result for the symmetric
implementation. It will be the base to implement the symmetric kernel
for the applications to real datasets in the next chapter.
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4.1 Symmetric kernel Implementation

The key element to implement is the symmetric kernel matrix from the
equation (3.2.7)

wT φ (xk) = awT φ (−xk) (4.1.1)

Which can be represented by the following equation:

K̄
(

xk, xj
)
=

K
(

xk, xj
)
+ aK

(
xk,−xj

)
2

(4.1.2)

The kernel implementation is based in the RBF function this is:

K
(

xk, xj
)
= e−

||xk−xj ||
2

σ

K
(

xk,−xj
)
= e−

||xk+xj ||
2

σ

(4.1.3)

with σ > 0.
The result of the implementation in Python is:

1 def kernel_sym(self, X, X1, sigma=0.1, a=1):

2 xt = X1 # .T.copy()

3 n = X.shape[0]

4 nt = xt.shape[0]

5 K_1 = np.zeros((n, nt))

6 for i in range(n):

7 for j in range(nt):

8 K_1[i, j] = np.exp(-((np.linalg.norm(X[i, :] -
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9 xt[j, :])) /

10 (2*sigma**2)))

11

12 K_2 = np.zeros((n, nt))

13 for i in range(n):

14 for j in range(nt):

15 K_2[i, j] = np.exp(-((np.linalg.norm(X[i, :] +

16 xt[j, :])) /

17 (2*sigma**2)))

18 K = K_1 + (a*K_2)

19 return (K)

Listing 4.1: Symmetric kernel implementation

To test the new model in different data sets, the first step is to
implement it in python. The key element for it is to implement the
equation (3.2.9):

1 min_fun = (1/2)*cp.quad_form(beta, K) - y.T @ beta + Ev @ cp.abs(

beta) +\

2 lamda*(((1-Ev) @ cp.abs(beta)) + ((Ev/2) @ beta**2))

3 objective = cp.Minimize(min_fun)

4 constraints = [A @ beta == b, G @ beta <= h]

Listing 4.2: Equation (3.2.9) implementation

The implementation uses the library "CVXPY", to calculations on the
matrices.

To test the implementation, I will use the Boston house-price dataset
1, and the Diabetes dataset 2, both obtained from the "sci-kit learn" 1 scikit-learn developers.

sklearn.datasets.load_boston, 2020a. URL
https://scikit-learn.org/stable/

modules/generated/sklearn.datasets.

load_boston.html
2 scikit-learn developers.
sklearn.datasets.load_diabetes, 2020b.
URL https://scikit-learn.org/

stable/modules/generated/sklearn.

datasets.load_diabetes.html

libraries.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
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4.2 SVR with Symmetric conditions using the Boston house-price
dataset

The objective is to predict the price of the houses based on different
characteristics of the houses in the Boston area.

The dataset includes fourteen variables:

Variable Description

CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq. ft.
INDUS proportion of non-retail business acres per town.
CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built before 1940
DIS weighted distances to five Boston employment centrsr
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $1000’s

Table 4.1: Boston variables

To optimize the parameters of the SVR with Symmetric conditions,
a Bayesian Optimization was applied, optimizing the mean absolute
error (MAE). The parameters used for a = −1 (where a is one of the
newly introduced hyper-parameter of the model (4.1.1)):

Variable Value

C 287.7345
ϵ 0.04
γ 0.04
λ 0.01
σ 3
a -1

Table 4.2: Kernel hyper-parameters with
a = −1

And for a = 1 :

Variable Value

C 272.2192
ϵ 0.04
γ 0.04
λ 0.01
σ 3
a 1

Table 4.3: Kernel hyper-parameters with
a = 1
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Results comparison using different methodologies:

Method R2 Adj R2 MAE MSE RMSE MAPE

Linear Regression 0.8765 0.8648 2.2637 12.8934 3.5907 10.8676
Random Forest 0.8414 0.8265 2.4284 16.5543 4.0687 11.6503
XGBoost Regressor 0.8765 0.8648 2.2637 12.8934 3.5907 10.8676
SVR 0.8936 0.8836 2.0167 11.1064 3.3326 10.0733

SVR with SC a=-1 0.8694 0.8571 2.4035 13.6329 3.6922 11.9569
SVR with SC a=1 0.8375 0.8222 2.6198 16.9625 4.1185 12.6598

Table 4.4: Boston results

The results of the proposed model are the last two of the above table
4.4. As expected, due to the optimization-based in MAE, this metric
is where better results were obtained in comparison with the other
metrics with a = −1.

The R2 result was 0.8694, better than a random forest but a little
worse than the other three, being 1 the best possible result. On the
adjusted R2 the result was 0.8571 also; this one is better than the random
forest but below the other models. Similar performance can be seen in
the MAE, MSE, and RMSE; on these metrics, the lower result, the better.
On the three, the SVR with Symmetric conditions performs better than
the random forest. The exception is MAPE, where the performance was
the worst of the models.

In conclusion, the proposed model is consistent with the results
obtained from traditional models.

4.3 SVR with Symmetric conditions using the Diabetes dataset

The Diabetes dataset includes the following variables:

Variable Description

age age in years
sex sex
bmi body mass index
bp average blood pressure
s1 tc, total serum cholesterol
s2 ldl, low-density lipoproteins
s3 hdl, high-density lipoproteins
s4 tch, total cholesterol / HDL
s5 ltg, possibly log of serum triglycerides level
s6 glu, blood sugar level

Table 4.5: Diabetes Variables
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To optimize the parameters of the SVR with Symmetric conditions, a
Bayesian Optimization was applied, optimizing the mean absolute error
(MAE). The parameters used for this comparison were (with a = −1):

Variable Value

C 660.9515
ϵ 1.0
γ 0.15
λ 0.1
σ 3
a -1

Table 4.6: Kernel hyper-parameters with
a = −1

And with a = 1

Variable Value

C 671.0136
ϵ 0.0422
γ .0630
λ 0.0965
σ 1.7711
a 1

Table 4.7: Kernel hyper-parameters with
a = 1

Results comparison using different methodologies:

Method R2 Adj R2 MAE MSE RMSE MAPE

Linear Regression 0.4464 0.4010 43.6895 2963.3195 54.4363 38.7632
Random Forest 0.4423 0.3966 44.0939 2985.0625 54.6357 39.7712
XGBoost Regressor 0.4668 0.4231 43.2759 2853.8927 53.4218 37.3279
SVR 0.4359 0.3896 43.5409 3019.5069 54.9500 38.2519

SVR with SC a=-1 0.4105 0.3622 43.8599 3155.0965 56.1702 38.3934
SVR with SC a=1 0.0197 -0.0605 58.8974 5247.0945 72.4368 55.0800

Table 4.8: Diabetes results

The results of the proposed model are the last two of the above table
4.8. As expected due to the optimization-based in MAE, this metric is
where better results were obtained compared to the other metrics with
a = −1.
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The R2 result was 0.4105, worse than the other models, being 1 the
best possible result. On the adjusted R2 the result was 0.3622. Also, this
result is the worst of the models. Similar performance can be seen in
the MSE and RMSE. However, in the MAE and MAPE results the SVR
with Symmetric conditions performs better than the random forest.

In conclusion, the proposed model is consistent with the results
obtained from traditional models.



5 Conclusions and future work
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5.1 Conclusions of the first trials

The implementation of a new model, as the SVR with Symmetric
conditions, is always the start of a learning path. With the given results
on the first trials included in this thesis, is clear that there is some
consistency in the performance of the SVR with Symmetric conditions.

The results obtained in this work as the mathematical model and its
implementation can be used to keep exploring the SVR model, which
is still a powerful tool for data science.

The objective of this thesis was to formulate and release the new
SVR methodology with the Symmetric kernel, which was accomplished.
More work is needed to test different datasets and verify their efficiency.

5.2 Future work

Future work to develop and study the efficiency of the SVR with
Symmetric conditions should include more testing with different
datasets.

The SVR with Symmetric conditions models had performed at the
same level that other classic models; however, more testing is needed to
validate if can improve its result; for example, the optimization could
be done based on other metrics and see if the performance improves.

Also, the release of a paper on a specialized forum can help the
development to face a bigger forum.

This, as mentioned, is just the start for the SVR with Symmetric
conditions development.
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