
A Fast Implementation for the Typical Testor Property Identification Based on
an Accumulative Binary Tuple

Guillermo Sanchez-Diaz 1 , Manuel Lazo-Cortes 2 , Ivan Piza-Davila 3

1 Universidad Autonoma de San Luis Potosi
Dr. Manuel Nava no 8,

San Luis Potosi, San Luis Potosi, 78290, Mexico
E-mail: guillermo.sanchez@uaslp.mx

2 Universidad de las Ciencias Informaticas
Carr. de San Antonio de los Baños Km. 2.5, Torrens,

Havana, 19370, Cuba
E-mail: mlazo@cedai.com.cu

3 Instituto Tecnologico y de Estudios Superiores de Occidente
Periferico Sur Manuel Gomez Morin 8585,

Tlaquepaque, Jalisco, 45604, Mexico
E-mail: hpiza@iteso.mx

Abstract

In this paper, we introduce a fast implementation of the CT EXT algorithm for testor property identifica-
tion, that is based on an accumulative binary tuple. The fast implementation of the CT EXT algorithm
(one of the fastest algorithms reported), is designed to generate all the typical testors from a training ma-
trix, requiring a reduced number of operations. Experimental results using this fast implementation and
the comparison with other state-of-the-art algorithms that generate typical testors are presented.

Keywords: feature selection, tipycal testors, pattern recognition, logical combinatorial pattern recognition.

1. Introduction

Feature selection is a significant task in supervised
classification and other pattern recognition areas.
This task consists of identifying those features that
provide relevant information for the classification
process. In Logical Combinatorial Pattern Recog-
nition (Ref. 1,2), feature selection is solved by using
Testor Theory (Ref. 3). Yu. I. Zhuravlev introduced
the concept of testor to pattern recognition problems
(Ref. 4). He defined a testor as a set of features that

does not confuse objects descriptions belonging to
different classes. This concept has been extended
and generalized in several ways (Ref. 3).

The concept of testor, has also been used by V.
Valev, under the name of non-reducible descriptors
(NRD) (Ref. 5,6,7,8,9).

The compute of all typical testors is a procedure
which have exponential complexity (Ref. 10). Dif-
ferent approaches have been developed, including:
genetic algorithms (Ref. 11), and distributed com-
puting (Ref. 12). Recently, implementations for

G. Sanchez-Diaz, et. al.

feature-selection algorithms over FPGA-based em-
bedded systems have been developed (Ref. 13,14).

Typical testors have been widely used to evaluate
the feature relevance (Ref. 15) and as support sets
in classification algorithms (Ref. 16). In text min-
ing, they have also been used for text categorization
(Ref. 17) and document summarization (Ref. 18).

Unlike other methods for feature selection, typi-
cal testors have no confusion errors, due to they do
not confuse objects of different classes.

But even though the application of these tech-
niques, the running time of existing algorithms con-
tinues to be unacceptable owing to several problems
which are dependent mainly, of the number of fea-
tures of training matrix.

The present paper introduces a fast implementa-
tion of the CT EXT algorithm, using a binary accu-
mulative tuple, which simplify the search of feature
combinations which fulfill the testors property.

The algorithm CT EXT was selected for incor-
porating the accumulative tuple, because it is one of
the fastest algorithms reported in the state of the art
(Ref. 19,20).

The classic concept of testor, in which classes
are assumed to be both hard and disjointed, is used.
The comparison criteria used for all features are
Boolean, regardless of the feature type (qualitative
or quantitative). The similarity function used for
comparing objects demands similarity in all fea-
tures. These concepts are formalized in the follow-
ing section.

Preliminary results of this algorithm were pre-
sented in (Ref. 21), but this version incorporates
the following: a) explains in detail the work from
V. Valev and collaborators who have made impor-
tant contributions to the field of typical testors. b)
the article published in (Ref. 21) introduces Typi-
cal Testors quiet briefly. This new version incorpo-
rates an entire 3-page section (Section 2), with the
formalization of Typical Testors by means of: two
tables, ten definitions, five remarks, one example,
three matrices, three theorems, and two proofs. c)
the article introduced in (Ref. 21) required barely a
couple of paragraphs to introduce state-of-the-art al-
gorithms useful to find all the typical testors. This
version incorporates an entire section (Section 3) to

talk about these algorithms, including its limitations.
d) this version includes a proposition and its proof,
in Section 4. e) section 4 dedicates three pages to a
detailed example that compares three kinds of algo-
rithms useful to find typical testors. f) some parts of
section 5 was rewritten. g) section 6 (Experiments)
was entirely rewritten, and finally, h) a key idea to
extend the proposed algorithm in a near future was
added in Conclusions Section.

2. Typical testors

Let T M = {O1,O2, · · · ,Om}, T M ⊆U (where U is
the universe set of objects), be a training matrix con-
taining m objects, described in terms of n features
R = {x1,x2, · · · ,xn} and distributed into c classes
{K1,K2, · · · ,Kc}. Each feature xi ∈ R takes values
in a set Mi, i = 1, · · · ,n. A comparison criterion of
dissimilarity Di : Mi×Mi → {0,1} is associated to
each xi (0=similar, 1=dissimilar).

Each object O ∈ T M has associated a c-tuple of
membership, which describes the belonging of the
object O to the classes K1, · · · ,Kc. This c-tuple of
membership is denoted by α(O). Then, α(O) =
(α1(O), · · · ,αc(O)), where αi(O) = 1 means that
O ∈ Ki and αi(O) = 0 means that O 6∈ Ki (Ref. 22).
Table 1 shows the general scheme of a training ma-
trix.

Table 1. General scheme of Training Matrix

Objects Features c-uple of belonging

O1 x1(O1) · · · xn(O1) α1(O1), · · · ,αc(O1)
...

...
...

...
...

Op x1(Op) · · · xn(Op) α1(Op), · · · ,αc(Op)
Oq x1(Oq) · · · xn(Oq) α1(Oq), · · · ,αc(Oq)
...

...
...

...
...

Om x1(Om) · · · xn(Om) α1(Om), · · · ,αc(Om)

Some of the following definitions were taken
from: (Ref. 3,23,22,6,7)

Definition 1. If some feature subset T ⊆ R does not
confuse any two descriptions of objects belonging to
different classes of training matrix, then T is called
testor (descriptor).

Definition 2. If in a certain testor T , after remov-
ing any attribute xi ⊂ R, T confuses some two de-

A Fast Implementation for Typical Testor Property Identification

scriptions of objects belonging to different classes of
training matrix, then T is called typical testor (non-
reducible descriptor (NRD)), and denoted by TT.

That means that each TT cannot be reduced any
more (Ref. 23,6). Thus each TT is of minimal length.
Besides, each TT may distinguish any object de-
scription from the descriptions of the objects belong-
ing to the remaining classes (Ref. 24,23).

Remark 1. Both Ruiz-Shulcloper and Valev define
typical testors (NRD) as properties of objects. How-
ever, for Valev, each object of the training matrix has
associated a set of TT (NRD). On the other hand,
for Ruiz-Shulcloper, all objects in each class of the
training matrix have associated a set of TT (NRD)
too.

In order to ilustrate the above definitions, we
present the follow example, which was taken from
(Ref. 9)

Example 1. Patients are characterized as suffering
from strep throat or flu depending on the presence
or absence of a combination of the following symp-
toms: sore throat (x1), cough (x2), cold (x3), and
fever (x4). Let K1 denote the class of patients suffer-
ing from strep-throat, and K2, the class of patients
suffering from flu. The training matrix (shown in
table 2) consist of information pertaining to seven
patients, the first two in K1, and the last five in K2.
The information pertaining to each patient is rep-
resented as a row in the training matrix. A 1 in
a particular column represents the presence of the
corresponding symptom, and a 0 represents the ab-
sence of that symptom. Note that O1,O2 ∈ K1, and
O3, · · · ,O7 ∈ K2

Table 2. Training matrix of patients

Objects x1 x2 x3 x4 Class
O1 1 1 0 0 (1, 0)
O2 1 0 1 0 (1, 0)
O3 0 0 1 1 (0, 1)
O4 1 0 1 1 (0, 1)
O5 0 0 1 0 (0, 1)
O6 0 1 1 0 (0, 1)
O7 0 1 1 1 (0, 1)

In the training matrix of patients, the set of fea-
tures {x1,x2,x4} is a testor. Also, the set {x1,x4} is
a typical testor of this training matrix.

We can observe that if we handle only the fea-
tures of the typical testor {x1,x4}, the descriptions
of patients belonging to different classes are not con-
fused on the training matrix.

This would mean that, based on the symptoms
and diagnosis of the patients, only with the informa-
tion about sore throat and fever is sufficient to diag-
nose a patient with strep throat or with flu. For this
particular training matrix, the presence of sore throat
and the absence of fever are sufficient to diagnose a
patient with strep throat.

Let us consider the problem of obtained the TT
set of a TM.

Definition 3. The dissimilarity matrix (denoted by
DM) of the objects Oi ∈ T M, is a Boolean matrix,
where their rows are obtained by feature compar-
ison (using dissimilarity comparison criteria D) of
every pair of objects from TM belonging to differ-
ent classes.

Remark 2. If the objects under comparison are not
similar in terms of a feature, a value of 1 is assigned
in the corresponding row and column of DM. If this
is not the case, a value 0 is assigned.

The DM of the objects of the training matrix of
patients was obtained for all the features (e.g. s =
1,2,3,4), using the comparison criterion Ds shown
in (2). The DM built is the follow:

DM =

1 1 1 1
0 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
0 0 0 1
1 0 0 0
1 1 0 0
1 1 0 1

(1)

The first row of the DM above was obtained from
comparing O1 and O3. In the same way, the second
row was obtained comparing O1 and O4, the third

G. Sanchez-Diaz, et. al.

row by the comparison of O1 and O5, and so on. Fi-
nally, last row was obtained by the comparison of O2
and O7.

Ds(xs(Oi),xs(O j)) =
{

1 i f xs(Oi) 6= xs(O j)
0 otherwise

(2)

Remark 3. It is computationally faster to work with
the DM instead their belonging TM. Because, in or-
der to create the DM, the comparison between two
arbitrary objects of TM is performed only once, and
the DM is a Boolean matrix.

Remark 4. Notice that the number of rows in DM
is

m
′
=

c−1

∑
i=1

c

∑
j=i+1

card(Ki) ∗ card(K j) (3)

where card(Ki) denotes the number of objects in
the class Ki.

Let p and q be two rows of DM.

Definition 4. The row p is a subrow of q if:
∀ j[q j = 0⇒ p j = 0] and ∃i[pi = 0⇒ qi = 1]

Definition 5. A row p of DM is called basic if no
row in DM is a subrow of p

Definition 6. A matrix containing all the basic rows
of DM (without repetitions) is called a basic matrix,
and denoted by BM.

The BM obtained of the DM (1) is the following:

BM =
(

0 0 0 1
1 0 0 0

)
(4)

Only rows 7 and 8 of DM (1) are basic, and then
BM (4) is composed only by these rows.

Remark 5. The typical testor set of a TM can be
obtained by using DM or BM. A theorem showed in
(Ref. 23) proves that the set of all typical testors gen-
erated from the use of DM or BM is the same. And
it is shown as follows:

Let τ(DM) be the set of all typical testors of a
training matrix TM that uses its belonging dissim-
ilarity matrix DM. And let τ(BM) be the set of all

typical testors of the same the training matrix TM
that uses its corresponding basic matric BM.

Theorem 1. τ(DM) = τ(BM)
Commonly, algorithms used for computing typ-

ical testors make use of BM instead of DM, due to
the substantial reduction of rows (see remark 4)

Now, the characterization of a typical testor
working with the basic matrix is presented.

Definition 7. Columns j1, j2, · · · , jd of an arbitrary
matrix A = a[i, j]; i = 1, · · · ,s, j = 1, · · · ,n form a
covering if there is not row p, p = 1, · · · ,s of the
matrix A such that ap, jq = 0, for q = 1, · · · ,d

Definition 7 means that a subset of columns of a
matrix form a covering, if in this subset of columns,
no row has only zeros.

Let matrix Z be created from a subset of columns
of the basic matrix BM, generated from TM.

Theorem 2. (Ref. 23) If the columns j1, · · · , jd of
the matrix Z form a covering of BM, then the set
T = {x j1 , · · · ,x jd} is a testor of TM.

Proof. As the columns j1, · · · , jd form a covering
of BM, by definition 7, any row of the matrix Z con-
tains only zeros. Then, every row of Z has at least a
1. By definitions 3 and 6, and remark 2 all the ob-
jects compared are not similar. Therefore, no object
of TM described by the feature set T = {x j1 , · · · ,x jd}
is confused. Then, by definition 1, T is a testor.

Theorem 2 means that a testor is a subset of fea-
tures T = {xi1 , · · · ,xis} of TM for which a whole row
of zeros does not appear in the remaining submatrix
of BM, after eliminating all the columns correspond-
ing to the features in R\T .

Definition 8. Two elements a[i1, j1] and a[i2, j2]
belonging to the basic matrix BM are called com-
patible elements, if:

(i) a[i1, j1] = a[i2, j2] =1, for i1 6= i2 and j1 6= j2,
(ii) a[i1, j2] = a[i2, j1] = 0.

Definition 9. Elements a[i1, j1],a[i2, j2], · · · ,a[id , jd]
are called a sequence of compatible elements (SCE),
if:

(i) for d = 1, a[i1, j1] = 1,

A Fast Implementation for Typical Testor Property Identification

(ii) for d > 1, each pair of elements is a pair of
compatible elements.

Definition 9 means that the matrix Z formed by
the rows i1, · · · , id and columns j1, · · · , jd comprises
only one unit in each row and each column.

Definition 10. The number of compatible elements
d of a SCE is called a rank of this SCE and it is de-
noted by SCEd

Example 2. The matrix Z formed by the rows 1 and
2, and columns 1 and 4 belonging to BM (4), which
form a SCE2 is the following:

Z =
(

0 1
1 0

)
(5)

Theorem 3. (Ref. 23) If the set T T = {x j1 , · · · ,x jd}
is a testor of TS (generated by columns j1, · · · , jd of
matrix Z, which form a covering of BM), and rows
i1, · · · , id of Z, whose elements a[i1, j1], · · · ,a[id , jd]
form a SCEd , then the set T T = {x j1 , · · · ,x jd} is a
typical testor of TS.

Proof. As the elements a[i1, j1], · · · ,a[id , jd] form a
SCEd , by definition 10, SCEd contains d compatible
elements. Then, each row is, s = 1, · · · ,d of matrix
Z, comprises a single column with only one unit, and
the remaining columns contains zeros. This means
that, if an arbitrary column jp, p = 1, · · · ,d of ma-
trix Z is removed, then a row whose columns con-
tains only zeros is generated. But, by definition
7, columns j1, · · · , jp−1, jp+1, · · · , jd do not form a
covering of BM. Then, TT no longer meets the own-
ership of testor. Therefore, the testor TT cannot be
reduced, and by definition 2, TT is a typical testor.

Theorem 3 means that TT is a typical testor if
there is no proper subset of TT that meets the testor
condition.

Columns j1, j3, j4 of BM (4) form a covering of
this matrix, and then, the feature set T = {x1,x3,x4}
is a testor of TM of patients. However, T is not a
typical testor, because it cannot be formed in DM a
SCEd , with d = 2. But columns j1, j4 form a cov-
ering of DM, and there are elements a[1,4],a[2,1]
which form a SCEd , with d = 2. Therefore, the fea-
ture set T = {x1,x4} is a typical testor of TM of pa-
tients.

3. Algorithms for computing typical testors

In general, finding all typical testors of a training
matrix is the equivalent of conducting an exhaus-
tive search of all feature subsets. As the number
of rows, columns or classes increases, the runtime
required by this procedure increases too until it be-
comes impossible to compute. Clearly, this is a very
inefficient procedure for cases in which the number
of features is not too large (Ref. 25,26).

Subsequently, several algorithms to generate
the typical testor set have been proposed (Ref.
24,27,28,8,29,19,20). All of these algorithms can be clas-
sified into groups: internal-type and external-type
algorithms.

Internal-type algorithms are based in the combi-
natorial construction of sequence of compatible ele-
ments (SCE) in Basic Matrix, subsequently to verify
if the corresponding columns of previous combina-
tion satisfies covering property. Or these same steps
in reverse order. Some examples of these algorithms
are: CC (Ref. 28) and CT (Ref. 27).

These algorithms have the disadvantage of gen-
erating many repetitions of feature combinations.

External-type algorithms directly construct fea-
ture combinations to analyze from an empty sub-
set of features. New attributes are then added to
the same combination in order to verify if: a) they
form a SCEd , and b) the columns satisfies the cover-
ing property. Whereas internal-type algorithms start
with the entire set of features, and generates several
subsets as a result of removing some features subse-
quently, to verify the properties listed above.

Besides, external-type algorithms do not gen-
erate all possible feature combinations as the
exhaustive-search algorithms. Instead, these algo-
rithms employ the idea of jumping over possible
feature combinations using different properties of
testors because these feature combinations cannot be
typical testors. Examples of this kind of algorithms
include the following: BT and TB (Ref. 24), LEX
(Ref. 29), Asaithambi (Ref. 8), CT EXT (Ref. 19)
and BR (Ref. 20).

In both kind of algorithms, the calculation of all
typical testors takes exponential time (Ref. 22).

In addition with above facts about external al-
gorithms, LEX, CT EXT and BR incorporate into

G. Sanchez-Diaz, et. al.

the feature set under construction only those features
that allow the construction of sequence of compati-
ble elements (SCE) in Basic Matrix (LEX and BR),
to verify subsequently if the columns of this com-
bination satisfy the covering property. On the other
hand, they incorporate only those features that can
satisfy the covering property (CT EXT), to verify
subsequently if a sequence of compatible elements
(SCE) exists in the combination constructed.

As alternative approaches, embedded systems
based on a FPGA architecture were developed (Ref.
13,14). These architectures are able to evaluate if
a feature combination fulfills the testor or typical
testor property in a single clock cycle, using an ex-
haustive algorithm, or the external-type algorithm
BT. In each step, this architecture needs the same
time to process a matrix of N columns, indepen-
dently of the number of rows.

The fast implementation of CT EXT simplifies
the search and construction of a feature combination
which satisfies the typical testor property.

4. Definitions and propositions of fast
implementation of CT EXT algorithm

The bases of the fast implementation of the CT EXT
algorithm are presented below.

Follow the notation used in (Ref. 20), let V =
(a1,a2, · · · ,au) be a binary u-tuple of elements, ai ∈
{0,1}, i = 1, · · · ,u. The column corresponding to a
feature xi ∈ BM is a binary u-tuple, denoted by Vxi ,
whose cardinality is the number of rows in BM.

The logical operations on binary tuples are de-
fined as follows:

(a1,a2, · · · ,au)∨ (b1,b2, · · · ,bu) =

(a1∨b1,a2∨b2, · · · ,au∨bu) (6)

¬(a1,a2, · · · ,au) = (¬a1,¬a2, · · · ,¬au) (7)

⊕
(a1,a2, · · · ,au) = (a1∨a2∨, · · · ,∨au) (8)

(1, · · · ,1) and (0, · · · ,0) represent binary tuples
in which all elements are one or zero, respectively.

The notation L = [xi1 , · · · ,xis], xis ∈ R is used to
represent an ordered list of features. A list L that
does not contain features is denoted as [] (empty
list).

We call the length of a list L, denoted as len(L),
to the number of features in the list. All basic op-
erations of the set theory (difference, intersection,
subset or sublist) can be defined on ordered lists of
features in a similar way.

We denote the concatenation between ordered
lists of features with the + symbol.

Definition 11. Let L = [xi1 , · · · ,xis] be a feature list.
We call accumulative mask of L, denoted as amL, to
the binary tuple in which the ith element is 1 if the
ith row in BM has at least a 1 in the columns corre-
sponding to the features of L, and it is 0 otherwise.

Definition 12. Let L = [xi1 , · · · ,xis] be a feature list.
We call contribution mask of L in feature xiq ∈ L, de-
noted as cmL,xiq

, to the binary tuple in which the ith

element is 1 if the ith row in BM has only a 1 in the
column corresponding to the feature xiq , and none
in the columns belonging to the remaining features,
and it is 0, otherwise.

Notice that the cardinal of both amL and cmL,xip

is the number of rows in BM.

Example 3. Let L1 = [x2], L2 = [x1,x4], L3 =
[x1,x4,x5] and L4 = [x1,x2,x3,x4]. The accumulative
and contribution masks in the features x2,x4,x5,x4
are the following: amL1 = (0,0,1,1), amL2 =
(1,0,1,0), amL3 = (1,1,1,0), amL4 = (1,1,1,1);
cmL1,x2 = (0,0,1,1), cmL2,x4 = (0,0,1,0), cmL3,x5 =
(0,1,0,0), cmL4,x4 = (0,0,0,0).

BM =

x1 x2 x3 x4 x5
1 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 0

 (9)

Proposition 4. Let L = [xi1 , · · · ,xis] be a feature list
and xiq ∈ R, xiq 6∈ L. The accumulative mask of the
list L+[xiq] is calculated as follows:

amL+[xiq] = amL∨Vxiq
(10)

A Fast Implementation for Typical Testor Property Identification

where Vxiq
denotes the column corresponding to fea-

ture xiq ∈ BM

Proof. We have two cases. a) the binary u-tuple
amL in the ith element has a 0, and Vxiq

in its same ith

element has a 1. To perform the operation amL∨Vxiq
,

this u-tuple in its ith element will now have a 1. b)
both the binary u-tuple amL and Vxiq

in its ith ele-
ment has a 0. In this case, to perform the operation
amL ∨Vxiq

, this u-tuple in its ith element maintains
the value of 0.

For the case in which u-tuple amL in the ith el-
ement has a 1, the value of Vxiq

in its ith element is
irrelevant, because when performing the operation
amL ∨Vxiq

, this u-tuple in its ith element retains the
value of 1.

Thus, the u-tuple amL+[xiq] meets definition 11.

Table 3. Value table for contribution mask

B1 B2 ¬B1 ¬B1∧B2

1 1 0 0
1 0 0 0
0 1 1 1
0 0 1 0

Proposition 5. Let L = [xi1 , · · · ,xis] be a feature list
and xiq ∈ R, xiq 6∈ L. The contribution mask of the list
L+[xiq] in the feature xiq is calculated as follows:

cmL+[xiq],xiq
= ¬amL∧Vxiq

(11)

Proof. If the ith element of tuples amL and Vxiq
are

0 and 1, respectively, this will be the only case in
which the operation ¬amL∧Vxiq

sets the ith element
of the binary tuple amL as 1, according to table 3.
For the remaining cases, to perform the operation
¬amL∧Vxiq

, this u-tuple in its ith element will has a
0.

Thus, the u-tuple cmL+[xiq],xiq
meets definition 12.

Notice that propositions 4 and 5 allow the updat-
ing of accumulative and contribution masks, respec-
tively, when a new feature is added to a feature list.

Proposition 6. A feature list L = [xi1 , · · · ,xis] is a
testor if and only if amL = (1, · · · ,1)

Proof.
(⇒) If L = [xi1 , · · · ,xis] is a testor, thus by defini-

tion 1, the feature set {xi1 , · · · ,xis} does not confuse
any two descriptions of objects belonging to differ-
ent classes of training matrix. In terms of a DM de-
rived of their belonging TM, by remark 3, when two
objects are not similar in terms of a feature, a value
of 1 is assigned in the corresponding row and col-
umn of DM. This means that for a testor, there are
not row has only zeros in columns i1, · · · , is of DM.

By definition 11, the accumulative mask of L ap-
plied over DM is amL = (1, · · · ,1).

(⇐) As each element of the u-tuple amL has a
1, by definition 11, each row of BM has at least a
1 in the columns corresponding to the features of L.
This means that columns i1, · · · , is form a covering
of BM.

Thus, by theorem 2, the set of features xi1 , · · · ,xis
belonging to L, is a testor.

Definition 13. Let L = [xi1 , · · · ,xis] be a feature list
and xiq ∈ L. A row p in BM is a typical row of xiq as
regards of L, if it has a 1 in the column correspond-
ing to xiq and zero in all the columns corresponding
to the features in L\[xiq].

Proposition 7. A feature list L = [xi1 , · · · ,xis] is a
typical testor if and only if L is a testor and for ev-
ery feature xiq ∈ L there is at least a typical row of
xiq with respect to L.

Proof.
(⇒) If L = [xi1 , · · · ,xis] is a typical testor thus, by

definition 2, L is a testor which can not be removed
any attribute xiq , q = 1, ...,s.

Once again, in terms of a DM derived of their be-
longing TM, by remark 3, when two objects are not
similar in terms of a feature, a value of 1 is assigned
in the corresponding row and column of DM.

This means that for a typical testor, for each
xiq ∈ L, exists at least one row in DM such that it
has a 1 in the column corresponding to xiq and zero
in all the columns belonging to remaining features
of L.

By definition 13, for each xiq ∈ L there is at least

G. Sanchez-Diaz, et. al.

a typical row of xiq with respect to L, applied over
DM.

(⇐) As every feature xiq ∈ L has at least a typi-
cal row of xiq with respect to L, then a sequence of
compatible elements SCEd , can be constructed over
BM with d = len(L).

Since L is a testor, and there is a SCEd , d =
len(L), thus, by theorem 3, the set of features
xi1 , · · · ,xis belonging to L, is a typical testor.

The CT-EXT algorithm (Ref. 19) has the follow-
ing theoretical bases.

Definition 14. Let L = [xi1 , · · · ,xis] be a feature list.
We say that row p in BM, is a zero-row of L, denoted
by p0, if it has a 0 in all the columns corresponding
to the features of L.

Definition 15. Let L = [xi1 , · · · ,xis] be a feature list
and xiq ∈ R, xiq 6∈ L. We denote the number of zero
rows of L by ∑L p0. We say that xiq contributes with
L if and only if ∑L+[xiq] p0 < ∑L p0

Proposition 8. Let T ⊆ R and x j ∈ R, x j 6∈ T . If x j
does not contribute to T, then T ∪{x j} cannot gen-
erate any typical testor.

Proposition 9. Let T ⊆ R, Z ⊆ R, Z 6= /0. If T is
a testor, then T ∪Z is a testor as well, but is not a
typical testor.

Now, for the fast implementation of the CT EXT
algorithm we have the follow propositions and theo-
rems.

Let L = [xi1 , · · · ,xis] be a feature list.

Proposition 10. The feature xiq ∈ R, xiq 6∈ L con-
tributes with L if and only if⊕

cmL+[xiq],xiq
6= 0 (12)

Proof. By definition 15, a feature xiq contributes
with L, if the number of zero rows decreases con-
sidering L + [xiq] instead of only L. By proposition
5, equation (12) has a value of 1, if and only if, at
least a 1 appears in contribution mask of L + [xiq].
And this occurs only if the number of rows of zeros
decreases when the contribution mask of this list is
calculated. Therefore, feature xiq contributes with L,

if and only if equation (12) takes a non-zero value.

Propositions 8 and 9, are re-writen in terms of
Propositions 10, 6 and 7, in the following way.

Theorem 11. Let L = [xi1 , · · · ,xis] be a feature list
and xiq ∈ R, xiq 6∈ L. If xiq does not contribute with L,
then L+[xiq] cannot generate any typical testor.

Proof. As xiq does not contribute with L, this
means that:

a) there is not typical row of xiq with respect to
L+[xiq]. Thus, L+[xiq] does not satisfy propo-
sition 7;

b) it exists the ith element in the accumulative mask
of L+[xiq] which has a 0. And then, the ith row
in BM has only zeros in the columns belong-
ing to the features of L +[xiq]. Thus, L +[xiq]
does not satisfy propositions 6 and 7.

Therefore, L + [xiq] cannot generate any typical
testor.

Theorem 12. Let L = [xi1 , · · · ,xis] and W ⊆ R,
W 6= /0 be a feature lists. If L is a testor, then L +W
is a testor too, but it is not a typical testor.

Proof. As L is a testor, then amL = (1, · · · ,1).
Then, no feature of W contributes with L. Thus, by
Theorem 11, L+W is not a typical testor.

And, by proposition 4, the accumulative mask of
L +W is the same as that of L. Then, L +W is a
testor too.

Example 4. In this example, we present a compari-
son between the procedures of three algorithms that
finds typical testors, to determine whether a subset
of features is a typical-testor: a) BT (Ref. 24,30),
b) CT EXT (Ref. 19), and c) the proposed fast im-
plementation (Ref. 21). The first one finds typical
testors in a defined search space. The second, incor-
porates the contribution of an feature in a previous
combination of attributes, to verify if it fulfills the
typical-testor property. Finally, the last uses the ac-
cumulative binary tuple, to verify the same property
in a feature combination.

A Fast Implementation for Typical Testor Property Identification

This example takes the BM (9), and two com-
binations of features: {x1,x2,x3} and {x1,x4,x5},
checking if any of them satisfy the property of be-
ing typical-testor.

The space search with five features of algorithm
BT is as follows:

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 0
0 0 1 0 0 1 0 0 1 1
0 0 1 0 1 1 0 1 0 0
0 0 1 1 0 1 0 1 0 1
0 0 1 1 1 1 0 1 1 0
0 1 0 0 0 1 0 1 1 1
0 1 0 0 1 1 1 0 0 0
0 1 0 1 0 1 1 0 0 1
0 1 0 1 1 1 1 0 1 0
0 1 1 0 0 1 1 0 1 1
0 1 1 0 1 1 1 1 0 0
0 1 1 1 0 1 1 1 0 1
0 1 1 1 1 1 1 1 1 0

1 1 1 1 1

(13)

It starts at [0,0,0,0,1] which represents
[x5], and ends at [1,1,1,1,1] which represents
[x1,x2,x3,x4,x5].

Algorithm BT

Starting at [1,0,0,0,0] ([x1]) (using the proper-
ties defined in (Ref. 30)) until verifying whether
both combinations [x1,x2,x3] and [x1,x4,x5] meet the
property to be typical-testor, the algorithm BT con-
tinues the following procedure.

Check whether the combination of attributes
[1,0,0,0,0] ([x1]) is a testor, verifying if the column
1 form a covering of BM (see Theorem 2).

If this feature combination does not comply with
Theorem 2, then it is not a testor, and a jump in space
search is made. Now, the feature combination to an-
alyze is [1,0,0,0,1] ([x1,x5]).

After analyzing the above combination of fea-
tures, also checked [1,0,0,1,0] ([x1,x4]).

Following this procedure, it leads us to analyze
the following combination of attributes: [1,0,0,1,1]
([x1,x4,x5]), and to check whether columns 1, 4 and
5 form a covering of MB. For this particular case,
this combination does not comply with Theorem 2,
therefore, it is not a testor.

After analyzing the above combination, the BT
algorithm considers the following combinations of
attributes in the search space: [1,0,1,0,0] ([x1,x3]),
[1,0,1,0,1] ([x1,x3,x5]), [1,0,1,1,0] ([x1,x3,x4]),
[1,1,0,0,0] ([x1,x2]), [1,1,0,0,1] ([x1,x2,x5]),
[1,1,0,1,0] ([x1,x2,x4]), [1,1,0,1,1] ([x1,x2,x4,x5]),
reaching the following combination of features:
[1,1,1,0,0] ([x1,x2,x3]), and checking whether
columns 1, 2 and 3 form a covering of MB. This
combination of features complies with Theorem 2
and then, verifies if rows of BM forms a sequence
of compatible elements (see Theorem 3). As this
combination of features complies with Theorem 3,
then it is a typical-testor.

The algorithm BT continues until reach-
ing and verifying the combination [1,1,1,1,1]
([x1,x2,x3,x4,x5]), finishing at this point.

Algorithm CT EXT
Starting at [x1], the feature list L = [x1] is gener-

ated. Then, the number of zero rows in BM, con-
sidering L = [x1], is counted; for this case, it results
∑L p0 = 3 (see definition 14).

Following the order of search for the next fea-
ture that will contribute with L, the algorithm now
considers L + [x2]. Likewise, it counts the number
of zero rows with L + [x2], resulting the following:
∑L+[x2] p0 = 1. As ∑L+[x2] p0 < ∑L p0 feature x2 con-
tributes with L, then it is updated L = [x1,x2] (see
definition 15).

As ∑L p0 6= 0, columns 1 and 2 do not form
a covering of BM (see Theorem 2), so the algo-
rithm continues the search of next feature that will
contribute with L, now considering the feature list
as L + [x3]. Then, it counts the number of zero
rows with L + [x3], resulting: ∑L+[x3] p0 = 0. As
∑L+[x3] p0 < ∑L p0 feature x3 contributes with L,
then it is updated: L = [x1,x2,x3]. As ∑L p0 = 0
columns 1,2 and 3 form a covering of BM, thus
{x1,x2,x3} is a testor of BM. Since the rows of BM

G. Sanchez-Diaz, et. al.

considering this combination of features, form a se-
quence of compatible elements, then it is a typical
testor.

Following this procedure, it lead us to search the
next features that will contribute with L, to generate
the lists: L = [x1,x2,x5], L = [x1,x3], L = [x1,x3,x4],
and L = [x1,x3,x5], and to reach the list: L = [x1],
considering x4 as the next feature to analyze. Like-
wise, it counts the number of zero rows with L+[x4],
resulting: ∑L+[x4] p0 = 2. As ∑L+[x4] p0 < ∑L p0 fea-
ture x4 contributes with L, and it is updated L =
[x1,x4].

As ∑L p0 6= 0 then columns 1 and 4 do not form
a covering of BM; so, the algorithm continues the
search of the next feature that will contribute with
L, now considering the feature list as L+[x5]. Then,
it counts the number of zero rows with L + [x5],
resulting: ∑L+[x5] p0 = 1. As ∑L+[x5] p0 < ∑L p0
feature x5 contributes with L, which is updated as
L = [x1,x4,x5]. But ∑L p0 6= 0, so columns 1, 4 and
5 do not form a covering of BM; however, there are
not more features that may contribute to the list L.
In this case, L is not a testor.

The algorithm CT EXT continues until reach
and verifies the list L = [x1,x5], finishing on this
point.

Fast implementation proposed
Like the CT EXT algorithm, the fast implemen-

tation of CT EXT starts at [x1], so the feature list
L = [x1]. Then, the accumulative mask of L is gener-
ated as follows (see definition 11): amL = (1,0,0,0).
But amL 6= (1,1,1,1), therefore L is not a testor (see
Proposition 6).

Remark 6. Illustratively in this example, the ac-
cumulative mask of L is shown as a binary tuple.
However, it was implemented bitwise in the algo-
rithm by means of 32-bit unsigned integers. For ex-
ample, in the case of amL = (1,0,0,0), the imple-
mentation in hexadecimal format is amL = 8000h,
which is equivalent to decimal format amL = 231 =
2147483648. This is because the operations OR,
AND and NEG are performed bitwise among un-
signed integers variables.

Following the order of search for the next feature
that will contribute with L, the algorithm now con-

siderates L + [x2]. Then, the contribution mask of
L +[x2] is generated as follows: (see Proposition 5)
cmL+[x2],x2 = (0,0,1,1).

As cmL+[x2],x2 6= 0, feature x2 contributes with L,
and the accumulative mask of L +[x2] is calculated
as follows: amL+[x2] = (1,0,1,1) (see Proposition
4). The feature list L is updated L = [x1,x2]. As
amL 6= (1,1,1,1) then L is not a testor.

The procedure of searching the next feature that
will contribute with L is continues; for this case, this
feature is x3. Then, the contribution mask of L+[x3]
is: cmL+[x3],x3 = (0,1,0,0).

As cmL+[x3],x3 6= 0, feature x3 contributes with L,
and the accumulative mask of L+[x3] is: amL+[x3] =
(1,1,1,1). Feature list L is updated: L = [x1,x2,x3].
Since amL = (1,1,1,1) then L is a testor. After that,
it is verified whether for each feature x1,x2,x3 ∈ L,
there is at least one typical row in BM (see propo-
sition 7). For this case, L = [x1,x2,x3] is a typical
testor.

Just like the algorithm CT EXT, the fast imple-
mentation leads us to search the next features that
will contribute with L, producing the lists: L =
[x1,x2,x5], L = [x1,x3], L = [x1,x3,x4], and L =
[x1,x3,x5], reaching list L = [x1], and considering
x4 as the next feature to analyze. The accumu-
lative mask of L is generated amL = (1,0,0,0).
Then, the contribution mask of L +[x4] is generated
cmL+[x4],x4 = (0,0,1,0).

The procedure of seraching the next feature that
will contribute with L is continues; for this case, this
feature is x5. Then, the contribution mask of L+[x5]
is: cmL+[x5],x5 = (0,1,0,0).

As cmL+[x5],x5 6= 0, feature x5 contributes with L,
and the accumulative mask of L+[x5] is: amL+[x5] =
(1,1,1,0). Feature list L is updated (L = [x1,x4,x5]).
Since amL 6= (1,1,1,1) then L is not a testor.

However, there are not more features that may
contribute to the list L. In this case, L is not a testor.
The fast implementation continues until reaching
and verifying list L = [x1,x5], finishing at this point.

The above example shows the procedure capable
to determine whether a subset of features is or not
a testor. The algorithms that do not use accumula-
tive tuples (BT and CT EXT), always verify whether

A Fast Implementation for Typical Testor Property Identification

the columns associated with the subset of features
form a covering on the basic matrix. Unlike them,
the fast implementation proposed performs a bit-
level involve only bit-level operations (AND. OR,
NEG), whereas the algorithms described before ver-
ify whether a subset of features is a testor by cross-
ing the rows of MB.

5. The fast implementation of the CT-EXT
algorithm

The algorithm CT EXT performs a search of fea-
tures subsets on the Basic Matrix obtained from the
Training Matrix. It generates feature combinations
that contribute to decreasing the number of objects
belonging to different classes that are confused.

In general, The algorithm CT EXT works as fol-
lows. First, it reorders the rows and columns of
the Basic Matrix, because CT EXT is an algorithm
which uses the same lexicographic total order as
LEX (Ref. 29) and BR (Ref. 20). The CT EXT algo-
rithm incrementally, generates feature combinations
by reducing step by step the number of objects be-
longing to different classes that are confused, until a
combination that satisfy testor property is obtained.
Subsequently, CT EXT verifies whether the gener-
ated combinations are typical testor. As well as LEX
and BR, CT EXT rules out those feature combina-
tions that can generate a testor which is not a typical
testor, preserving only those candidates capable of
generating a typical testor. If a testor is generated,
all its consecutive supersets (in the lexicographic or-
der previously introduced into the power set of fea-
tures) are not analyzed. They are skipped because
these feature combinations are testors, but not typi-
cal testors.

Now, the fast implementation of the algorithm
CT EXT -based on addition and comparison opera-
tions used in CT EXT- is replaced by simple logical
Boolean operations (OR, AND and NOT), to verify
if a feature x j contributes to a list L (see Definition
15 and Proposition 10, of which Theorems 11 and
12 are derivated) then it is verified if the list L sat-
isfy the testor property.

Thus, the number of operations carried out by
CT EXT is significantly reduced in the fast imple-

mentation proposed. Therefore, the run-time of the
algorihm is improved significantly.
facilitates Description of the fast implementation
of algorithm CT EXT

Input: BM (Basic Matrix)

Output: TT (set of all typical testors)

• Step 1: Order rows and columns in BM.- The
row of BM with the minimum number of 1’s, is
set as the first row of BM. The columns of BM
are sorted from left to right, each having 1 at the
first row and each subsequent column having 0 at
the first row of BM. The order of the columns into
each group (with the same value of 1 or with the
same value of 0) is irrelevant.

• Step 2: Initialize.- Let T T = /0 be an initially
empty set, T = [] be an initially empty list, which
is the current feature combination, and j = 1 be
the index of the first feature of BM to be analyzed.

• Step 3: Add a new feature of first row of BM.-
If x j has 1 at the first row of BM, then concatened
[x j] to (T = T +[x j]) and go to step 5. Otherwise,
the algorithm finishes here (no new feature com-
bination will generate a typical testor, because all
these feature combinations have a zero row).

• Step 4: Evaluate the new feature.- Concatenate
the list [x j] that contains feature x j to the cur-
rent list T (T = T +[x j]), and verify whether this
new feature contributes to the current combination
(Proposition 10). If x j does not contributes with T,
then go to step 6.

• Step 5: Verify testor property.- Verify whether
list T is a testor (Proposition 6). If so, verify
whether if T is a typical testor (Proposition 7). If
T is a typical testor, then T is added to the set TT
(T T = T T ∪{T}). Otherwise, go to step 7.

• Step 6: Remove the last feature processed.- Re-
move the list containing the last feature processed
x j from T (T = T\[x j]). If x j does not contribute
to T, then no combination containing T is verified
(Theorem 11); in such a case, go to step 7. Oth-
erwise, if list T was a testor, then no consecutive
concatened list of T is procesed (Theorem 12). If
T is empty, then j = j +1, and go to step 3.

G. Sanchez-Diaz, et. al.

• Step 7: Select a new feature to analyze.- Select
the next feature that was not concatened in the cur-
rent combination. If j < n then j = j + 1, and go
to step 4. Otherwise, go to step 6.

6. Experiments

In order to evaluate the performance of the fast im-
plementation of CT EXT algorithm using the binary
accumulative structure, a comparison with four al-
gorithms reported in the literature (BT, CT, LEX and
CT EXT) was made. The first algorithm selected is
a classical external type algorithm, which uses the
last reported algorithm that incorporates several im-
provements in performance (Ref. 30). The second
algorithm is a classical internal type algorithm (Ref.
31). The third algorithm, LEX, is reported with a
very well runtime among classical algorithms (Ref.
29). Finally the algorithm CT EXT, which is one of
the fastest algorithms, is reported too (Ref. 19).

Please notice that comparisons with BR algo-
rithm (Ref. 20) are not shown. This is because we
were not endowed with the source code of the BR
implementation as we kindly requested to the au-
thors, but only with an application which is unable
to read previously-defined DM and BM; instead, it
works with randomly-generated ones.

We have employed several BM with different di-
mensions to compare the runtimes of the algorithms,
Two of them were taken from real medical diagno-
sis problems. In table 4, the experimental results
obtained with the algorithms are shown.

In the table, the size of the basic matrix is de-
noted as rows×columns; AL denotes the algorithm;
LX denotes the algorithm LEX; CX represents the
algorithm CT EXT; FI denotes the fast implemen-
tation of the CT EXT; and finally, TT denotes the
number of typical testors found by each algorithm.
The experiments were conducted in a Pentium IV,
with 2Ghz, and 1 Mbyte of RAM. The runtime are
measured in seconds.

Table 4. Run time execution in seconds of several algorithms

AL 10x34 20x38 209x32 209x47 269x42
BT 14 105 25 > 43200 > 43200
CT 0 0 39 8026 38691
LX 0 0 14 1799 2530
CX 0 0 3 483 928
FI 0 0 0 72 120
TT 935 2,436 6,405 184,920 302,066

In addition, we evaluate the performance of the
algorithm CT EXT and the fast implementation pro-
posed. We handled four real databases, obtained
from UCI Machine Learning Repository (Ref. 32).
These databases are the following: Zoo database;
Mushroom database; Chess (King-Rook vs. King-
Pawn), denoted by Kr vs Kp; and Molecular Biol-
ogy (Promoter Gene Sequences), denoted by Pro-
moters. In table 5, experimental results obtained
from these databases are shown.

In the case of Promoters database, several basic
sub-matrices were calculated from the original ba-
sic matrix because of its large size: 2761 rows x
57 columns. The third and fourth columns contain,
respectively, the runtime of algorithm CT EXT and
the runtime of the fast implementation. For table
5, the notation used is the following: Mrows×columns
which denotes the data base in use and its dimen-
sions; BM-S denotes the size (rows x columns) of
the basic matrix obtained from its belonging training
matrix; CX-T and FI-T represent, respectively, the
runtime of algorithm CT EXT and the fast imple-
mentation; finally, TT denotes the number of typical
testors found.

Table 5. Execution time in seconds of the algorithm CT EXT
and their fast implementation, handling several real databases

DB-TM BM-S CX-T FI-T TT
Zoo101×17 14x17 0 0 34
Kr vs Kp3196×35 120x35 295 58 8464
Mushroom8124×22 30x22 0 0 292
Promoters106×57 100x57 16 2 77,467
Promoters106×57 250x57 167 13 257,189
Promoters106×57 500x57 940 47 726,700
Promoters106×57 1000x57 14,979 199 1,490,107

In table 5, we can observe that the fast imple-
mentation proposed achieves important reductions
in runtime: among 80% and 98% regarding the al-

A Fast Implementation for Typical Testor Property Identification

gorithm CT EXT.

In order to have a clear idea about the behavior
of the algorithm CT EXT and its fast implementa-
tion, we have shown: a) the runtimes (in seconds)
using a 57-column Basic Matrix, varying the num-
ber of rows from 100 to 1000, in Figure 1, and b)
the runtime using a 50-row Basic Matrix, varying
the number of columns from 25 to 100, in Figure 2.

Fig. 1. Runtime in seconds of CT EXT algorithm and the
fast implementation, as the number of rows increases

Fig. 2. Runtime in seconds of CT EXT algorithm and the
fast implementation, as the number of features increases

7. Conclusions

In this paper, a fast implementation of the algorithm
CT EXT that facilitates the identification of all typ-
ical testors from a training matrix was suggested.

The fast implementation -developed in this work
over the algorithm CT EXT algorithm- is feasible to
be adapted to other algorithms which calculated the
typical-testor set from a training matrix.

The main contribution of the fast implementation
is to keep the information of each new feature to be
processed, which allows to quickly verify whether a
feature combination fulfills the testor property, this
is due to the fact that the algorithm proposed uses
simple logical operations, implemented bitwise.

Based on experimental results, we can conclude
that the fast implementation proposed improves the
performance of the CT EXT algorithm.

The fast implementation proposed, does not con-
template the inclusion of noise in BM, because a
sensitivity analysis (as is presented in (Ref. 33))
must be performed, which is beyond the scope of
the paper.

Finally, our work will continue in adapting the
fast implementation to a Field Programmable Gate
Array (FPGA) to perform the calculation of all the
typical testors.

References

1. J. Martinez-Trinidad and A. Guzman-Arenas, “The
Logical Combinatorial approach for pattern recogni-
tion. An overview through selected Works,” Pattern
Recognition, 34, 4, 741–751 (2001).

2. J. Ruiz-Shulcloper and M. Abidi, “Logical Combi-
natorial Pattern Recognition: A Review”, Recent Re-
search Developments in Pattern Recognition, S. Pan-
dalai, Ed., Transword Research Networks, Kerala, In-
dia, 133-176 (2002).

3. M. Lazo-Cortes and J. Ruiz-Shulcloper and E. Alba-
Cabrera, “An Overview of the evolution of the con-
cept of testor”, Pattern Recognition, 34, 4, 753–762
(2001).

4. A. Dmitriev and I. Zhuravlev and F. Krendeliev,
“About mathematical principles and phenomena clas-
sification”, Diskretni Analiz, Rusia, 7, 3–15, (1966).

5. V. Valev and Y. Zhuravlev, “Integer-valued problems
of transforming the training tables in k-valued code
in pattern recognition problems”, Pattern Recognition,
24, 4, 283–288 (1991).

guillermo
Sellos

guillermo
Sellos

G. Sanchez-Diaz, et. al.

6. V. Valev and P. Radeva, “On the determining of
non-reducible descriptors for multidimensional pat-
tern recognition problems”, Pattern Recognition and
Image Analysis, 3, 3, 258–265 (1993).

7. V. Valev, “Construction of Boolean classification rules
and their applications in computer vision problems”,
Machine Graphics and Vision, 5, 2, 5–23 (1996).

8. A. Asaithambi and V. Valev, “Construction of all
non-reducible descriptors”, Pattern Recognition, 37,
9, 1817–1823 (2004).

9. V. Valev and B. Sankur, “Generalized non-reducible
descriptors”, Pattern Recognition, 37, 9, 1809–1815
(2004).

10. V. Valev and A. Asaithambi, “On computational com-
plexity of non-reducible descriptors”, Proc. of the
IEEE Int. Conf. on Information Reuse and Integration,
208–211 (2003).

11. G. Sanchez-Diaz and M. Lazo-Cortes and O. Fuentes-
Chavez, “Genetic algorithm for calculating typical
testors of minimal cost”, Proc. of the Iberoamerican
Symposium on Pattern Recognition, SIARP 99, 207–
213 (1999).

12. G. Sanchez-Diaz and M. Lazo-Cortes and J. Garcia-
Fernandez, “Parallel and distributed models for cal-
culating typical testors”, Proc. of the Iberoamerican
workshop on Pattern Recognition, 135–140 (1997).

13. R. Cumplido and J. Carrasco-Ochoa and C. Feregrino,
“On the design and implementation of a high perfor-
mance configurable architecture for testor identifica-
tion”, Proc. XI Iberoamerican Conference on Pattern
Recognition, 665–673 (2006).

14. A. Rojas and R. Cumplido and J. Carrasco-Ochoa
and C. Feregrino and J. Martinez-Trinidad, “FPGA-
based architecture for computing testors”, Proc. XII
Iberoamerican Conference on Pattern Recognition,
188–197 (2007).

15. M. Ortiz-Posadas and M. Martinez-Trinidad and J.,
Ruiz-Shulcloper, “A new approach to diferential diag-
nosis of diseases”, International Journal of Biomedi-
cal Computing, 40, 3, 179–185 (2001).

16. L. De la Vega-Doria and A. Carrasco-Ochoa and J.
Ruiz-Shucloper, “Fuzzy KORA-W algorithm”, Proc.
of the 6th European Conf. on Intelligent Techniques
and Soft Computer, Germany, 1190–1194 (1998).

17. A. Pons-Porrata and R. Gil-Garcia and R. Berlanga-
Llavori, “Using Typical Testors for Feature Selection
in Text Categorization” Proc. XII Iberoamerican Con-
ference on Pattern Recognition, 643–652 (2007).

18. A. Pons-Porrata and J. Ruiz-Shulcloper and R.
Berlanga-Llavori, “A Method for the Automatic Sum-
marization of Topic-Based Clusters of Documents”,
Proc. VIII Iberoamerican Conference on Pattern
Recognition, 596–603 (2003).

19. G. Sanchez-Diaz and M. Lazo-Cortes, “CT EXT:
an external escale algorithm for generated typical

testors”, Proc. XII Iberoamerican Conference on Pat-
tern Recognition, 506–514 (2007).

20. A. Lias-Rodriguez and A. Pons-Porrata, “BR: A new
method for computing all typical testors”, Proc. XIV
Iberoamerican Conference on Pattern Recognition,
443–440 (2009).

21. G. Sanchez-Diaz and I. Piza-Davila and M. Lazo-
Cortes and M. Mora-Gonzalez and J. Salinas-Luna,
“A fast implementation of the CT EXT algorithm for
the testor property identification”, Proc. Mexican In-
ternational Conference on Artificail Intelligence , 92–
103 (2010).

22. J. Ruiz-Shulcloper, “Pattern Recognition with Mixed
and Incomplete Data”, Pattern Recognition and Image
Analysis, 18, 4, 563–576 (2008).

23. J. Ruiz-Shulcloper and A. Guzman-Arenas and J.
Martinez-Trinidad, “Logical combinatorial pattern
recognition approach”, Centro de Investigacion en
Computacion, IPN, Mexico City, Mexico (1999).

24. J. Ruiz Shulcloper and M. Bravo and F. Aguila, “Algo-
rithms BT and TB for calculating all typical tests”, Re-
vista Ciencias Matematicas, Cuba, 6, 2, 11–18 (1982).

25. J. Ruiz Shulcloper and R. Pico, “Mathematical mod-
eling of discriminate anomalies AGE perspective to
phosporic rocks of sedimentary genesis”, Revista
Ciencias Matematicas, Cuba, 13, 2, 159–171 (1992).

26. E. Cheremesina and J. Ruiz Shulcloper, “Method-
ological questions of the application of the mathe-
matical models of pattern recognition to soft formal-
ized knowledge zones”, Revista Ciencias Matemati-
cas, Cuba, 13, 2, 93–108 (1992).

27. A. Bravo, “Algorithm CT for calculating the typical
testors of k-valued matrix”, Revista Ciencias Matem-
aticas, Cuba, 4, 2, 123–144 (1983).

28. L. Aguila-Feroz and J. Ruiz-Shulcloper, “Algorithm
CC for the elaboration of k-valued information on pat-
tern recognition problems”, Revista Ciencias Matem-
aticas, Cuba, 5, 3, 89–101 (1984).

29. Y. Santiesteban Alganza and A. Pons Porrata, “LEX:
A new algorithm for calculating typical testors”,
Revista Ciencias Matematicas, Cuba, 21, 1, 85–95
(2003).

30. G. Sanchez-Diaz and M. Lazo-Cortes, “Modifications
to BT algorithm for improving its run time execution”,
Revista Ciencias Matematicas, Cuba, 20, 2, 129–136
(2002).

31. G. Sanchez-Diaz, “Developing and implementing ef-
ficient algorithms (batch and parallel) for calculat-
ing typical testors of a basic matrix”, Master The-
sis, Autonomous University of Puebla, Puebla, Mexico
(1997).

32. UCI-Machine-Learning-Repository, “Website of the
UCI Machine Learning Repository, University of Cal-
ifornia”, http://archive.ics.uci.edu/ml (2008)

33. J. Carrasco-Ochoa, “Sensitivity Analysis in Logical-

A Fast Implementation for Typical Testor Property Identification

Combinatorial Pattern Recognition”, Revista Com- putacion y Sistemas, Mexico, 6, 1, 62–66 (2002).

