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Abstract 
 
We review the Space Mapping (SM) approach to circuit design 
and discuss modeling of microwave circuits using Artificial 
Neural Networks (ANN).  We show that SM and ANN 
methodologies can be combined into a powerful design 
framework.  SM based neuromodels decrease the cost of 
training, improve generalization ability and reduce the 
complexity of the ANN topology with respect to the classical 
neuromodeling approach.  We present and illustrate a variety of 
possible SM based neuromodels, including SMN, FDSMN and 
FSMN.  We contrast SM based neuromodeling with the classical 
neuromodeling approach as well as with other state-of-the-art 
neuromodeling techniques.  The SM based neuromodeling 
techniques are illustrated by a microstrip line and a microstrip 
right angle bend. 
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Space Mapping Optimization 
(Bandler et al., 1994-) 
 
Aggressive Space Mapping (ASM) has been applied to design 
examples exploiting the EM simulators 
 

Sonnet’s em 
 

Ansoft HFSS 
 
HP HFSS 

 
coarse models exploit coarse grid EM models or circuit-
theoretic/analytical models 
 
coarse models, decomposed into subnetworks, can even consist 
of a mixture of EM based subnetworks and empirical elements 
connected through circuit theory 
 
new ASM algorithms TRASM (Bakr et al., 1998), HASM (Bakr 
et al., 1999) have been proposed 
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Space Mapping Based Artificial Neural Network (ANN) 
Modeling 
(Bandler, Ismail, Rayas-Sánchez and Zhang, 1999) 
 
Artificial Neural Networks can model high-dimensional and 
highly nonlinear problems (White et al., 1992) 
 
ANN models are computationally efficient and can be more 
accurate than empirical models 
 
ANNs are suitable models for microwave circuit optimization 
and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta 
et al., 1996, Burrascano and Mongiardo, 1998, 1999) 
 
ANN modeling of microwave circuits based on Space Mapping 
technology are exploited for the first time (Bandler et al., 1999) 
 
this takes advantage of the vast set of empirical models already 
available 
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Novel Applications of Space Mapping Technology 
(Bandler et al., 1999) 
 
we illustrate several new techniques to generate SM based 
neuromodels 
 
Space Mapped Neuromodeling (SMN) 
 
Frequency-Dependent Space Mapped Neuromodeling (FDSMN) 
 
Frequency Space Mapped Neuromodeling (FSMN) 
 
these techniques 

exploit the vast set of empirical models already available 
decrease the fine model evaluations needed for training 
improve generalization ability 
reduce complexity of the ANN topology 

w.r.t. the classical neuromodeling approach 
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The Aim of Space Mapping 
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Biological Neuron 
(Kartalopoulos, 1996) 
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Basic Model of a Neuron 
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Neural Space Mapping 
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using a three layer perceptron (3LP) 
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Three Layer Perceptron (3LP) 
 

 T
fnfff xxx 21x  are n input physical parameters 

 
 T

nvvv 21v  are input signals after scaling 
 

 T
hzzz 21z  are signals from the h hidden neurons 

 
 T

nyyy 21y  are n output signals before scaling 
 

 T
cnccc xxx 21x  are the neuromapping outputs 

 
to control the relative importance of the input parameters and 
define a suitable dynamic range, scaling can be used 
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Three Layer Perceptron (continued) 
 
the hidden layer signals are calculated by 
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hb  is the vector of bias elements for the hidden neurons 
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the output layer signals are given by 
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Three Layer Perceptron (continued) 
 
to provide a scaling for the output signals equivalent to the one 
used in the input 
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all internal parameters of the ANN can be grouped as 
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the number of optimization variables for a three-layer perceptron 
with n inputs, n outputs and h hidden neurons is 
 

n(2h+1)+h 
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Space Mapped Neuromodeling (SMN) Concept 
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Three-dimensional Star Distribution for the Learning Base 
Points 
(Bandler et al., 1989) 
 
to keep a reduced set of learning data samples, we consider an n-
dimensional star distribution for the base learning points 
 
the number of learning base points for a microwave circuit with 
n design parameters is Bp = 2n + 1 
 

1fx

2fx

3fx
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Frequency-Dependent Space Mapped Neuromodeling 
(FDSMN) Concept 
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Frequency Space Mapped Neuromodeling (FSMN) Concept 
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Training the ANN 
 
the neuromapping can be found by solving the optimization 
problem 
 

TT
l

TT ][min 21 eee
w

  

 
w contains the internal parameters of the ANN (weights, bias, 
etc.) selected as optimization variables 
 
l is the total number of learning samples 
 
ek is the error vector given by 
 
for SMN 
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Training the ANN (continued) 
 
for FSMN 
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EM-ANN Neuromodeling Concept 
(Gupta et al., 1996) 
 
an interpretation using our notation 
 
 

coarse
model

cR

ANN

fx

fRfine
model

w

freq

R

R

 
 



 
Simulation Optimization Systems Research Laboratory
McMaster University  

 

 

99-7-20 

PKI Neuromodeling Concept 
(Gupta et al., 1996) 
 
an interpretation using our notation 
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KBNN Neuromodeling Concept 
(Zhang et al., 1997) 
 
an interpretation using our notation 
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Microstrip Line with High Dielectric Constant 
 

W

H

r

L

 
 
region of interest 

5mil  W  9mil 
15mil  H  25mil 
40mil  L  60mil 

20  r  25 
27GHz  freq  30GHz. 

 
“coarse” model: Pozar’s formulas (Pozar, 1998) 
 
“fine” model: Sonnet’s em 
 
learning set: 9 base points with “star” distribution 
 
testing set: 50 random base points in the region of interest  



 
Simulation Optimization Systems Research Laboratory
McMaster University  

 

 

99-7-23 

Microstrip Line Response Errors 
 
comparison before neuromodeling between em and Pozar’s 
model at 50 random test points 
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SMN Model for the Microstrip Line (3LP:4-3-4) 
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SMN Model Results for the Microstrip Line 
 
comparison between em and the SMN model 
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SMN Model for the Microstrip Line Implemented in OSA90 
 
Expression 
! w : Width of the flat conductor in the PCB (in mils) 
! h : Thickness of the PWB laminate (in mils) 
! l : Length of the flat conductors (in mils) 
! epsr : Dielectric constant of the PWB laminate 
! Xf[i]= [w(i) h(i) l(i) epsr(i)] 
i: 1;! Index for the training/test points 
end 
 
Model 
 
#include "mcsl_hepsr.inc"; 
! SONNET'S MODEL: 
mcsl_hepsr  @f1 @f2 0 
l=(Xf[i,3]*1mil) w=(Xf[i,1]*1mil) 
h=(Xf[i,2]*1mil) epsr=(Xf[i,4]);  
ports @f1 0 @f2 0 ;! Ports 1-2 for Sonnet's model 
 
! Neuromapping  (3LP: 4-3-4) 
! .......................... 
 
! input scaling 
v1=-1+2*(Xf[i,1]-Xf1_min) / (Xf1_max - Xf1_min); 
v2=-1+2*(Xf[i,2]-Xf2_min) / (Xf2_max - Xf2_min); 
v3=-1+2*(Xf[i,3]-Xf3_min) / (Xf3_max - Xf3_min); 
v4=-1+2*(Xf[i,4]-Xf4_min) / (Xf4_max - Xf4_min); 
 
! vectors of synaptic weights of the hidden neurons : wh 
wh1[4]:  [?0.0997064? ?0.00926408? ?-0.0010517? ?0.00555616?]; 
wh2[4]:  [?-0.0254024? ?0.100381? ?0.00506993? ?-0.0277744?]; 
wh3[4]:  [?-0.00263021? ?0.00403475? ?0.152244? ?0.0449023?]; 
 
! vector of bias elements for the hidden neurons : bh 
bh[3]: [?0.0379664? ?-0.0373888? ?0.016498?]; 
 
! hidden layer 
z1 = tanh(bh[1]+v1*wh1[1]+v2*wh1[2]+v3*wh1[3]+v4*wh1[4]); 
z2 = tanh(bh[2]+v1*wh2[1]+v2*wh2[2]+v3*wh2[3]+v4*wh2[4]); 
z3 = tanh(bh[3]+v1*wh3[1]+v2*wh3[2]+v3*wh3[3]+v4*wh3[4]); 
  
! vectors of synaptic weights of the output neurons : wo 
wo1[3]: [?9.97323? ?8.37909e-005? ?6.37812e-006?]; 
wo2[3]: [?-0.000228351? ?10.0461? ?-7.25383e-005?]; 
wo3[3]: [?0.0112826? ?-0.0014412? ?6.85617?]; 
wo4[3]: [?0.00258169? ?0.000209437? ?-0.00683818?]; 
! vector of bias elements for the output neurons : bo 
bo[4]: [?0.00394671? ?-0.00393648? ?0.0121073? ?-0.01383?]; 
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! output layer 
y1 = bo[1]+z1*wo1[1]+z2*wo1[2]+z3*wo1[3]; 
y2 = bo[2]+z1*wo2[1]+z2*wo2[2]+z3*wo2[3]; 
y3 = bo[3]+z1*wo3[1]+z2*wo3[2]+z3*wo3[3]; 
y4 = bo[4]+z1*wo4[1]+z2*wo4[2]+z3*wo4[3]; 
 
! output scaling 
Xc1 = Xf1_min + 0.5*(y1+1)*(Xf1_max - Xf1_min); 
Xc2 = Xf2_min + 0.5*(y2+1)*(Xf2_max - Xf2_min); 
Xc3 = Xf3_min + 0.5*(y3+1)*(Xf3_max - Xf3_min); 
Xc4 = Xf4_min + 0.5*(y4+1)*(Xf4_max - Xf4_min); 
 
! POZAR'S MODEL (TRANSMISSION LINE) 
 
epse=(Xc4+1)/2+(Xc4-1)/(2 *sqrt(1+12*Xc2/Xc1));   
Zo= if((Xc1/Xc2)<1)  
  (60/sqrt(epse) * log(8*Xc2/Xc1+Xc1/(4*Xc2))) 
    else 
  (120*pi/(sqrt(epse)*(Xc1/Xc2+1.393+0.667*log(Xc1/Xc2+1.444))));  
TRL @c1  @c2  Z=Zo L=(Xc3*1mil) K=epse F=FREQ; 
ports @c1 0 @c2 0 ;! Ports 3-4 for Pozar's model 
CIRCUIT; 
end 
 
Sweep 
AC: i: from 1 to N step 1 
    FREQ: from Freq_min to Freq_max step=Freq_step 
"rS11 (Sonnet)","iS11 (Sonnet)","rS21 (Sonnet)","iS21 (Sonnet)" 
"rS11 (SMN)","iS11 (SMN)","rS21 (SMN)","iS21 (SMN)"   
end 
 
Specification 
   AC:  i: from 1 to NL step 1 
   FREQ: from Freq_min to Freq_max step=Freq_step 
       "rS11 (SMN)" = "rS11 (Sonnet)"  
 "iS11 (SMN)" = "iS11 (Sonnet)"  
 "rS21 (SMN)" = "rS21 (Sonnet)"  
 "iS21 (SMN)" = "iS21 (Sonnet)" 
end 
 
Control 
Perturbation_Scale=1.0e-4; 
Disable_Adjoint; 
Allow_Neg_Parameters; 
Optimizer=Huber; 
N_iterations=100; 
Display_N_digits=6; 
Accuracy=1.0e-5; 
Huber_threshold=0.15; 
end 
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Microstrip Right Angle Bend 
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region of interest 

20mil  W  30mil 
8mil  H  16mil 

8  r  10 
1GHz  freq  41GHz 

 
“coarse” model: Gupta model (Gupta, Garg and Bahl, 1979) 
 
“fine” model: Sonnet’s em 
 
learning set: 7 base points with “star” distribution 
 
testing set: 50 random base points in the region of interest  
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Microstrip Right Angle Bend Responses 
 
typical responses before neuromodeling 
em (o), Gupta model () 
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Microstrip Right Angle Bend Response Errors 
 
comparison before neuromodeling between em and Gupta 
model at 50 random test points 
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SMN Model for the Right Angle Bend (3LP:3-6-3) 
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SMN Model Results for the Right Angle Bend 
 
comparison between em and the SMN model 
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FDSMN Model for the Right Angle Bend (3LP:4-7-3) 
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FDSMN Model Results for the Right Angle Bend  
 
comparison between em and the FDSMN model 
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FSMN Model for the Right Angle Bend (3LP:4-8-4) 
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implementation: an OSA90/hope child program simulates the 
coarse model at a different frequency variable through Datapipe 
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FSMN Model Results for the Right Angle Bend 
 
comparison between em and the FSMN model 
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Classical Neuromodel for the Right Angle Bend (3LP:4-15-4) 
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Classical Neuromodel Results for the Right Angle Bend 
(Neuromodeler, 1998) 
 
comparison between em and classical neuromodel 
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter 
(Westinghouse, 1993) 
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SM Based Neuromodeling of the HTS Filter 
(Bandler et al., 1999) 
 
region of interest 
 

175mil  L1  185mil 
190mil  L2  210mil 
175mil  L3  185mil 

18mil  S1  22mil 
75mil  S2  85mil 
70mil  S3  90mil 

3.901GHz  freq  4.161GHz 
 

L0 = 50mil 
H = 20mil 
W = 7mil 
r = 23.425 

loss tangent = 3105 

 
“coarse” model: OSA90/hope empirical models 
 
“fine” model: Sonnet’s em with high resolution grid 
 
learning set: 13 base points with “star” distribution 
 
testing set: 7 random base points in the region of interest (not 
seen in the learning set) 
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SM Based Neuromodeling of the HTS Filter (continued) 
 
two new SM based neuromodeling techniques have been 
developed; they make even better use of the implicit knowledge 
of the coarse model 
 
these techniques were applied to the HTS filter, with excellent 
results 
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New Realizations in NeuroModeler 
 
SM based neuromodels of several microstrip circuits have been 
developed using NeuroModeler Version 1.2b (1999) 
 
they are entered into HP ADS Version 1.1 (1999) as library 
components through an ADS plugin module 
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Conclusions 
 
we present novel applications of Space Mapping technology to 
the neuromodeling of microwave circuits 
 
three powerful techniques to generate SM based neuromodels 
are described and illustrated: SMN, FDSMN and FSMN 
 
OSA90/hope implementations are illustrated 
 
frequency-sensitive neuromappings expand the usefulness of 
quasi-static empirical models  
 
additionally, two new SM based neuromodeling techniques have 
been developed; they make even more efficient use of the 
implicit knowledge of the coarse model (Bandler et al., 1999) 
 
Huber optimization efficiently trains the neuromappings, 
exploiting its robust characteristics for data fitting 
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