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Abstract

We review the Space Mapping (SM) approach to circuit design
and discuss modeling of microwave circuits using Artificial
Neural Networks (ANN). We show that SM and ANN
methodologies can be combined into a powerful design
framework. SM based neuromodels decrease the cost of
training, improve generalization ability and reduce the
complexity of the ANN topology with respect to the classical
neuromodeling approach. We present and illustrate a variety of
possible SM based neuromodels, including SMN, FDSMN and
FSMN. We contrast SM based neuromodeling with the classical
neuromodeling approach as well as with other state-of-the-art
neuromodeling techniques. The SM based neuromodeling
techniques are illustrated by a microstrip line and a microstrip
right angle bend.
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Space Mapping Optimization
(Bandler et al., 1994-)

Aggressive Space Mapping (ASM) has been applied to design
examples exploiting the EM simulators

Sonnet’s em
Ansoft HFSS
HP HFSS

coarse models exploit coarse grid EM models or circuit-
theoretic/analytical models

coarse models, decomposed into subnetworks, can even consist
of a mixture of EM based subnetworks and empirical elements
connected through circuit theory

new ASM algorithms TRASM (Bakr et al., 1998), HASM (Bakr
et al., 1999) have been proposed
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Space Mapping Based Artificial Neural Network (ANN)
Modeling
(Bandler, Ismail, Rayas-Sanchez and Zhang, 1999)

Artificial Neural Networks can model high-dimensional and
highly nonlinear problems (White et al., 1992)

ANN models are computationally efficient and can be more
accurate than empirical models

ANNs are suitable models for microwave circuit optimization
and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta
et al., 1996, Burrascano and Mongiardo, 1998, 1999)

ANN modeling of microwave circuits based on Space Mapping
technology are exploited for the first time (Bandler et al., 1999)

this takes advantage of the vast set of empirical models already
available
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Novel Applications of Space Mapping Technology
(Bandler et al., 1999)

we illustrate several new techniques to generate SM based
neuromodels

Space Mapped Neuromodeling (SMN)

Frequency-Dependent Space Mapped Neuromodeling (FDSMN)

Frequency Space Mapped Neuromodeling (FSMN)

these techniques
exploit the vast set of empirical models already available
decrease the fine model evaluations needed for training
Improve generalization ability

reduce complexity of the ANN topology
w.r.t. the classical neuromodeling approach
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The Aim of Space Mapping
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Biological Neuron
(Kartalopoulos, 1996)

dendritic tree soma

axon

)

axonic ending )
nucleus
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Basic Model of a Neuron

V_>W/

v, | vector of inputs:
v. | signals from other
2
v=| . | neurons
Vn

@(S) —>»

vector of weights:
represent
corresponding
synapse strength

b is the bias or offset term

s=b+Vv' w isthe activation signal
Z =@ (S) isthe output signal

if a sigmoid activation function is used

2=¢(8)=

1
1+e

=S
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Neural Space Mapping

Xs —> P(Xf) —» X X: —» ANN — X

using a three layer perceptron (3LP)

hidden
layer

Xy — scaling

scaling —» X

cl

scaling —» X

Xiy — scaling

cn
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Three Layer Perceptron (3LP)

X ¢ :[xf1 Xip oo xfn]T are n input physical parameters
v=[v, v, - v,]|" areinputsignals after scaling

z=[z; z, --- z,]" aresignals from the h hidden neurons
y=[y, vy, - y,]" arenoutput signals before scaling
X, =[Xq X, -+ X ] arethe neuromapping outputs

to control the relative importance of the input parameters and
define a suitable dynamic range, scaling can be used

2 (X = Xfimin)

v =-1+ ,
(Xfimax _Xfimin)

1=1,2,---,n
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Three Layer Perceptron (continued)
the hidden layer signals are calculated by
z, =0 +vTw), i=12,-h
Wih are the vectors of synaptic weights of the hidden neurons
w! = [Wiq Wy e WithT, i=12 - h
b" is the vector of bias elements for the hidden neurons
b" =|bf bf . B[
the output layer signals are given by
yi=b?+z2'w?, i=12-,n
w? are the vectors of synaptic weights of the output neurons
w = [Wil W, e W{%JT, i=12--,n
b° is the vector of bias elements for the output neurons

ooy b - b
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Three Layer Perceptron (continued)

to provide a scaling for the output signals equivalent to the one
used in the input

1 :
Xei = Xfimin +§(Yi +1) (Xfimax =Xfimin)» 1=12,---,n
all internal parameters of the ANN can be grouped as
w=[(b"" )T )T 00w w)'T

the number of optimization variables for a three-layer perceptron
with n inputs, n outputs and h hidden neurons is

n(2h+1)+h
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Space Mapped Neuromodeling (SMN) Concept

frei

X
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Three-dimensional Star Distribution for the Learning Base

Points

(Bandler et al., 1989)

to keep a reduced set of learning data samples, we consider an n-

dimensional star distribution for the base learning points

the number of learning base points for a microwave circuit with
n design parametersis B, =2n+1
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Frequency-Dependent Space Mapped Neuromodeling
(FDSMN) Concept

fr(ﬂ

—>

X¢

coarse RC ~ Rf
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model
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FDSMN model
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Frequency Space Mapped Neuromodeling (FSMN) Concept

frei
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Training the ANN

the neuromapping can be found by solving the optimization
problem

. T T T
min H e, e - g ]T H
w

w contains the internal parameters of the ANN (weights, bias,
etc.) selected as optimization variables

| is the total number of learning samples
ex is the error vector given by
for SMN
e = R (Xy,, freq;) — Ro(X,, freq;)
X¢ =P (X4 i)
for FDSMN
e = R (Xy,, freq;) — Ro(X,, freq;)

X, = P(xfi, freq;)
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Training the ANN (continued)

for FSMN
€ = Rf(Xfi’ 1:reqj)_ Rc(xc’ fc)
XC
=P (Xs., freq;)
fe !
with
1=1,.. ,BIo
1=1.... F,

k=j+F,(i-1)
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EM-ANN Neuromodeling Concept
(Gupta et al., 1996)

an interpretation using our notation

freo

X¢

—>| coarse
» model | R

ANN ~ AR
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PKI1 Neuromodeling Concept
(Gupta et al., 1996)

an interpretation using our notation

freo

X¢

coarse Rc

model \W )

I
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KBNN Neuromodeling Concept
(Zhang et al., 1997)

an interpretation using our notation

freg
Xt
empirical
> input /funCtlonS output
> layer layer
g ANN

()

A0
22
_h;U

\ 4

99-7-21



Simulation Optimization Systems Research Laboratory
McMaster University

Microstrip Line with High Dielectric Constant

Hol e

region of interest

5mil < W < 9mil
15mil < H < 25mil
40mil < L < 60mil
20< <25
27GHz < freq < 30GHz.

“coarse” model: Pozar’s formulas (Pozar, 1998)
“fine” model: Sonnet’s em™
learning set: 9 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Line Response Errors

comparison before neuromodeling between em™ and Pozar’s
model at 50 random test points
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SMN Model for the Microstrip Line (3LP:4-3-4)

freq

S— R

Coarse model

A

X Pozar's |%o'%| transmission c f
ANN |—S1—»| > .
formulas line

] ¥

()

\
P2
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SMN Model Results for the Microstrip Line

comparison between em™ and the SMN model
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SMN Model for the Microstrip Line Implemented in OSA90

Expression

I w Width of the flat conductor in the PCB (in mils)
! h : Thickness of the PWB laminate (in mils)

11 Length of the flat conductors (in mils)

! epsr : Dielectric constant of the PWB laminate

! XE[i]l= [w(i) h(i) 1(i) epsr(i)]

i: 1;! Index for the training/test points

end

Model

#include "mcsl hepsr.inc";

! SONNET'S MODEL:

mcsl hepsr @fl @f2 O

1=(Xf[i,3]1*1Imil) w=(X£[i,1]*1mil)
h=(Xf[i,2]*1mil) epsr=(Xf[i,4]);

ports @f1l 0 @f2 0 ;! Ports 1-2 for Sonnet's model

! Neuromapping (3LP: 4-3-4)

! input scaling

vli=-1+2*(Xf[i,1]-Xfl min
v2=-1+2* (Xf[1i,2] -Xf2 min
v3=-1+2* (Xf[1i,3]-Xf3 min
v4=-1+2* (X£[1i,4]-Xf4 min

/ (Xf1l max - Xfl min);
/ (Xf2 max - Xf2 min);
/ (Xf3 max - Xf3 min);
/ ) ;

Xf4 max - Xf4 min
! vectors of synaptic weights of the hidden neurons : wh
whl[4] : [?70.0997064? 20.00926408? ?-0.0010517? ?20.005556167?];
wh2 [4] : [?-0.0254024? ?20.100381? ?20.00506993? ?-0.02777447?];
wh3 [4] : [?7-0.00263021? ?20.00403475? ?20.1522447? 20.04490237?];

~_— — ~— ~—

| vector of bias elements for the hidden neurons : bh
bh[3]: [?0.0379664? ?-0.03738887? ?20.0164987?];

! hidden layer

zl = tanh(bh[1l]+v1*whl[1]+v2*whl[2]+v3*whl [3]+Vv4*whl[4]) ;
z2 = tanh(bh[2] +v1*wh2 [1] +v2*wh2 [2] +Vv3*wh2 [3] +Vv4*wh2 [4]) ;
z3 = tanh(bh[3]+v1*wh3[1]+v2*wh3[2] +v3*wh3 [3]+v4*wh3[4]) ;

! vectors of synaptic weights of the output neurons : wo
wol[3]: [?9.97323? ?8.37909e-005? ?6.37812e-0067?];

wo2[3]: [?-0.000228351? ?10.0461? ?-7.25383e-0057?];

wo3[3]: [?0.01128267? ?-0.0014412? ?6.856177];

wo4 [3]: [?0.00258169? 20.000209437? ?-0.006838187];

! vector of bias elements for the output neurons : bo
bo[4]: [?0.00394671? ?-0.003936487? ?20.0121073? ?-0.013837];
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! output layer

vl = bol[l]l+zl*wol[l]+z2*wol[2]+23*wol[3];
yv2 = bo[2]+zl1*wo2[1]+z2*wo2 [2]+23*w02 [3];
v3 = bo[3]+zl1*wo3[1]+z2*wo3[2]+23*w0o3[3];
v4 = bo[4]+zl1l*wo4 [1]+z2*wo4 [2] +23*wo4 [3];

! output scaling

Xcl = Xf1l min + 0.5*(yl+1)* (Xfl max - Xfl min) ;
Xc2 = Xf2 min + 0.5* (y2+1)* (Xf2 max - Xf2 min);
Xc3 = Xf3 min + 0.5*(y3+1)* (Xf3 max - Xf3 min) ;
Xc4 = Xf4 min + 0.5*(y4+1)* (Xf4 max - Xf4 min) ;

! POZAR'S MODEL (TRANSMISSION LINE)

epse=(Xc4+1) /2+ (Xc4-1) /(2 *sgrt(l+12*Xc2/Xcl)) ;

Zo= 1f (

(Xcl/Xe2)<1)

(60/sgrt (epse) * log(8*Xc2/Xcl+Xcl/ (4*Xc2)))
else
(120*pi/ (sgrt (epse) * (Xcl/Xc2+1.393+0.667*1og (Xcl/Xc2+1.444))));
TRL @cl @c2 Z=Zo L=(Xc3*1mil) K=epse F=FREQ;

ports @cl 0 @c2 0 ;! Ports 3-4 for Pozar's model
CIRCUIT;

end

Sweep

AC: i: from 1 to N step 1

FREQ: from Freq min to Freqg max step=Freq step

"rS11 (Sonnet)","iS1l1l (Sonnet)","rS21 (Sonnet)","iS21 (Sonnet)"
"rS811 (SMN)","iS11l (SMN)","rS21 (SMN)","iS21 (SMN)"
end
Specification
AC: 1: from 1 to NL step 1
FREQ: from Freq min to Freqg max step=Freq step
"rS11l (SMN)" = "rS1ll (Sonnet)™"
"iS811 (SMN)" = "iS1ll (Sonnet)™"
"rS$21 (SMN)" = "rS21 (Sonnet)™"
"i821 (SMN)" = "isS21 (Sonnet)™"
end
Control

Perturbation Scale=1.0e-4;
Disable Adjoint;
Allow Neg Parameters;

Optimiz

er=Huber;

N iterations=100;
Display N digits=6;
Accuracy=1.0e-5;
Huber threshold=0.15;

end
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Microstrip Right Angle Bend

s

v
A
L

region of interest
20mil < W < 30mil
8mil <H < 16mil
8 < Er < 10
1GHz < freq < 41GHz
“coarse” model: Gupta model (Gupta, Garg and Bahl, 1979)
“fine” model: Sonnet’s em™

learning set: 7 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Right Angle Bend Responses

typical responses before neuromodeling
em™ (0), Gupta model (o)
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Microstrip Right Angle Bend Response Errors

comparison before neuromodeling between em™ and Gupta
model at 50 random test points
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SMN Model for the Right Angle Bend (3LP:3-6-3)

freq q
X: | — R;
Gupta's model
v
BRI | formulas =S| umped R‘; ~ R
circuit
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SMN Model Results for the Right Angle Bend

comparison between em™ and the SMN model
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FDSMN Model for the Right Angle Bend (3LP:4-7-3)
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ANN
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circuit
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FDSMN Model Results for the Right Angle Bend

comparison between em™ and the FDSMN model
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FSMN Model for the Right Angle Bend (3LP:4-8-4)

freq
> R
X f
>
Gupta's model l
f R, ~R
C L,C ~ Ry
ANN formulas —>| Iu_mpgd >
X » circuit

implementation: an OSA90/hope™ child program simulates the
coarse model at a different frequency variable through Datapipe
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FSMN Model Results for the Right Angle Bend

comparison between em™ and the FSMN model
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Classical Neuromodel for the Right Angle Bend (3LP:4-15-4)

freg

X¢
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Classical Neuromodel Results for the Right Angle Bend
(Neuromodeler, 1998)

comparison between em™ and classical neuromodel
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)

VYV

©“S
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SM Based Neuromodeling of the HTS Filter
(Bandler et al., 1999)

region of interest

175mil < L; <185mil
190mil < L, <210mil
175mil < L3 < 185mil
18mil < S; < 22mil
75mil < S; < 85mil
70mil < S3 < 90mil
3.901GHz < freq < 4.161GHz

Lo = 50mil
H = 20mil
W = 7mil
Er — 23425
loss tangent = 3x107°
“coarse” model: OSA90/hope™ empirical models
“fine” model: Sonnet’s em™ with high resolution grid

learning set: 13 base points with *“star” distribution

testing set: 7 random base points in the region of interest (not
seen in the learning set)

99-7-40



Simulation Optimization Systems Research Laboratory
McMaster University

SM Based Neuromodeling of the HTS Filter (continued)
two new SM based neuromodeling techniques have been
developed; they make even better use of the implicit knowledge
of the coarse model

these techniques were applied to the HTS filter, with excellent
results
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New Realizations in NeuroModeler

SM based neuromodels of several microstrip circuits have been
developed using NeuroModeler Version 1.2b (1999)

they are entered into HP ADS Version 1.1 (1999) as library
components through an ADS plugin module

Egﬁ\fisual Editor For Heural Hetwork Structure: Bend_Gupta_05A90 v12b
File Edit Yiew Template

[FBend_Gupta_OSA90_v12b

Freguency Space Mapped Meuromodel (FShM)
of a Microstrip Right Angle BEend

r=111511 5211521

W H epsr freg

|'Warning: Applet window
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Conclusions

we present novel applications of Space Mapping technology to
the neuromodeling of microwave circuits

three powerful techniques to generate SM based neuromodels
are described and illustrated: SMN, FDSMN and FSMN

OSA90/hope™ implementations are illustrated

frequency-sensitive neuromappings expand the usefulness of
quasi-static empirical models

additionally, two new SM based neuromodeling techniques have
been developed; they make even more efficient use of the
implicit knowledge of the coarse model (Bandler et al., 1999)

Huber optimization efficiently trains the neuromappings,
exploiting its robust characteristics for data fitting
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