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1. Introduction 
 
Considerable progress has been made generally in the application of remote sensing tech-
niques to both research and operational problems for urban planning and natural resource 
management. Modern applied theory of image processing is now a mature and well devel-
oped research field, presented and detailed in many works.  
Although the existing theory offers a manifold of statistical techniques to tackle with the 
particular environmental monitoring problems, in many applications areas there still remain 
some crucial theoretical and data processing problems. One of them is particularly related to 
the extraction and dynamical analysis of physical characteristics (e.g., water, land cover, 
vegetation, soil, humid content, and dry content) for implementation in natural resources 
management (modeling and planning). 
The extraction of environmental physical characteristics from a particular geographical 
region through remote sensing data processing allows the generation of electronic signature 
maps, which are the basis to create a high-resolution collection atlas processed in time for a 
particular geographical zone. This can be achieved using a systematical tool for supervised 
segmentation and classification of the environmental remote sensing signatures that em-
ploys multispectral remote sensing imagery based on pixel statistics for the class descrip-
tion. Moreover, the analysis of a dynamical model of environmental characteristics extracted 
from a geographic region generates useful information for natural resource management; 
using the signatures map extracted from the remote sensing imagery for a particular geo-
graphic zone in discrete time the evolution study of the environmental characteristics is 
performed to obtain the dynamical model of the physical variables. This provides a back-
ground for understanding the future trends of the multispectral image. This chapter ex-
plores the implementation possibilities of the multispectral image classification technique 
with the dynamic analysis for natural resources management applications. 

 

1.1 Remote Sensing 
The goal of science is to discover universal truths that are the same yesterday, today and 
tomorrow. Hopefully, the knowledge obtained can be used to protect the environment and 
improve human quality of life. To identify these universal truths, scientists observe and 
make measurements about (a) the physical world (e.g., the atmosphere, water, soil, rock), (b) 



Advances in Geoscience and remote sensing 

its living inhabitants (e.g., Homo sapiens, flora, fauna), and (c) the process at work (e.g., 
mass wasting, deforestation, urban sprawl). 
Scientists formulate hypotheses and then attempt to accept or reject them in a systematic, 
unbiased fashion. The data necessary to accept or reject a hypothesis may be collected di-
rectly in the field, often referred to as in situ or in place data collection. This can be a time-
consuming, expensive, and inaccurate process. Therefore, considerable research during the 
past century has gone into the development of aerial platforms (e.g., suborbital aircraft, 
satellites, unmanned aerial vehicles) and sensors (e.g., cameras, detectors) that can collect 
information some remote distance from the subject (e.g., from 10,000 meters above ground 
level). This process is called remote sensing (RS) of the environment (Jensen, 2005). 
The remote sensor data can be stored in an analog format (e.g., a hardcopy 9x9 in. vertical 
aerial photograph) or in a digital format (e.g., remote sensing imagery consisting up to sev-
en registered matrices of brightness values). The analog and digital remote sensing data can 
be analyzed using analog (visual) and/or digital image processing techniques.  
A science is defined as the broad field of human knowledge concerned with facts held to-
gether by principles (rules). Scientists discover and test facts and principles by the scientific 
method, and orderly system of solving problems. Scientists generally feel that any subject 
that humans can study by using the scientific method and other special rules of thinking 
may be called a science. The science includes (a) mathematics and logic, (b) the physical 
sciences, such as physics and chemistry, (c) the biological sciences, such as botany and zool-
ogy, and (d) the social sciences, such as geography, sociology, anthropology, etc. Interesting-
ly, some persons do not consider mathematics and logic to be sciences. But the fields of 
knowledge associated with mathematics and logic are such valuable tools for science that 
cannot be ignored.  
Remote sensing is a tool or technique similar to mathematics. Using sensors to measure the 
amount of electromagnetic radiation (EMR) existing an object or geographic area from a 
distance and the extracting valuable information from the data using mathematically and 
statistically based algorithms is a scientific activity (Jensen, 2005). It functions in harmony 
with other spatial data collections techniques or tools of the mapping sciences, including 
geographic information systems (GIS) (Fussel et al., 1986). 
The process of visual photo or image interpretation brings to bear not only scientific 
knowledge but all of the background that a person has obtained in his lifetime. Such learn-
ing cannot be measured, programmed or completely understood. The synergism of combin-
ing scientific knowledge with real-world analyst experience allows the interpreter to devel-
op heuristic rules of thumb to extract information from the imagery. Some image analysts 
are superior to other image analysts because they (a) understand the scientific principles 
better, (b) are more widely traveled and have seen many landscape objects and geographic 
areas, and/or (c) have the ability to synthesize principles and real-world knowledge to 
reach logical and correct conclusions. The remote sensing image interpretation is both and 
art and a science (Jensen, 2005). 
Sensors can be used to obtain very specific information about and object (e.g., the diameter 
of a cottonwood tree’s crowns) or the geographic extent of a phenomenon (e.g., the polygo-
nal boundary of a cottonwood stand). The EMR reflected, emitted, or back-scattered from an 
object or geographical area is used as a surrogate for the actual property under investiga-
tion. The electromagnetic energy measurements must be calibrated and turned into infor-
mation using visual and/or digital image processing techniques.  
Urban planners (e.g., land use, transportation, utility) and natural resource management 
(e.g., wetland, forest, grassland, rangeland) recognize that spatially distributed information 
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is essential for ecological modeling and planning. Unfortunately, it is very difficult to obtain 
such information using in situ measurements. Therefore, public agencies and scientists have 
expanded significant resources in developing methods to obtain the required information 
using remote sensing science (Shkvarko & Villalon, 2007).  

 
1.2 Image Interpretation 
The classical process of classification consists of two stages (Smith, 2000). The first is the 
recognition of categories of real-world objects (segmentation). In the context of multispectral 
remote sensing (MRS) of the land surface these categories could include, for example, wood-
lands, water bodies, grassland and other land cover types, depending on the geographical 
scale and nature of the study. The second stage is the labeling of the entities (classification) 
that are to be classified. 
In digital image classification these labels are numerical, so that a pixel that is recognized as 
belonging to the class ‘water’ may be given the label ‘1’, ‘woodland’ may be labeled ‘2’, and 
so on. The process of image classification requires the user to perform the following steps: 
(a) determine a-priori the number and nature of the categories in terms of which environ-
mental remote sensing signatures (RSS) are to be described, and (b) assign numerical labels 
to the pixels on the basis of their RSS properties using a decision-making procedure, usually 
termed a classification rule or a decision rule. 
Clustering is a kind of exploratory procedure, the aim of which is to determine the number 
(but not initially the identity) of distinct RSS present in the area covered by the image, and 
to allocate pixels to these categories in terms of the nature of the RSS types is a separate 
stage that follows the clustering procedure. Several clusters may correspond to a single RSS 
type (Smith, 2000). 
These two approaches to pixel labeling are known in the RS literature as supervised and 
unsupervised classification procedures, respectively (Smith, 2000). They can be used to 
segment an image into regions with similar attributes. In the simplest case, a pixel is charac-
terized by a vector whose elements are its grey levels in each spectral band. This vector 
represents the spectral properties of that pixel.  
In a supervised classification, the identity and location of some of the RSS types (e.g., urban, 
agriculture or wetland) are known a priori through a combination of field work, interpreta-
tion of aerial photography, map analysis or personal experience. The analyst attempts to 
locate specific sites in the MRS data that represents homogeneous examples of these known 
RSS types. These areas are commonly referred to as training sites because the spectral char-
acteristics of these known areas are used to train the classification algorithm for eventual 
RSS mapping of the remainder of the image. Multivariate statistical parameters (means, 
standard deviations, covariance matrices, correlation matrices, etc.) are calculated for each 
training site. Every pixel both within and outside the training sites is then evaluated and 
assigned to the class of which it has the highest likelihood of being a member (Jensen, 2005). 
In an unsupervised classification, the identities of RSS types to be specified as classes within 
a scene are not generally known a priori because ground reference information is lacking or 
surface features within the scene are not well defined. The computer is required to group 
pixels with similar spectral characteristics into unique clusters according to some statistical 
determined criteria. The analyst then re-labels and combines the RSS spectral clusters into 
formation classes (Jensen, 2005). 
The term dynamic refers to phenomena that produce time-changing pattern, the characteris-
tics of the pattern at one time being interrelated with those at other times. The term is nearly 
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synonymous with time-evolution or pattern of change (Luenberger, 1979). Nearly all ob-
served phenomena in our daily lives or in scientific investigation have important dynamic 
aspects. Scientific examples may arise in (a) a physical system, such as a signal traveling 
through the space, a home heating system, or in the mining of a mineral deposit, (b) a social 
system, such as the movement within an organization hierarchy, the evolution of a tribal 
class system, or the behavior of an economic structure, and (c) a life system, such as that of 
genetic transference, ecological decay, or population growth. 
Many dynamic systems can be understood and analyzed intuitively, without resort to math-
ematics and without development of a general theory of dynamics. However, in order to 
approach unfamiliar complex situations efficiently, it is necessary to proceed systematically. 
Mathematics can provide the required economy of language and conceptual framework.  
The term dynamics takes a dual meaning. It is a term for the time-evolutionary phenomena 
in the world about us, and a term for that part of mathematical science that is used for the 
representation and analysis of such phenomena (Luenberger, 1979). Dynamic systems are 
represented mathematically in terms of either differential or difference equations. These 
equations provide the structure for representing time linkages among variables. The use of 
either differential or difference equations to represent dynamic behavior corresponds, re-
spectively, to whether the behavior is viewed as occurring in continuous or discrete time.  
Continuous time corresponds to our usual conception, where time is regarded as a continu-
ous variable and is often viewed as flowing smoothly past us (Luenberger, 1979). In mathe-
matical terms, continuous time of this sort is quantified in terms of the continuum of real 
numbers.  
Discrete time consists of an ordered sequence of points rather than a continuum. In terms of 
applications, it is convenient to introduce this kind of time when events and consequences 
either occurring are accounted for only at discrete time periods, such as daily, monthly, or 
yearly. Accordingly dynamic behavior viewed in discrete time is usually described by equa-
tions relating the value of a variable at one time to the values at adjacent times. Such equa-
tions are called difference equations. 

 
2. Multispectral Image Classification 
 
Multispectral imaging is a technology originally developed for space-based imaging. The 
multispectral images are the main type of images acquired by MRS radiometers. Usually, 
MRS systems have from 3 to 7 radiometers; each one acquires one digital image (also called 
scene) in a small band of visible spectra, ranging 450 nm to 690 nm, called red-green-blue 
(RGB) regions (Villalon, 2008).  
For different purposes, combinations of spectral bands can be used. They are usually repre-
sented with red (R), green (G) and blue (B) channels. This is referred to as True-Color RS 
imagery (Villalon, 2008). The wavelengths for the spectral bands are as follows, where the 
values are approximated, exact values depends on the particular RS instruments (Mather, 
2004): (a) blue: 450-520 nm, (b) green: 520-600 nm, and (c) red: 600-690 nm. 

 
2.1 Weighted Order Statistics method 
The WOS method is a generalization of the median filter (Perry et al., 2002), and is character-
ized by a weight vector and a threshold value. The order statistics (OS) filtering methodolo-
gy (Yli-Harja et al., 1991) shifts a n×n window W (with cardinality n×n, i.e., |W| = n×n) 
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over an input RS image frame and, at each position of the frame, takes the n×n inputs (w11, 
w12,…, wij, ...,  wnn) under Wij and then outputs the r-th element of the sorted input. 

 

 
Fig. 1. Weighted order statistics filtering method 

 
The WOS method is a generalization of the OS filter that is characterized by a weight vector 
Υij = (υ1, υ2, …, υn×n) of n×n positive weight thresholds w, 0 ≤ w ≤ 255 (gray-level threshold). 
To compute the output, each input w is duplicated to the number of corresponding weight 
υ, then they are sorted and the w-th order element is chosen as the output, expressed as 
 

= ( ) ,ij ijmedianWOS Υ  (1) 
 
where WOSij is the weighted order of the (i, j)-th pixel of the image. The decision rule for 
classification based on the WOS filter determines that, based on the a priori information for 
class segmentation (number of RSS to be classified and their respective thresholds), the WOS 
value for each image pixel is compared with the a priori thresholds (gray-level) and classi-
fied according to the most proximal value. Fig. 1 shows the process structure of the WOS 
filter. 
2.2 Minimum Distance to Means method 
The MDM decision rule is computationally simple and can result in classification accuracy 
comparable to other more computationally intensive algorithms (Jensen, 2005). It is charac-
terized by the mean values of the RSS classes and the Euclidean distances based on the Py-
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thagorean Theorem. An important aspect of this method is that it is applied to the MRS 
imagery. The a priori information for class segmentation (number of RSS to be classified and 
their respective mean values) conform the means matrix Ε (c×b size) that contains the mean 
values µcb: (0 ≤ µcb ≤ 255, gray-level) of the RSS classes for every MRS band. Here, c is the 
number of RSS classes to be classified, and b is the number of spectral bands. 

 

 
Fig. 2. Minimum distance to means method 

 
The input is defined by the vector Πij, which contains the (i, j)-th image pixel values πijb em-
ployed for every spectral band. To compute the output of the classifier, the distance between 
each input Πij and the means matrix Ε is calculated using the Euclidean distance based on 
the Pythagorean Theorem. This is expressed as 
 

( ) ( ) ( )π µ π µ π µ= − + − + + −
2 2 2

, ,1 1 ,2 2 , ,ij c ij c ij c ij b cbD  (2) 

where Dij,c is a vector ordered by multi-index (ij,c) of c×1 size that contains the distances 
between the (i, j)-th image pixel value and the c-class value for each band b.  
The decision rule for classification based on the MDM filter determines that, based on the a 
priori information for class segmentation (number of RSS to classify and their respective 
mean values), each image pixel generates an ordered distance vector Dij, and therefore, the 
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pixel is classified according to the minimum value on the vector. Fig. 2 shows the processing 
structure of the MDM classifier. 

 
2.3 Weighted Pixel Statistics method 
The Weighted Pixel Statistics (WPS) classificatory rule is computationally simple and can 
result in classification accuracy comparable to other more computationally intensive algo-
rithms (WOS and MDM methods). It is characterized by the mean and variance values of the 
RSS signatures (classes) and the Euclidean distances based on the Pythagorean Theorem. An 
important aspect of this method is that it is applied to the MRS imagery.  
The training data for class segmentation requires the number of RSS to be classified (c); the 
means matrix M (c×c size) that contains the mean values µcc: (0 ≤ µcc ≤ 255, gray-level) of the 
RSS classes for each RGB bands; and the variances matrix V (c×c size) that contains the vari-
ances of the RSS classes for each RGB bands. The matrix M and V represents the weights of 
the classification process. Next, the image is separated in the spectral bands (R, G and B) and 
each (i, j)-th pixel is statistically analyzed calculating the means and variances from a neigh-
borhood set of 5x5 pixels for each RGB band, respectively. To compute the output of the 
classifier, the distances between the pixel statistics and the training data is calculated using 
Euclidean distances based on the Pythagorean Theorem for means and variances, respec-
tively. The decision rule used by the WPS method is based on the minimum distances 
gained between the weighted training data and the pixel statistics. 
The WPS techniques provide a high level of RSS segmentation and classification. Figure 3 
shows the detailed processing structure of the WPS classifier. 

 
3. Dynamic Model of Remote Sensing Signatures 
 
This is a new innovative paradigm for mathematical analysis of the space-time dynamic 
evolution of the particular environmental RSS extracted from MRS images in evolution time. 
This is performed via the Geophysical Dynamic Laboratory (GDL) method, which unifies 
the RSS mapping scheme with its dynamic analysis to provide the high-resolution mapping 
of the RSS in evolution time. If the attributes of interest of a system are changing with time, 
then it is referred to a dynamic system. A RSS process is the evolution over time of such a 
dynamic system (Grewal & Andrews, 2001). 

 
3.1 Mathematical model of RSS in continuous time 
The model of a RSS of interest treated as a linear dynamic system (LDS) is presented in its 
state variables (Falkovich et al., 1989) described over the continuous evolution time (CET) 
domain (τ ∈ ℑ ) and the discrete evolution time (DET) domain (κ ∈ℜ ). A LDS is represent-
ed in CET and DET as shown in Fig. 4(a) and 4(b), respectively, where Σ(τ) and {Σ(κ)} are the 
inputs to the linear system, Λ(τ) and {Λ(κ)} are the outputs of the linear system, respectively. 
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Fig. 3. Computational structure of the WPS method 

 
The model of the equation of observation (EO) in CET is represented (Falkovich et al., 1989) 
as τ τ ν τ= +Σ Λ( ) ( ( )) ( )S , where ν(τ) is the white observation Gaussian noise and τ ∈ ℑ , start-
ing at τ0 (initial moment of continuous evolution time), and the linear amplitude-modulated 
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(Falkovich et al., 1989) model is τ τ τ=Λ Λ 0( ( )) ( ) ( )S S , where S0(τ) represents the deterministic 
“carrier” RS image frame of a given model, and Λ(τ) is the unknown stochastic information 
process to be estimated via processing of the MRS image observation data frame Σ(τ). 

 

  
a. Continuous evolution time (CET) do-

main: τ-continuous time argument 
b. Discrete evolution time (DET) domain:   

κ-discrete time argument 
Fig. 4. Representation of linear dynamic systems 

 
Is assumed that Λ(τ) satisfies the dynamical model specified by the following N-th order 
linear differential equation (Villalon & Shkvarko, 2008) 
 

1 1
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where α and β are the constant coefficients of the dynamical system model for evolution of 
the RSS Λ(τ). This stochastic model can be redefined as follows: the differential equation (3) 
may be transformed into a system of linear differential equations of the first order via per-
forming the following replacement of variables 
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where 
 

( )1 2( ) ( ) ( ) ... ( ) .TNz z zτ τ τ τ=z  (5) 
 
Based on the replacement of variables specified by (4), the dynamic differential equation 
model (3) can be now represented in a canonical vector-matrix form as follows 
 

( ) ( ) ( ) ,d
d
τ τ τ
τ

= +z Fz Gξ           ( ) ( ) .τ τ=Λ Cz  (6) 
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where 
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The representation in the form of (6) is referred to as a canonical equation of linear dynamic 
system in state variables in continuous time. Here, z(τ) is the state vector, the vector C de-
fines a linear operator that introduces the relation between the RSS map in continuous time 
and the state vector z(τ), F is a transition matrix, G is a transition vector, and ξ(τ) represents 
the white model generation noise vector characterized by the statistics, ( )τ =ξ 0  and 

( ) ( ') ( ) ( ')Tτ τ τ σ τ τ= −ξξ ξ P , respectively. Here, Pξ(τ) is referred to as state model disperse 

matrix that characterizes the dynamics of the state variances developed in continuous time  
( )0 τ τ τ→  starting from the initial instant τ0. The dynamic model equation in the continu-

ous time states the relation between the RSS map Σ(τ) extracted from the MRS scene, thus 
the desired dynamical RSS map Λ(τ) can be represented as follows (Villalon & Shkvarko, 
2008) 
 

( )0( ) ( ) ( ) ( ) ( ) ( ) ( ) ,τ τ τ τ τ τ τ τ= + = +Σ S C z ν H z ν  where ( )0( ) ( )  .τ τ τ=H S C  (8) 
 
The stochastic differential model of equations (6) and (8) allows applying the theory of dy-
namical filtration to reconstruct the desired RSS map in continuous time incorporating the a 
priori model of dynamical information about the RSS. The aim of the dynamic filtration is to 
find an optimal estimate of the desired RSS, ˆ ˆ( ) ( )τ τ=Λ Cz , developed in continuous time 

( )0 τ τ τ→  via processing the RSS maps ( )τΣ  extracted from the MRS scenes taking into 
considerations the a priori dynamic model of the desired RSS map specified through the 
state equation (6). The optimal dynamic filter when applied to the RSS maps ( )τΣ  specified 
by the dynamic image model (8) must provide the optimal estimation of the desired RSS 
map ˆ ˆ( ) ( )τ τ=Λ Cz , in which the state vector estimate z(τ) satisfies the a priori dynamic be-
havior modeled by the stochastic dynamic state equation (6).  

 
3.2 Mathematical model of RSS in discrete time 
The canonical discrete-time solution to equation (6) in state variables for discrete time κ is 
expressed as follows (Falkovich et al., 1989) 
 

( 1) ( ) ( ) ( ) ( ) ,κ κ κ κ κ+ = +z Φ z Γ ξ           ( ) ( ) ( ) ,κ κ κ=Λ C z  (9) 
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where ( ) ( )κκ τ τ= Δ +Φ F I ; ( ) ( )κκ τ τ= ΔΓ G , and τΔ  represents the continuous time sam-
pling interval for dynamical modeling of the RSS map in discrete time. The statistical char-
acteristics of the a priori information are as follows 
 
1. Generating model noise {ξ(κ)}: 

 
( )  ;κ =ξ 0    ( ) ( ') ( , ') .Tκ κ κ κ= ξξ ξ P  (10) 

 
2. Observation (RSS map) noise {ν(κ)}: 

 
( )  ;κ =ν 0    ( ) ( ') ( , ') .Tκ κ κ κ= νν ν P  (11) 

 
3. State vector {z(κ)} 

 
(0) (0) ;z=z m    (0) (0) (0) .T = zz z P  (12) 

 
where 0 argument implies the initial state for initial time instant (κ = 0). The disperse matrix 
Pz(0) satisfies the following disperse dynamic equation (Villalon & Shkvarko, 2008) 
 

( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) .T T Tκ κ κ κ κ κ κ κ κ+ = + + = +z z ξP z z Φ P Φ Γ P Γ  (13) 

 
3.3 Optimal dynamic RSS filtering technique 
The strategy is to design an optimal decision procedure that, when applied to all RSS obser-
vations will provide an optimal solution to the state vector z(κ) subjected to its prior defined 
dynamic model given by the stochastic dynamic equation (9). The estimate of the state vec-
tor optimally defined in the sense of the Bayesian minimum risk strategy (Shkvarko, 2004) 
in discrete time κ can be represented in the conditioned form 
 

ˆ( ) ( ) (0), (1),..., ( ) ,
opt
κ κ κ=z z Σ Σ Σ  (14) 

 
were <⋅> represents an ensemble averaging operator. For discrete time, the design procedure 
is based on the concept of mathematical induction (Falkovich et al., 1989). This is a supposi-
tion that after κ observations { }(0), (1),..., ( )κΣ Σ Σ  the desired optimal estimate is produced, 
defined at the ultimate step as 
 

ˆ ˆ( ) ( )  .
opt

κ κ=z z  (15) 

 
In order to use the estimate ˆ( )

opt
κz  it is necessary to design an algorithm that produces the 

optimal estimate z(κ+1) incorporating new measurements Σ(κ+1) according to the state 
dynamic equation (9). This is, we have to design an optimal decision procedure (optimal 
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filter) that, when applied to all reconstructed RSS maps { }( )κΣ  ordered in discrete time 

( )0 κ κ κ→ , provides an optimal reconstruction of the desired RSS map represented via the 
estimate of the state vector z(κ) subject to the numerical dynamic model (9). To proceed with 
derivation of such a filter, we first represent the state dynamic equation (9) in discrete time κ 
as follows 
 

( 1) ( ) ( ) ( ) ( ) .κ κ κ κ κ+ = +z Φ z Γ ξ  (16) 

 
3.4 Dynamic RSS map reconstruction 
According to the dynamical model of equation (16), the anticipated mean value for the state 
vector can be expressed as (Villalon & Shkvarko, 2008) 
 

ˆ( 1) ( 1) ( 1) ( )  .κ κ κ κ+ = + = +zm z z z  (17) 
 
The mz(κ+1) is considered as the a priori conditional mean value of the state vector for the 
(κ+1)-st estimation step, thus, from equations (16) and (17) we obtain 
 

ˆ( 1) ( ) (0), (1),..., ( ) ( ) ( ) ,κ κ κ κ κ+ = + =zm Φ z Σ Σ Σ Γ ξ Φz  (18) 
 
hence, the prognosis of the mean value becomes 
 

ˆ( 1) ( ) .κ κ+ =zm Φz  (19) 
 
From the analysis of equations (16) thru (19), it is possible to deduce that given the fact that 
the particular RSS map ( )κΣ  is treated at discrete time κ, it makes the previous reconstruc-

tions { }(0), (1),..., ( )κΣ Σ Σ  irrelevant; hence, the optimal filtering strategy is reduced to the 
dynamical one step predictor described by the equation (16). Using these derivations, the 
dynamical estimation strategy can be modified to the one step optimal prediction procedure 
(Villalon & Shkvarko, 2008) 
 

ˆ ˆ( 1) ( 1) (0), (1),..., ( ), ( 1) ( 1) ( ); ( 1)  ;κ κ κ κ κ κ κ+ = + + = + +z z Σ Σ Σ Σ z z Σ  

ˆ( 1) ( 1) ( 1); ( 1)  .κ κ κ κ+ = + + +zz z Σ m  
(20) 

 
For the current (κ+1)-st discrete time estimation/prediction step, the dynamical RSS map 
estimate of the equation (8) in discrete time becomes 
 

( 1) ( 1) ( 1) ( 1) ,κ κ κ κ+ = + + + +Σ H z ν  (21) 
 
with the a priori predicted mean calculated by the equation (17) for the desired state vector 
given by (16). Applying the Wiener minimum risk strategy (Shkvarko, 2004) to solve the 
equation (21) with respect to the state vector z(κ) and taking into account the a priori infor-
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mation summarized by the equations (10) thru (12), we obtain the dynamic solution for the 
RSS map state vector 
 

[ ]ˆ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)  ,κ κ κ κ κ κ+ = + + + + − + +z zz m Θ Σ H m  (22) 
 
where the desired dynamic filter operator ( 1)κ +Θ  is defined as (Villalon & Shkvarko, 2008)  
 

1( 1) ( 1) ( 1) ( 1) ,Tκ κ κ κ−+ = + + +Θ νΘ K H P  (23) 
 
and 
 

11( 1) ( 1) ( 1)  ,κ κ κ
−−⎡ ⎤+ = + + +⎣ ⎦Θ Θ zK Ψ P  (24) 

 
1( 1) ( 1) ( 1) ( 1) .Tκ κ κ κ−+ = + + +Θ νΨ H P H  (25) 

 
Finally, using the derived filter equations (22) thru (25) and the initial RSS map state model 
of equation (9), the optimal filtering procedure for the dynamic reconstruction of the desired 
RSS map can be represented in discrete time κ as 
 

[ ]ˆ ˆ ˆ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( )  ;     =0,1, ,κ κ κ κ κ κ κ κ κ+ = + + + − +Λ Φ z Θ Σ H Φ z  (26) 

 
4. Geophysical Dynamic Laboratory 
 
The described technique provides the dynamical RSS map based on the atlas of RSS maps 
extracted from MRS scenes.  
The GDL method is defined in the form of equation (26) based on the atlas of RSS maps in 
discrete time as follows 
 

[ ]ˆ ˆ ˆ ˆ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( )  .GDL κ κ κ κ κ κ κ κ= + = + + + − +Λ Λ Φ z Θ Σ H Φ z  (27) 
 
Here, the observation vector Σ  is formed by the threshold values of the same (i, j)-th pixel 
through the different RSS maps of the atlas in the discrete time κ.  
The estimate vector z is formed by the estimation values Λ one step prior in the same cur-
rent discrete time. Fig. 5 shows the detailed computational structure of the GDL method for 
the environmental RSS extraction from MRS imagery. 

 
5. Simulation Experiments for Hydrological Signatures 
 
In the reported here simulation results, hydrological RSS electronic maps are extracted from 
high-resolution MRS images. Three level RSS are selected for this particular simulation 
processes, moreover, unclassified zones are also considered (2-bit classification) and are 
described as follows. 
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Fig. 5. Computational structure of the GDL method 
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██ – Black regions represents the RSS relative to the wet zones of the MRS image. 
 
██ – Heavy-gray regions represents the RSS relative to the humid zones of the MRS. 
 
██ – Light-gray regions represents the RSS relative to the dry zones of the MRS. 
 
██ – White regions represent the unclassified zones of the RSS map. 

 
5.1 Multispectral Image Classification 
To analyze the overall performance of the WPS technique, a set of four high-resolution 
(1024x1024-pixels) MRS scenes in TIFF format are used, borrowed from diverse zones in 
Mexico.  
A comparison with the results obtained with the classical WOS and MDM methods is pro-
vided. Figs. 6(a), 7(a), 8(a) and 9(a) show the four different MRS scenes, respectively.  
To perform the qualitative study, Figs. 6(b), 7(b), 8(b) and 9(b) show the results obtained 
with the WOS method for each scene, respectively.  
Figs. 6(c), 7(c), 8(c) and 9(c) show the results obtained with the MDM method for each scene, 
respectively.  
Figs. 6(d), 7(d), 8(d) and 9(d) show the results obtained with the WPS method for each scene, 
respectively. 
The quantitative study is performed calculating the classified percentage obtained with the 
WOS, MDM and WPS methods, respectively, and compared with the original class quanti-
ties from the original MRS scenes. Tables 1, 2, 3 and 4 show the quantitative results. 
The theory of the WOS method defines that the classification is performed only using one 
band (Jensen, 2005), for this simulation the G band was used. The resulting RSS map shows 
a large unclassified zone, this is due to the color gradient present on the original MRS image 
and the lack of supervised data.  
The MDM method uses the three RGB bands (Jensen, 2005). The WPS method also uses the 
three RGB bands to analyze the pixel-level means and variances to perform a more accurate 
segmentation and classification; therefore, using the statistical pixel-based information the 
RSS map obtained shows a high-accurate classification without unclassified zones. From the 
details shown in Figures 6 thru 9, the WPS method performs a more accurate and less 
smoothed identification of the classes. 
Tables 1 to 4 show the quantitative performances. From this analysis, the WPS classified 
image provides a lower percentage difference from the original MRS scenes than the WOS 
or MDM classified images. Moreover, the WOS and MDM reveal some unclassified zones 
due to their respective decision rules (Johannsen et. al, 2003); the WPS method classifies all 
the pixels due to the use of pixel-based statistical training data.  
These qualitative and quantitative results probe the overall performance of the developed 
WPS technique. 
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a. Original high-resolution MRS scene 
 

b. RSS map extracted with the WOS method 
 

  
c. RSS map extracted with MDM method 
 

d. RSS map extracted with the WPS method 
 

Fig. 6. Simulation results for hydrological RSS map extraction from the first MRS scene 

 
Method → Original  WOS method MDM method WPS method 

 Base [%] % Diff.  % Diff.  % Diff.  

Wet  34.34 35.37 -1.03 31.93 +2.41 50.09 -15.74 
Humid  32.60 26.75 +5.85 17.00 +15.61 18.37 +14.3 

Dry  33.06 9.45 +23.61 47.18 -14.12 31.54 +1.51 
Unclass.  ----- 28.43 +28.43 3.90 +3.90 0.00 +0.00 

Percentage Points 
Difference →  58.92%  36.04%  31.5% 

Table 1. Comparative table of the hydrological RSS percentages obtained with the classifica-
tion methods from the first MRS scene 
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a. Original high-resolution MRS scene 
 

b. RSS map extracted with the WOS method 
 

  
c. RSS map extracted with MDM method 
 

d. RSS map extracted with the WPS method 
 

Fig. 7. Simulation results for hydrological RSS map extraction from the second MRS scene. 

 
Method → Original  WOS method MDM method WPS method 

 Base [%] % Diff. % Diff. % Diff. 

Wet  33.11 23.66 +9.45 29.53 +5.57 51.22 -18.12 
Humid  33.11 21.78 +11.32 21.24 +13.87 19.79 +13.3 

Dry  33.79 27.03 +6.76 50.06 -16.28 28.99 +4.83 
Unclass.  ----- 27.53 +27.53 1.17 +1.17 0.00 +0.00 

Percentage Points 
Difference →  55.05%  36.88%  36.2% 

Table 2. Comparative table of the hydrological RSS percentages obtained with the classifica-
tion methods from the second MRS scene. 
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a. Original high-resolution MRS scene 
 

b. RSS map extracted with the WOS method 
 

  
c. RSS map extracted with MDM method 
 

d. RSS map extracted with the WPS method 
 

Fig. 8. Simulation results for hydrological RSS map extraction from the third MRS scene. 

 
Method → Original  WOS method MDM method WPS method 

 Base [%] % Diff.  % Diff.  % Diff.  

Wet  33.02 6.87 +26.15 40.98 -7.96 21.31 +11.7 
Humid  33.09 33.30 -0.22 35.38 -2.29 36.38 -3.31 

Dry  33.89 23.07 +10.82 20.66 +13.23 42.31 -8.43 
Unclass.  ----- 36.75 +36.75 2.98 +2.98 0.00 +0.00 

Percentage Points 
Difference →  73.94%  26.45%  23.4% 

Table 3. Comparative table of the hydrological RSS percentages obtained with the classifica-
tion methods from the third MRS scene. 
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a. Original high-resolution MRS scene 
 

b. RSS map extracted with the WOS method 
 

  
c. RSS map extracted with MDM method 
 

d. RSS map extracted with the WPS method 
 

Fig. 9. Simulation results for hydrological RSS map extraction from the fourth MRS scene. 

 
Method → Original  WOS method MDM method WPS method 

 Base [%] % Diff.  % Diff.  % Diff.  

Wet  32.41 65.35 -32.94 19.06 +13.35 20.62 +11.8 
Humid  34.13 25.52 +8.61 60.14 -26.00 58.95 -24.82 

Dry  33.46 9.03 +24.42 18.22 +15.23 20.43 +13.1 
Unclass.  ----- 0.10 +0.10 2.58 +2.58 0.00 +0.00 

Percentage Points 
Difference →  66.07%  57.16%  49.6% 

Table 4. Comparative table of the hydrological RSS percentages obtained with the classifica-
tion methods from the fourth MRS scene. 



Advances in Geoscience and remote sensing 

5.2 Dynamical Analysis 
A set of hydrological RSS electronic maps were extracted from 40 MRS high-resolution im-
ages of a particular scene obtained with the same time interval (discrete time).  
The GDL dynamic post-processing method is applied to the high-resolution collection of 
RSS map (Shkvarko & Villalon, 2007) based on the computational structure described in Fig. 
5. First, the collection of 40 RSS maps (Marple,1987) collected in different time of the same 
scene is set for the simulation. Therefore, the discrete time κ = 40. Second, the pixel evolu-
tion vector Σij is defined for this simulation as  
 

( ),1 ,2 ,32
ˆ ˆ ˆ  ,ij ij ij ij=Σ Σ Σ Σ  (28) 

 
where Σ̂  represents the threshold values of the same (i, j)-th pixel from the 40 RSS maps. 
This is the observation signal to be post-processed with the dynamic post-processing meth-
od. 
Third, the measurement matrix H and the state transition matrix Φ are simplified to I be-
cause the equation of observation (9) and the stochastic dynamic state equation (21) are 
supposed to be ideal (noiseless, because the observation vector is directly extracted from the 
RSS maps). The dynamic filter operator (gain matrix) Θ determines the variance evolution of 
the observation values (28) of the dynamically reconstructed RSS. The initial conditions are 
the initial observation value (0)Σ  and its initial estimation { }ˆ (0) (0)= ΛΛ Σ .  

The GDL method specified by equation (25) is applied to estimate the ultimate value Λ̂ that 
is the next (κ + 1)-st evolution time step of the observation vector Σij. This represents the 
dynamic filtration of the desired RSS from the reconstructed observation data and can be 
expressed as 
 

( )ˆ ˆ 1  .ij κ= +Λ Λ  (29) 
 
This process is performed through all the {(i, j)} pixels of the 40 RSS maps to obtain a single 
aggregated RSS map ˆ

GDLΛ . The simulation results of application of the developed GDL 
method are presented in Figs. 10 and 11.  
Figs. 10(a) thru 10(e) show the first five high-resolution (1024x1024-pixel) hydrologic RSS 
maps extracted from the first five MRS scenes (corresponding to the Banderas Bay of Puerto 
Vallarta in Mexico) in different evolution time (κ = 1, 2, 3, 4 and 5), respectively.  
Fig. 10(f) shows the dynamic RSS map reconstructed with the application of the GDL meth-
od for the κ+1 time step (κ = 41) specified by the computational structure described in Fig. 5. 
Fig. 11(a) shows the first original high-resolution (1024x1024-pixel) MRS scene (κ = 1). Fig. 
11(b) shows the dynamic MRS map reconstructed with the application of the GDL method 
for the κ = 41 time step. 
The RSS maps were reconstructed in discrete time κ, therefore, the GDL method produces 
the desired dynamic RSS prediction of the RSS map for the next time step (κ + 1); where κ = 
0, 1, …. 
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a. RSS map extracted from the MRS scene 
for a κ = 1 discrete time step 
 

b. RSS map extracted from the MRS scene 
for a κ = 2 discrete time step 
 

  
c. RSS map extracted from the MRS scene 
for a κ = 3 discrete time step 
 

d. RSS map extracted from the MRS scene 
for a κ = 4 discrete time step 
 

  
e. RSS map extracted from the MRS scene 
for a κ = 5 discrete time step 
 

f. RSS dynamic prediction obtained with 
GDL for the κ = 41 discrete time step 
 

Fig. 10. Simulation results for dynamic RSS map analysis. 
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a. Original high-resolution MRS scene for 
the κ = 1 discrete time step 
 

b. High-resolution MRS scene predicted for 
the κ = 41 discrete time step 
 

Fig. 11. Simulation results for dynamic MRS map analysis. 
 
6. Summary of Computational Algorithms 
 
The detailed stages of the computational algorithm for the WPS and GDL methodologies are 
summarized as follows. 

 
6.1 Weighted Pixel Statistics method 
1. Set the number of RSS to classify. 
2. Select one point on the MRS image for each class to be classified.  
3. Separate the spectral RGB band from the true-color MRS image. 
4. The selected points determine the training weights that consist of the means matrix M 
and the variances matrix V. These matrixes contain the mean and variance of each point in 
the R, G and B bands, respectively.  
5. For each (i, j)-th pixel in the R, G and B bands, respectively, perform the following pro-
cess 

- Set a 5x5 pixel neighbourhood shift window W. 
- Determine the mean of the shift window W.  
- Determine the variance of the shift window W.  
- Calculate the Euclidean distances between the means and the training means for each 

band and for each class (Fig. 3). 
- Calculate the Euclidean distances between the variance and the training variances for 

each band and for each class (Fig. 3). 
- Select the minimum class distance for the means. 
- Select the minimum class distance for the variances. 
- Perform a comparison between the class distance for the mean and the class distance 

for the variance, and classify the pixel according to the minimum value and the class 
from which is obtained. 
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6.2 Geophysical Dynamic Laboratory method 
1. Set a collection of discrete time (κ) RSS maps from the electronic atlas extracted from the 
MRS imagery for a particular scene. 
2. For each (i, j)-th pixel on the RSS maps perform the following process: 

- Set the pixel-based evolution vector Σij, which contains the threshold RSS values for the 
pixel in discrete evolution time κ. 

- Apply the GDL method to the vector Σij (Fig. 5) to obtain the dynamic prediction 
ˆ ( 1)κ +Λ , which conform the matrix ˆ

ijΛ . 

3. The reconstructed ˆ
ijΛ  matrix conform the ˆ

GDLΛ  dynamic RSS image in discrete time κ. 

 
7. Conclusion 
 
The extraction of remote sensing signatures from a particular geographical region allows the 
generation of electronic signature maps, which are the basis to create a high-resolution sig-
natures atlas processed in discrete time, and moreover, perform its dynamical analysis. This 
chapter analyzed the implementation possibilities of the WPS and GDL methods for hydro-
logical resources management based geophysical applications. The extraction of hydrologi-
cal RSS from high-resolution MRS imagery was reported to probe the efficiency of the de-
veloped techniques. 

 
7.1 Multispectral Image Classification 
From the simulation results one may deduce that the WOS classifier generates several un-
classified zones; while the MDM classifier is more accurate because it uses more robust 
information in the processing (several image spectral bands), nevertheless, despite the fact 
that few zones are unclassified, the results have considerable density of unity pixels (suffi-
cient for decision making based on these extracted RSS). The developed WPS method pro-
vides the high resolution environmental RSS electronic map with a high-accurate classifica-
tion and without unclassified zones. This is achieved because the WPS method uses the 
three RGB bands to analyze the pixel-level means and variances to perform a more accurate 
segmentation and classification; therefore, using the statistical pixel-based information the 
RSS map obtained shows a high-accurate classification without unclassified zones. The 
resulting RSS map ensures better results in the classification achieved with the developed 
WPS method. This is probed by the RSS percentages obtained with the WPS method, which 
manifest the lowest percentage difference to those obtained with the WOS and MDM classi-
fication techniques. Also, the WPS method for RSS extraction can be applied to several MRS 
images of a particular geographical region obtained in different moments of time (discrete 
time), to generate a RSS atlas of environmental electronic maps. This process is a powerful 
tool for geophysical resource management. 

 
7.2 Dynamical Analysis 
The GDL method provides a possibility to perform the high-resolution intelligent analysis of 
the dynamic behavior or the desired environmental RSS map model with a high-accurate 
classification of the particular RSS map evolution. 
This is achieved because the GDL algorithm aggregates the RSS map atlas information for a 
particular MRS scene in discrete evolution time and employs more detailed robust a priori 
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information from the original MRS scene. The resulting dynamic RSS prediction map en-
sures high-accurate estimation results in the classification achieved with the developed GDL 
method. The reported here simulation results shows the qualitative and quantitative analy-
sis of the overall performance of the WPS and GDL methods for remote sensing signatures 
analysis. The application as an auxiliary tool in Geophysical information retrieval and data 
interpretation for land use management and analysis are a matter of further studies. 
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