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ABSTRACT

In this paper, the problem of estimating from a finite set of 
measurements of the radar remotely sensed complex data 
signals, the power spatial spectrum pattern (SSP) of the 
wavefield sources distributed in the environment is cast in 
the framework of Bayesian minimum risk (MR) paradigm 
unified with the experiment design (ED) regularization 
technique. The fused MR-ED regularization of the ill-posed 
nonlinear inverse problem of the SSP reconstruction is 
performed via incorporating into the MR estimation strategy 
the projection-regularization ED constraints. The simulation 
examples are incorporated to illustrate the efficiency of the 
proposed unified MR-ED technique. 

Index Terms –– Signal processing, Image reconstruction, 
Regularization  

1. INTRODUCTION 

In conventional applications related to remote sensing 
imagery [1]–[4], the power image formation problems are 
stated and treated as problems of estimating the SSP of the 
backscattered wavefield sources from a finite set of the 
available time-space measurements of the complex 
observation data fields. Such reconstructed SSPs are 
referred to as desired power images of the remotely sensed 
environmental scenes.  
     Two nonparametric approaches to the solution of such a 
class of problems are usually addressed as classical. The 
first one is based on the pre-estimation of the data field 
correlation function (CF) from a set of independent 
realizations of the data field and solution of an inverse 
problem of restoration of the SSP from the CF estimates via 
inverting the Van-Zittert-Zernike formula [1], [2]. The 
second one is the celebrated kernel spectral estimation or 
smoothed periodogram method [2], [4], [5] traditionally 
applied to the one-dimensional spatial uniformly sampled 
data with the Fourier transform signal formation operator 
(SFO). These both classical nonparametric approaches do 

not employ the statistically optimal Bayesian estimation 
theory-based treatment of the problem. Moreover, in various 
problems related to the SSP estimation, the signals are 
contaminated with colored noise, the data recording method 
is not restricted to a uniform sampling, and modulated 
signal waveforms are used that specify the corresponding 
models of the SFO.  
     The key distinguishing feature of a new paradigm 
considered in the present study is as follows: the inverse 
problem of estimating the SSP of the random backscattered 
wavefield from the available measurements of a finite 
number of independent realizations of the data field is stated 
and treated in the framework of Bayesian minimum risk 
(MR) strategy aggregated with the robust experiment design 
(ED) descriptive regularization technique. The fused MR-
ED regularization of the ill-posed nonlinear inverse problem 
of the SSP reconstruction is performed via incorporating 
into the MR estimation strategy the model-level and system-
level ED considerations, e.g. metrics structures imposed in 
the corresponding observation and solution spaces and 
system-level constraints specified by an employed data 
recording method.  
     To reduce the computational load of the MR-ED-optimal 
estimator, the robust numerical implementation scheme is 
proposed. Due to incorporating the ED considerations the 
proposed robustification is radically distinct from the 
previously reported developments of the fused Bayesian-
regularization approaches undertaken in the recent studies 
[6]–[8]. 

2. MR-ED METHOD

2.1. ED projection formalism for data representation

Viewing it as an approximation problem [2], [8] leads one 
to a projection concept for a reduction of the data wavefield  

u(y) observed in a given space-time domain Y y to the M-
D vector U of sampled spatial-temporal data recordings. 
The M-D observations in the terms of projections [4], [5] 
can be expressed as
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u(M)(y) = (PU(M)u)(y) = Um m(y)               (1)

with coefficients Um = [u, hm]U; m = 1, …, M,  where PU(M)

denotes the projector onto the M-D observation subspace 
U(M) that is uniquely defined by a set of the (spatial-

temporal) basis functions { m(y)} that span U(M). Recall that 

functions { m(y)} and {hm(y)} must compose the dual bases 
in U(M), i.e. they must be mutually orthonormal,                 

[ n, hm] = nm, where nm is the Kroneker operator.  

Physically, the complex conjugate set { (mh y)} is 

specified by a composition of the antenna element tapering 

functions { l(p); l = 1, …, L} (that we admit to be either 
identical or different for the different elements of the L-D

array), and the pulse response functions { i(t) ; i = 1, …, I}
of the I sampling filters in the corresponding spatial 
receiving channels (as well identical or different) ordered by 

multi-index  m = (l, i) = 1, …, M = L I. In practice [2], [5], 
the antenna elements are distanced in space (do not 

overlap), i.e. the tapering functions { l(p)} have the 

distanced supports in P p, thus they compose a set of 
orthogonal functions.  

The same assumption of orthogonality is usually valid 

for the sampling filters  { i(t)}, t T, in which case the dual 

basis { m(y)} is simply the properly normalized set of 

{hm(y)}, i.e.    { m(y) = ||hm(y)||–2hm(y); m = 1, …, M}.
     Note that in the operator formalism, the projector, PU(M),
in (1) can be expressed as a linear integral operator with the 

functional kernel, PU(M)(y, y ) = m(y) (mh y ).

     In analogy to (1), one can define the projection scheme 
for the K-D approximation of the scene scattering function 

over a given spatial image domain  X x as follows, 

e(K)(x) = (PE(K) e)(x) = Ek k(x);                (2) 

Ek = [e, gk]E; k = 1, …, K, where PE(K) defines a projector 
onto the K-D image subspace E(K) spanned by K basis

functions { k(x)}. The { k(x)} and {gk (x)} compose the 
dual bases in E(K), and the linear integral projector operator 

is specified by its kernel PE(K)(x, x ) = k(x) (kg x ).

2.2. Problem model

General model of the observation wavefield  u is defined by 
specifying the stochastic equation of observation of an 

operator form [4]:  u = Se + n; e  E;  u, n  U; S: E
U, in the Gilbert signal spaces  E  and  U with the metric 
structures induced by the inner products,                           

[u1, u2]U = yyy duu

Y

)()( 21 , and [e1, e2]E = xxx dee

X

)()( 21 ,

respectively. The operator model of the stochastic equation 
of observation (EO) in the conventional integral form [2], 
[4] may be rewritten as  

u(y) = (Se(x))(y) =
X

S ),( xy e(x)dx + n(y).        (3)

     Using the presented above ED formalism, one can 
proceed from the operator-form EO  (3) to its conventional 
vector form,  

U = SE + N , (4)

in which E, N and U are the zero-mean vectors composed of 
the coefficients Ek , Nm , and Um.  These are characterized by 
the correlation matrices RE = D = D(B) = diag(B) (a 
diagonal matrix with vector  B at its main diagonal), RN,
and RU = S0RES0

+ + RN, respectively. (Recall that 
superscript + defines the Hermitian conjugate when stands 
with a matrix or vector). The vector, B, is composed of the 

elements  Bk = EkEk
* ; k = 1, …, K, and is referred to as a 

K-D vector-form approximation of the SSP.  

     We refer to the estimate B̂  as the discrete-form 
representation of the brightness image of the wavefield 
sources distributed in the environment remotely sensed with 
the array radar (SAR), in which case the continuous-form 
finite dimensional approximation of the estimate of the SSP 

distribution )(ˆ
)( xKB in the environment in a given spatial 

image domain  X x can be expressed as follows, 

)(ˆ
)( xKB =  Bk | k(x)|2 = T(x)diag( B̂ ) (x) ,     (5) 

where (x)  represents a K-D vector composed of the basis 

functions  { k(x)}.

2.3. Experiment design considerations 

In the traditional remote sensing approach to image 

formation [2], the matched filter  S+PU(M)u(M)(y) = )(ˆ Ke  is 

first applied to the data u(M)(y) to form the estimate )(ˆ )( xKe

of the complex scattering function e(K)(x) and the resulting 

image is formed as the averaged (over the J j independent 
data recordings) squared modulus of such the estimates, i.e.  

)(ˆ
)( xKB = aver{| )(ˆ

)(
)( xj

Ke |2}. In that case, the degenerate 

(rank M) SFO  S(M) = PU(M)S  uniquely specifies the system 
ambiguity function (AF), i.e. the instrumental function of 
the imaging system that is defined as a kernel of the 

integral operator, (M) = S+PU(M)[PU(M)RnPU(M)]
–1PU(M)S,

where Rn    is the correlation operator of the noise field in 
(1) and S+ is the adjoint to S operator [4]. Therefore, it is 
reasonable for practical applications to treat the problem 
taking into account the ED-based principles [2], [8] on how 
to design the system instrumental function that has the 
"best shape" (e.g. the narrow main beam with the lowest 
possible level of sidelobes of the AF). Next, to satisfy the 
observability requirements [5], for any chosen  PU(M) one

should  design  the  image  subspace  E(K) = span{ k(x)}  of 
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dimension       K M that is orthogonal to the null-space 
[8] of the degenerate SFO S(M) = PU(M)S. Hence, all 
conventional imaging techniques that ignore these ED-
motivated requirements including the celebrated minimum 
variance distortionless response (MVDR) method should 
be considered as not properly regularized in the ED sense. 
In all such cases, some form of regularization of the image 
formation algorithms should be accomplished [4], [7].  

2.4. MR-ED strategy  

In the descriptive statistical formalism, the desired SSP 

vector B̂  is recognized to be the vector of a principal 
diagonal of anstimate of the correlation matrix RE(B), i.e. 

B̂ = { ER̂ }diag. Thus one can seek to estimate B̂ = { ER̂ }diag

given the data correlation matrix  RU pre-estimated by some 
means [4],  

UR̂ = Y =
Jj

aver {U(j)U
+

(j)},                      (6) 

by determining the solution operator F such that

B̂ = { ER̂ }diag = {FYF+}diag .                  (7)

     To optimize the search of F we propose here the 
following MR-ED descriptive regularization strategy

F {min
F

(F)},                             (8)

(F) = trace{(FS – I)A(FS – I)+} + trace{FRNF+}  (9)

that implies the minimization of a weighted sum of the 

systematic and fluctuation errors in the desired estimate B̂ ,
where the selection (adjustment) of the regularization 

parameter  and the weight matrix A provides the additional 
ED degrees of freedom incorporating any descriptive 
properties of a solution if those are known a priori [5], [8]. 
It is easy to recognize that strategy (8) is structurally similar 
to the statistical MR linear estimation strategy [2], [4] 
because in the both cases the balance between the gained 
spatial resolution and the noise energy in the resulting 
estimate is to be optimized.   

2.5. General form of solution operator 

Routinely solving the minimization problem (8) we obtain 

F = KA, S+ 1
NR ,                           (10) 

where KA, = (S+ 1
NR S + A–1)–1                  (11)

and the desired SSP estimate is given by 

EDMRB̂  = {KA, S+ 1
NR Y 1

NR SKA, }diag

= {KA,
Jj

aver {Q(j)Q
+

(j)}KA, }diag ,             (12)

where Q(j) = {S+ 1
NR U(j)} is recognized to be an output of 

the matched spatial processing algorithm with noise 

whitening [4]. In the case of white noise, 1
NR = (1/N0)I.

     For such solution operator, the objective function  (F)

attains its minimal possible value, min(F) = tr{KA, }.

2.6. MR-ED-robustified algorithms   

2.6.1. Robust spatial filtering (RSF)  

Putting A = I and = N0/B0, where B0 is the prior average 
gray level of the SSP, the F can be reduced to the following 
Tikhonov-type robust  spatial filter 

FRSF  = F (1)  =  (S+S + (N0/B0)I )–1S+.           (13) 

2.6.2. Matched spatial filtering (MSF)  

In the previous scenario for >> ||S+S||, the F becomes 

FMSF  = F(2) const S+                    (14) 

i.e. reduces to the conventional MSF operator. 

2.6.3. Adaptive spatial filtering (ASF)  
Consider now the case of an arbitrary zero-mean noise with  
correlation matrix RN, equal importance of two error 

measures in (9), i.e. = 1, and the solution dependent 

weight matrix A = D̂  = diag( B̂ ). In this case, the MR-ED 
solution operator defines the adaptive spatial filter 

FASF = F(3) =  (S+ 1
NR S + 1D̂ )–1S+ 1

NR .       (15) 

3. SIMULATIONS AND CONCLUDING 
DISCUSSIONS

We simulated conventional side-looking imaging radar (i.e. 
the array was synthesized by moving antenna) with the SFO 
factored along two axes in the image plane: the azimuth 
(horizontal axis) and the range (vertical axis). We 
considered a triangular shape of the imaging radar range 
ambiguity function of 5 pixels width, and a sin(x)/x shape
of the side-looking radar antenna radiation pattern of 15 
pixels width at 0.5 from the peak level. Simulation results 
are presented in Figures 1 – 4. The figure notes specify each 
particular employed imaging method. All scenes are 
presented in the same 512-by-512 pixel image format. The 
advantage of reconstructive imaging using the MR-ED-
optimal ASF estimator (Fig. 4) and its robustified 
suboptimal RSF version (Fig. 3) over the case of 
conventional MSF technique (Fig. 2) is evident. The spatial 
resolution is substantially improved with both (RSF and 
ASF) techniques; the regions of interest and distributed 
scene boundaries are much better defined.  

The presented study revealed also the way for deriving 
the suboptimal RSF technique with substantially decreased 
computational load. 
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Fig. 1. Original scene  
(not observable in the radar imaging experiment) 

Fig. 2. Rough radar image formed
using conventional MSF technique 

Fig. 3. Enhanced scene image formed applying the RSF method 

Fig. 4. Scene image reconstructed applying the ASF method 

     Being a structural simplification of the optimal ASF 
estimator, the RSF technique permits efficient non-adaptive 
numerical implementation in both iterative and concise 
direct computational forms. The proposed robust and 
adaptive nonlinear estimators contain also some design 
parameters viewed as the system-level degrees of freedom, 
which with an adequate selection can improve the 
performance of the corresponding techniques. The proposed 
methodology could be considered as an alternative approach 
to the existing ones that employ the descriptive 
regularization paradigm [1] - [4] as well as the MR method 
for SAR image enhancement recently developed in [5], [6]. 
The provided simulation examples illustrate the overall 
performance improvements attainable with the proposed 
methods. The simulations were performed over the typical 
environmental scene borrowed from the real-world remote 
sensing imagery.  

4. REFERENCES 

[1] A.K. Jain, Fundamentals of Digital Image Processing, N.J.: 
Englewood Cliffs, 1989.

[2] R.K. Raney, Principles and Applications of Imaging Radar, 
Manual of Remote Sensing, New York: John Wiley & Sons, 1998.

[3] H.L. Van Trees, Optimum Array Processing, New York: John 
Wiley & Sons, 2002.

[4] Y.V. Shkvarko, “Estimation of wavefield power distribution in 
the remotely sensed environment: Bayesian maximum entropy 
approach”, IEEE Transactions on Signal Processing, 50, pp. 2333-
2346, 2002.

[5] Y.V. Shkvarko, “Unifying regularization and Bayesian 
estimation methods for enhanced imaging with remotely sensed 
data Part I: Theory”, IEEE Transactions on Geoscience and 
Remote Sensing, pp. 923-931, 2004.

[6] Y.V. Shkvarko, “Unifying regularization and Bayesian 
estimation methods for enhanced imaging with remotely sensed 
data Part II: Implementation and performance issues”, IEEE
Transactions on Geoscience and Remote Sensing, pp. 932-940, 
2004.

[7] A. B. Gershman, “Robustness issues in adaptive beamforming 
and high-resolution direction finding”, in High-Resolution and 
Robust Signal Processing, Yingbo Hua, A. B. Gershman, Qi 
Cheng, Eds. New York: Marcel Dekker, pp. 63-110, 2004. 

[8] Y.V. Shkvarko and I.E. Villalon-Turrubiates, “Unified 
Bayesian-Experiment Design Technique for High-Resolution 
Reconstruction of the Remote Sensing Imagery”, Proceedings of 
the 1st IEEE International Workshop on Computational Advances 
in Multi-Sensor Adaptive Processing, CD-ROM IEEE Catalog No. 
05EX1140C, Puerto Vallarta, Mexico, Dec. 2005. 

3244


