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department. His research interests focus on regulator theory, sliding
mode control, discrete-time nonlinear control systems, and their
applications to electrical machines.

1 Introduction

The ABS control problem consists of imposing a desired vehicle motion and as a
consequence, provides adequate vehicle stability. The main difficulty arising in the
ABS design is due to its high non-linearities and uncertainties presented in the
mathematical model. Therefore, the ABS has become an attractive research area
in non-linear systems control framework. On the other hand, sliding mode (SM)
approaches have been widely used for the problems of dynamic systems control
and observation due to their characteristics of finite time convergence, robustness
to uncertainties and insensitivity to external bounded disturbances (Utkin et al.
2009), (DeCarlo et al. 2011). Then, SM control emerges as an very interesting
alternative for ABS design.

Several researchers have dealt with the issue of designing SM controllers and
observers for automotive applications (Imine et al. 2011). For the ABS case, some
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examples are Tan & Chin (1991), Unsal & Pushkin (1999), Hadri et al. (2002),
Ming-Chin & Ming-Chang (2003), Patel et al. (2007), including the problem of
extremum seeking presented in Drakunov et al. (1995).

Note that the SM techniques are based on the idea of the sliding manifold,
that is an integral manifold for the closed-loop system with finite reaching
time Drakunov & Utkin (1992). This manifold can be implemented by different
methods including the use of a discontinuous function or continuous one with
discontinuous derivatives (so-called Higher Order Sliding Modes). Let us note,
that this issue of implementation, as demonstrated clearly in Utkin (1992) and
earlier works is computational and depends on the system behaviour in the
boundary layer of the sliding manifold. Thus, the main difficulty and innovations
in continuous-time sliding mode research is in the design of the manifold rather
than in the reaching phase that belongs more to numerical issue.

In this context, depending on the choice of the sliding manifold and its relative
degree with respect to the control input, it is possible to find the so-called
unmatched perturbations. Comparing these perturbations with the matched ones,
it can be noted that the matched perturbations can be rejected directly by the
control input while the unmatched ones affects the sliding mode equation and, as
result, the closed-loop system behaviour (Drazenovich 1969).

Several methods has been treated in order to design a sliding manifold
which is robust with respect to the unmatched perturbations. The discussions
given in Estrada & Fridman (2010a) and Estrada & Fridman (2010b) present the
use of Higher Order Sliding Modes (Levant 1998) for the finite time rejection
of unmatched perturbations for a class of nonlinear systems presented in the
Nonlinear Block Controllable form (Loukianov 1998).

In this work we use an alternative approach, namely, the Integral Nested
SM control (Huerta-Avila et al. 2008) which is based of Block Control technique
(Drakunov et al. 1990a,b, Loukianov 1998, 2002) combined with the nested
(Adhami-Mirhosseini & Yazdanpanah 2005) and integral (Utkin et al. 2009)
sliding modes, providing robustness with respect to both the to matched
and unmatched perturbations and ensuring output tracking. Moreover, it can
be noted that, theoretically, the Integral Nested SM control can guarantee
the robustness of the system throughout the entire response starting from
the initial time instance and reduce the controller gains in comparison with
the standard sliding mode (Rivera & Loukianov 2006, Huerta-Avila et al. 2007,
González-Jiménez & Loukianov 2008). Our purpose in this work is to design an
robust SM controller for the ABS which achieves asymptotic tracking the relative
slip to a desired trajectory in presence of both the matched and unmatched

external disturbances and parameter variations. The sliding manifold is designed
on the basis of Integral Nested SM control due to its simplicity avoiding the
formulation of exact SM differentiators (Levant 1998), which are needed in the
two first mentioned SM methods for sliding manifold design. For the projection
motion, we consider two situations. In the first one, it is considered the control
input which can take only the values ”0” and ”1”, that corresponds to the control
of two position valves. It can be noted that this real situation was not considered
in the previous works. A a first order SM controller is designed in order to ensure
a good performance for the ABS. In the another situation, it is supposed that the
control valve position is a continuous variable, and a Super-Twisting (ST) control
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algorithm (Levant 1993, Fridman & Levant 2002) is implemented to achieve the
designed sliding manifold be attractive. As a result, in both cases, the vehicle
dynamics, i.e., the vehicle velocity, on the designed sliding manifold becomes
asymptotically stable, ensuring asymptotic stability of the tracking error.

The work is organized as follows. The mathematical model for the longitudinal
movement of a vehicle, including the brake system is presented in Section 2. In
Section 3, an integral nested manifold for ABS is formulated and a first order
SM and a Super-Twisting SM controllers, are designed. The simulation results are
presented in Section 4 to verify the robustness and performance of the proposed
control strategy. Finally, some conclusions are presented in Section 5.

2 Mathematical Model

In this section, the dynamic model of a vehicle is shown. Here we use a quarter of
vehicle model, this model considers the pneumatic brake system, the wheel motion
and the vehicle motion. We study the task of controlling the wheels rotation, such
that, the longitudinal force due to the contact of the wheel with the road, is near
from the maximum value in the period of time valid for the model. This effect is
reached as a result of the ABS valve throttling.
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Figure 1: Pneumatic brake model

2.1 Pneumatic Brake System Equations

The specific configuration of this system considers brake disks, which hold the
wheels, as a result of the increment of the air pressure in the brake cylinder (Fig.
1). The entrance of the air trough the pipes from the central reservoir and the
expulsion from the brake cylinder to the atmosphere is regulated by a common
valve. This valve allows only one pipe to be open, when 1 is open 2 is closed and
vice versa. The time response of the valve is considered small, compared with the
time constant of the pneumatic system.
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Let us consider Fig. 1, we suppose the brake torque Tb is proportional to the
pressure Pb in the brake cylinder

Tb = kbPb (1)

with kb > 0. For the brake system we use an approximated model of pressure
changes in the brake cylinder due to the opening of the valve with a first order
relation (Clover & Bernard 1998), this relationship can be represented as

τṖb + Pb = Pcu (2)

where τ is the time constant of the pipelines, Pc is the pressure inside the central
reservoir, u is the valve input signal.

We suppose two cases

Case 2.1: When the control valve position is a continuous variable, the
parameter τ of the equation (1) is constant.

Case 2.2:
When the control input can take only two values ”0” or ”1”, the opening and

closing of the valve is momentary and the parameter τ of the equation (2) are
given by the following rules:

• When pipe 1 is opened and 2 is closed then u = 1 and τ = τin

• When pipe 2 is opened and 1 is closed then u = 0 and τ = τout

For both cases, the atmospheric pressure Pa is considered equal to zero.

2.2 Wheel Motion Equations

To describe the wheels motion we will use a partial mathematical model of the
dynamic system as is done in Novozhilov et al. (2000), Kruchinin et al. (2001),
Petersen et al. (2001) and Magomedov et al. (2001).

Consider Figure 2, the dynamics of the angular momentum change relative to
the rotation axis are given by

Jω̇ = rf (s)− Bbω − Tb (3)

where ω is the wheel angular velocity, J is the wheel inertia moment, r is the wheel
radius, Bb is a viscous friction coefficient due to wheel bearings and f(s) is the
contact force of the wheel.

b

fm = mg

f(s) = µfmφ (s)

v

Tb ω

Figure 2: Wheel forces and torques
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The expression for longitudinal component of the contact force in the motion
plane is

f (s) = µfmφ (s) (4)

where µ is the nominal friction coefficient between the wheel and the road, fm is
the normal reaction force in the wheel

fm = mg +∆fm(fr, ḟr) (5)

with m equal to the mass supported by the wheel, g is the gravity acceleration
and ∆fm(fr, ḟr) represents the variation of normal reaction force due to road
perturbation, fr, and its time derivative, ḟr. The function φ(s) represents a
friction/slip characteristic relation between the tire and road surface. Here, we use
the Pacejka model (Bakker et al. 1989), defined as follows

φ (s) = D sin (C arctan (Bs− E (Bs− arctan (Bs)))) .

In general, this model produces a good approximation of the tire/road friction
interface. With the following parameters B = 10, C = 1.9, D = 1 and E = 0.97
that function represents the friction relation under a dry surface condition. A plot
of this function is shown in Figure 3.
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Figure 3: Characteristic function φ (s)

The slip rate s is defined as

s =
v − rω

v
(6)

where v is the longitudinal velocity of the wheel mass centre. The equations (1)-(6)
characterize the wheel motion.

2.3 The Vehicle Motion Equation

The vehicle longitudinal dynamics without lateral motion is considered. The main
reasons for this assumptions are that the locked wheels generate forces on the car
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which are in a direction opposite to the lineal wheel motion. Therefore, the steering
angle changing has virtually no effect on the force vectors on the wheels. On the
other hand, these forces in the lateral motion can be considered as perturbations
for the longitude motion and can be rejected by the proposed controller.

Then, the vehicle longitudinal dynamics is written as

Mv̇ = −F (s)− Fa(v) (7)

where M is the vehicle mass, Fa(v) is the aerodynamic drag force, which is
proportional to the vehicle velocity and is defined as

Fa(v) =
1

2
ρCdAf (v + vw)

2
+∆vw

where ρ is the air density, Cd is the aerodynamic coefficient, Af is the frontal area
of vehicle, vw is the wind velocity and ∆vw represents its variations.

As in the expression for longitudinal component of the contact force in the
motion plane (4), the contact force of the vehicle F (s) is modelled of the form

F (s) = µφ (s) fM (8)

where µ is the nominal friction coefficient between the wheel and the road, fM is
the normal reaction force of the vehicle

fM =Mg +∆fM (fr, ḟr) (9)

with M equal to the vehicle mass, g is the gravity acceleration and ∆fM (fr, ḟr)
represents the variation of normal reaction force due to road perturbation, fr, and
its time derivative, ḟr.

The dynamic equations of the whole system (1)-(7) can be rewritten using the
state variables

x = [x1, x2, x3]
T
= [ω, Pb, v]

T

with initial conditions x0 = x(0) results the following form:

ẋ1 = − a0x1 + a1f (s)− a2x2 + ∆̄1

ẋ2 = − a3x2 + bu+ ∆̄2 (10)

ẋ3 = − a40F (s)− fw(x3) + ∆̄3

with the output

y = s = h(x) = 1− r
x1
x3

where a0 = B/J , a1 = r/J , a2 = kb/J , a3 = 1/τ , a4 = 1/M , b = Pc/τ and

fw(x3) =
1

2M (ρCdAf ) (x3 + vw)
2
.

The term ∆̄1 contains the variations of the friction parameters µ, Bb, wheel
inertia moment J and the normal reaction force due to road perturbation
∆fm(fr, ḟr). The term ∆̄2 contains the variations of the parameters τ and Pc.
Finally, the term ∆̄3 contains the variations of the parameters µ, Cd, Af , ρ, the

wind velocity variation ∆vw and the force due to road perturbation ∆fM (fr, ḟr).
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3 Integral Nested Sliding Mode Control for ABS

Given s∗ as the desired value of the relative slip s, which must be close to maximize
the function φ(s), the considered problem is to design a controller that obtains
reference tracking in despite of the perturbations in the system. As a solution,
we propose an Integral Nested Sliding Mode controller (Huerta-Avila et al. 2007,
2008) for system (10).

Throughout the development of the controller, we will assume that all the state
variables are available for measurement.

3.1 Integral Sliding Manifold Design

Let s∗ the slip reference, we define the output tracking error as

e1 , x1 −
1− s∗

r
x3. (11)

Then, from (10) and (11) the derivative of e1 is

ė1 = f1 (x1, x3) + b1 (x1, x3)x2 +∆1 (12)

where f1 (x1, x3) =
1−s∗

r [a4F (s)− fw(x3)]− a0x1 + a1f (s) and b1 (x1, x3) = −a2.

The term ∆1 = ∆̄1 −
1−s∗

r ∆̄3 will be considered as an unmatched and bounded
perturbation term.

Considering the variable x2 as a virtual control in (12) we determinate its
desired value x2δ as

x2δ = x2δ,0 + x2δ,1 (13)

where x2δ,0 is the nominal part of the virtual control and x2δ,1 will be designed
using the SM technique to reject the perturbation in (12) (Utkin et al. 2009).

In this way, we propose the desired dynamics for e1 as −k0e0 − k1e1, which is
introduced by means of

x2δ,0 = −
1

b1 (x1, x3)
[f1 (x) + k0e0 + k1e1] (14)

where k0 > 0, k1 > 0 and the new variable e0 is defined by

ė0 = e1, e0(0) = 0. (15)

Now, in order to attenuate the perturbation term ∆1 in (12), we define the
pseudo sliding variable σ1 as

σ1 = e1 + z (16)

where dynamics for the integral variable z will be defined later.
From (12), (13), (14) and (16) the derivative of σ1 is given by

σ̇1 = −k0e0 − k1e1 + x2δ,1 +∆1 + ż. (17)
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Selecting

ż = k0e0 + k1e1

with z (0) = −e1 (0), the equation (17) reduces to

σ̇1 = x2δ,1 +∆1. (18)

To enforce pseudo sliding motion in (18) the virtual control x2δ,1 is chosen as

x2δ,1 = −kσ1
sigm (ε, σ1)

where we use the sigmoid function as a differentiable approximation to the sign
function with the slope ε. Figure 4 shows the approximation for various values of
the sigmoid function slope.
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Figure 4: Sigmoid function for various values of the parameter ε

Now, we define a new error variable e2 as

e2 = x2δ − x2. (19)

Using (13) and (19), straightforward calculations reveal

ė2 = −a3e2 − bu+∆2 (20)

where the term

∆2 = a3x2δ +
∂x2δ
∂x1

ẋ1 +
∂x2δ
∂x3

ẋ3 − ∆̄2 (21)

is considered as a perturbation.
Using the new variables e0, e1, e2 and σ1 the extended closed-loop system (12),

(15), (20) and (18) is presented as

ė0 = e1 (22)

ė1 = −k0e0 − k1e1 + e2 − kσ1
sigm (ε, σ1) + ∆1 (23)

σ̇1 = −kσ1
sigm (ε, σ1) + ∆1 (24)

ė2 = −a3e2 − bu+∆2 (25)

ẋ3 = −a4F (s)− f3 (x3) + ∆̄3 (26)
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3.2 Sliding Mode Control for Two Position Valves

Considering the case 2.2, to induce sliding mode on the manifold e2 = 0 we choose
the control u as

u =
1

2
sign (e2) +

1

2
. (27)

Now, the stability of (22) - (25) closed-loop by (27) is outlined in a step by
step procedure:
Step A) Reaching phase of the projection motion (25);
Step B) SM stability of the projection motion (24);
Step C) SM stability of (22)-(23) in the vicinity of the manifold e2 = 0 and σ1 =
0.

We use the following assumptions:

|∆1| ≤α1 |σ1|+ β1, (28)

|∆2| ≤α2 |e2|+ β2 (29)

and
∣

∣

∣
∆̇1

∣

∣

∣
≤ α0 |σ̇1| (30)

with α0 > 0, α1 > 0, α2 > 0, β1 > 0, β2 > 0, a3 > α2, and b > |∆2|.
Step A) The system (25) can be presented as follows:

Case 1, e2 < 0, then u = 0 and

ė2 = −a3e2 +∆2.

Case 2, e2 > 0, then u = 1 and

ė2 = −a3e2 +∆2 − b.

To analyse the stability conditions we use the Lyapunov function candidate
V2 = 1

2
e2
2
.

Case 1 . The derivative of V2 with respect to time in this case is calculated as

V̇2 = e2 (−a3e2 +∆2) .

Under the condition (29), we have

V̇2 ≤ − |e2| ((a3 − α2) |e2|+ β2) .

In this case, a solution of (25) with u = 0 converges in a finite time to the
region bounded by (Khalil 2001)

|e2(t)| 6 δ0, δ0 =
β2

a3 − α2

. (31)
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Case 2 . Under the condition (29), we have

V̇2 ≤ − |e2| ((a3 − α2) |e2|+ (b− β2)) .

In this case, the solution e2(t) of the subsystem (25) with u = 1 converges in a
finite time to zero ensuring sliding mode motion on e2 = 0.

Step B) To analyse the stability of the subsystem (24) motion we assume that
the sign (x) function can be approximated by the sigmoid function sigm (ε;x) in
the form of the following equality:

sign (x)− sigm (ε;x) = ∆s (ε;x) .

It is evidently that ∆s (x) is bounded, that is, for a given ε there is a positive
constant 0 < γ < 1 such that

‖∆s (ε;x)‖ = γ

Using the Lyapunov function candidate

V1 =
1

2
σ2

1

and taking its derivative along the trajectories of (24) yields

V̇1 = σ1 [−kσ1
sigm (ε, σ1) + ∆1]

≤ − |σ1| [kσ1
(1− γ)− α1 |σ1| − β1]

Therefore, under the condition

kσ1
>

β1
1− γ

in the region

|σ1| <
kσ1

(1− γ)− β1
α1

σ1 converges into a vicinity defined by

|σ1| ≤ ϑ, ϑ =
ln
(

2−γ
γ

)

2ε

ensuring in this vicinity

σ̇1 = {−kσ1
sigm (ε, σ1)}eq +∆1 = 0 (32)

where {}eq denotes an equivalent value operator of a function in sliding mode
(Utkin 1992).

Step C) The sliding mode motion in the vicinity of the manifold e2 = 0 and
σ1 = 0 is described the subsystem (22)-(23) reduced by using (32) to

ė01 = A01e01 + b01e2 (33)
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where e01 = (e0, e1)
T , A01 =

[

0 1
−k0 −k1

]

and b01 =

[

0
1

]

.

Using a positive definite solution P01 of the Lyapunov equation P01A01 +
AT

01P = I2, it is easy to show that the solutions of the SM perturbed equation (33)
under the inequality (31) is ultimately bounded by (Khalil 2001)

‖e01(t)‖ ≤ δ01, δ01 =

√

λmax(P01)

λmin(P01)

δ0
θ
, 0 < θ < 1.

3.3 Sliding Mode Control for Continuous Position Valves

We now consider the types of valve that can vary its position in a continuous
range. To induce sliding mode in the subsystem (25) on the manifold e2 = 0, the
super-twisting control algorithm is applied (Levant 1993, Fridman & Levant 2002)

u =
λ1
b

|e2|
1

2 sign (e2)− u1 (34)

u̇1 = −λ2sign (e2) .

Equation (25) closed by the control (34) results in

ė2 = −λ1 |e2|
1

2 sign (e2) + u1 + ψ2

u̇1 = −λ2sign (e2) (35)

where ψ2 = −a3e2 +∆2. By using (20) and (21) one can write

ψ2 = a3x2 +
∂x2δ
∂x1

ẋ1 +
∂x2δ
∂x3

ẋ3 ≤ β̄2.

To analyse stability conditions, the following candidate Lyapunov function
(Moreno & Osorio 2008) is used:

V = 2λ2|e2|+
1

2
u2
1
+

1

2
(λ1|e2|

1/2sign(e2)− u1)
2

= ξTPξ

where ξT =
(

|e2|
1/2sign(e2), u1

)

and P = 1

2

(

4λ2 + λ21 −λ1
−λ1 2

)

.

Calculating its time derivative along the solution of (35) yields

V̇ = −
1

|e2|1/2
ξTQξ +

ψ2

|e2|1/2
qT1 ξ

where

Q =
λ1
2

(

2λ2 + λ2
1
−λ1

−λ1 1

)

, qT
1
=

(

2λ2 +
1

2
λ2
1
,− 1

2
λ1

)

.

Moreover, one can easily see that

ψ2

|e2|1/2
qT1 ξ ≤

β̄2
|e2|1/2

ξTQ1ξ
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with

Q1 =

(

2λ2 +
1

2
λ2
1

0
0 − 1

2
λ1

)

.

Therefore, the derivative of the Lyapunov function is simplified to

V̇ = −
k1

2|e2|1/2
ξT Q̃ξ

where

Q̃ =

(

λ1λ2 +
1

2
λ31 + (2λ2 +

1

2
λ21)β̄2 −λ1

−λ1 1− 1

2
λ1β̄2

)

In this case the controller gains λ1 and λ2 can easily be chosen such that Q̃ > 0,
implying that the derivative of the Lyapunov function is negative definite. Finally
the analysis can be continued as in Step B of the above subsection.

4 Simulation Results

To show the effectiveness of the proposed control law, simulations have been
carried out on the wheel model design example, the system parameters used are
listed in Table 1.

TABLE 1

Values of Parameters (MKS Units)

Parameter Value Parameter Value

Af 6.6 Vw -6

Pc 8 v 0.5

M 1800 B 10

J 18.9 C 1.9

r 0.35 D 1

m 450 E 0.97

ρ 1.225 g 9.81

Cd 0.65 Pa 0

In order to maximize the friction force, we suppose that slip tracks a constant
signal during the simulations

s∗ = 0.203

which produces a value close to the maximum of the function φ(s). The parameters
used in the control law are k0 = 700, k1 = 120, k3 = 2, k4 = 100, kσ1

= 10, λ1 = 1,
λ2 = 2 and ε = 100.

On the other hand, to show robustness property of the control algorithm in
presence of parametric variations we introduce a change of the friction coefficient µ
which produces different contact forces, namely F and F̂ . Then, µ = 0.5 for t < 1
s, µ = 0.52 for t ∈ [1, 2.5) s, and µ = 0.5 for t ≥ 2.5 s. It is worth mentioning that
just the nominal values were considered in the control design.
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In Figures 5a and 5b the slip s performance trough the simulation is shown
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(b) Super-Twisting

Figure 5: Slip performance in the braking process

Figures 6a and 6b shows the friction function behaviour φ(s) during the braking
process
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Figure 6: Performance of φ(s) in the braking process

while Figures 7a and 7b summarize the behaviour of the error variable e1.
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Figure 7: Tracking error e1 = s− s∗

and Figures 8a and 8b shows the error on the sliding manifold
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Figure 8: Sliding manifold error
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Figure 9: Longitudinal speed v (solid) and linear wheel speed rω (dashed)
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In Figures 9a and 9b the longitudinal speed v and the linear wheel speed rω
are shown; it is worth noting that the slip controller should be turn off when the
longitudinal speed v is close to zero. Figures 10a and 10b the control action is
shown.
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Figure 10: Control input u

Finally, in Figures 11a and 11b the nominal F , and the F̂ contact force are
shown.
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Figure 11: Nominal F (dashed) and perturbed F̂ (solid) vehicle contact forces

5 Conclusion

In this work an Integral Nested SM controller for ABS has been proposed for the
cases of discontinuous and continuous valve action. The simulation results show
good performance and robustness of the designed closed-loop system in presence of
both, the matched and unmatched perturbations, included parametric variations
and unmodelled dynamics, giving an important application of the SM control
theory in the automotive problems. Therefore, the ABS can cope very well with
the SM control which can be applied in a straight fashion in the both cases:
continuous and discontinuous actuators, showing in that way a clear advantage
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over another control techniques, where the presence of discontinuous elements can
not be treated in a natural way.
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