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ABSTRACT 
 

In this paper, we analyze the Multidimensional Kalman 
Algorithm to estimate a signal corrupted by white Gaussian 
noise. Because the theory provide a good solution to the 
problem with a large number of signals, we developed an 
algorithm for three-dimensional Kalman filtering applied to the 
positioning problem (latitude, altitude and longitude) of a 
stationary object based on GPS signals. This application was 
selected because the incoming signals of the GPS encounters 
some noise on its way to the receiver, which is originated from 
different types of sources, the consequences are that the 
received signals are noisy, therefore inaccurate. The signals are 
digitally processed, and the implementation may be carried out 
on a computer-aided system for a specific application. 
 
Keywords: Signal processing, Kalman algorithm, Estimation 
theory, Global Positioning System, Digital filtering. 
 
 

1. INTRODUCTION 
 
The most efficient statistical way to provide optimal linear 
estimation (filtering, smoothing and prediction) of stationary 
and non-stationary random signals was proposed by Rudolf E. 
Kalman, its paper described a recursive solution to the discrete-
data linear filtering problem and was published in 1960 [1], and 
is known now as the Optimal Linear Filtering Theory [2].  
 
The Kalman filter is an estimator for what is called the linear-
quadratic problem [3], which is the problem of estimating the 
instantaneous state of a linear dynamic system perturbed by 
white noise. The resulting estimator is statistically optimal with 
respect to any quadratic function of estimation error. The 
Kalman filter provides means for inferring the missing 
information from indirect (and noisy) measurements [3]. Scalar 
case is not widely used in Kalman filtering. The reason is that 
the filter is not matched with the signal system state model, 
thus, the filter is not optimal from this point of view. The more 
general case is the filter state-space equation consists of the 
proper states number. This is the vector or multi-dimensional 
case of the Kalman filter [4]. 
 
Advances in digital computer technology made possible to 
consider the implementation of Kalman’s recursive solution in a 
number of real-time applications. The markovian theory of 
Gaussian processes is a background for the Kalman approach 
based on which one can estimate a signal through a noisy 
observation in an optimal way. Nowadays, the Kalman theory is 
applied not only for the linear signals but also for the non-linear 
and adaptive problems. In this regards, the Kalman’s approach 
seems like the most universal for the optimal filtering.  

The applications of Kalman filtering encompass many fields, 
but its use as a tool is almost exclusively for two purposes: 
estimation and performance analysis of estimators [3]. The 
Kalman filter allows us to estimate the state of dynamic systems 
with certain types of random behavior by using such statistical 
information. The Kalman filter uses a complete description of 
the probability distributions of its estimation errors in 
determining the optimal filter gains, and this probability 
distributions may be used in assessing its performance as a 
function of the “design parameters” of an estimation system.  
 
Advantages 
Some of the advantages of the Kalman theory are: 
 
1. Is implementable in the form of an algorithm for a digital 

computer, which was replacing analog circuitry for 
estimation and control at the time that the Kalman filter was 
introduced. This implementation may be slower, but it is 
capable of much greater accuracy than had been achievable 
with analog filters. 

 
2. Does not require that the deterministic dynamics or the 

random processes have stationary properties, and many 
applications of importance include non-stationary stochastic 
processes. 

 
 

2. MULTIDIMENSIONAL DISCRETE TIME KALMAN 
FILTER 

 
Consider a stationary random signal as shown in Figure 1. Such 
a signal ξ(t), called Observation, is formed by a stationary 
Signal λ(t) mixed with Noise n(t). The filtering task then is 
formulated in the following way: provide the most accurate 
estimate ( )tλ̂  of a signal λ(t) through an observation ξ(t), taking 
into account that the noise corrupts this estimate, so it is not 
possible, in principle, to obtain the result with zero error. Once a 
filter (or a filtering algorithm) provides for the most accurate 
result then they call it an Optimal Filter. Design of such a filter 
is the major task of an Optimal Filtering. We have, in principle, 
two filtering realizations [5]: 
 
a. Linear filtering.- Corresponds to the case of an observation 

ξ(t) linearly depends on a signal λ(t), and a start value λ0 is 
normally distributed. For this case, all the processes may be 
treated as the Gaussian processes. 

 
b. Non-linear filtering.- Corresponds to the case of both/either 

an observation ξ(t) and/or a signal λ(t) are non-linear 
functions, and a start level λ0 is a non-Gaussian process. 

 



49 
 

 
Fig. 1. Stationary Random Signal 

 
Multidimensional Kalman equations 
The observation (measurement) of the process ξv to be occurred 
at discrete points in time and the random process λv to be 
estimated can be modeled in the form [5]: 

ovvvvv nuH ++λ=ξ  (1) 

v1v1vv λ−− +λ=λ nA  (2) 
where: 

vλ  → Signal vector, of dimension of (nx1), equals to: 
[ ]T

nvv2v1v ... λλλ=λ  

vξ  → Observation vector, of dimension of (mx1): 
[ ]T

mvv2v1v ... ξξξ=ξ  

vH  → Measurement matrix giving the ideal (noiseless) 
connection between the measurements and the 
state vector at the time tv, of dimension of (mxn): 
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vu  → Vector of a Control signal, which equals zero for 
the purely filtering task, of dimension of (mx1): 

[ ]T

mvv2v1v u...uu=u  

1v−A
 

→ Matrix relating λv to λv-1 in the absence of a 
forcing function (if λv is a sample of continuous 
process, Av-1 is the State Transition matrix), of 
dimension of (nxn), equals to: 
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ovn  → Discrete white Gaussian vector noise of an 
observation, with mean zero and covariance 
matrix Vv of (mxm) dimensions, equals to: 

[ ]
⎩
⎨
⎧

≠
=

=
vk,0
vk,

E vT
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vλn  → Discrete white Gaussian vector noise of a signal, 
with mean zero and covariance matrix Ψv of 
(nxn) dimensions, equals to: 

[ ]
⎩
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≠
=Ψ

=λλ vk,0
vk,

E vT
kvnn  

nov and nλv are jointly independent (uncorrelated). So that for all 
k and v the noises are uncorrelated, this is: 

[ ] 0E T
kov =λnn  

We assume at this point that we have initial estimate of the 
process at some points in time tv, and that this estimate is based 
on all our knowledge about the process prior to tv. This prior 
estimate will be denoted as 1v

ˆ
−λ , where the “hat” denotes 

estimate, and the negative sign “-1” is a reminder that this is our 
best estimate prior to assimilating the measurement at tv. We 
also assume that we know the error covariance matrix 
associated with 1v

ˆ
−λ . That is, we denote the estimation error: 

1v1vv1v
ˆ

−−− λ−λ=ε A  (3) 
And the associated error covariance matrix is for the estimation 
error of mean-zero: 

[ ] ( )( )[ ]T

1v1vv1v1vv
T

1v1v1v
ˆˆEE −−−−−−− λ−λλ−λ=εε= AAR  (4) 

In many cases, we begin the estimation problem with no prior 
measurements. Thus, in this case, if the process is zero, the 
initial estimate is zero, and the associated error covariance 
matrix is just the covariance matrix of λ itself. With the 
assumption of a priori estimate 1v

ˆ
−λ , we now seek to use the 

measurement ξv to improve the prior estimate. We choose a 
linear blending of the noisy measurement and the prior estimate 
in accordance with the equation: 

( )1v1vvvvv1v1vv
ˆˆˆ

−−−− λ−−ξ+λ=λ AHuKA  (5) 
where vλ̂  is updated estimate, Kv is filter gain (blending 
factor), which yet to be determined. 
 
The Kalman Gain 
The problem now is to find the filter gain K, that yields an 
updated estimate that is optimal in some sense. We use 
minimum mean-square error as the performance criterion [5]. 
Towards this end, we first form the expression for the error 
covariance matrix associated with the updated (a posteriori) 
estimate: 

[ ] ( )( )[ ]T

vvvv
T
vvv

ˆˆEE λ−λλ−λ=εε=R  (6) 
Next, we substitute Eq. (1) into Eq. (5) and then substitute the 
resulting expression for vλ̂  into Eq. (6). The result is: 

( ) ( )[ ]{ 1v1vvovvvv1v1vvv
ˆˆE −−−− λ−+λ−λ−λ= AHnHKAR  

            ( ) ( )[ ] }T

1v1vvovvvv1v1vv
ˆˆ

−−−− λ−+λ−λ−λ× AHnHKA  (7) 
Now, performing the indicated expectation and nothing the 
( )1vv

ˆ
−λ−λ  is the a priori estimation error that is uncorrelated 

with the measurement error nov, we have: 
( ) ( ) T

vvv

T

vv1vvvv KVKHKIRHKIR +−−= −  (8) 
where I is unit matrix. Notice that Eq. (8) is a perfectly general 
expression for the updated error covariance matrix, and it 
applies for any gain Kv, suboptimal or otherwise. Returning to 
the optimization problem, we wish to find the particular Kv that 
minimizes the individual terms along the major diagonal of Rv 
Eq. (8), because these terms represents the estimation error 
variances of the elements of the state vector λv being estimated. 
The optimization can be done in a number of ways. We will try 
to do using a straightforward differential calculus approach, and 
to do so we need two matrix differential formulas. They are: 

    ( )[ ] ( )squarebemust,
d
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where the derivative of a scalar with respect to a matrix is: 
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We will now expand the general form for Rv on Eq. (8), and 
rewrite it in the form: 

+−−= −−−

T
v

T
v1v1vvv1vv KHRRHKRR     

                   ( ) T
vv

T
v1vvv KVHRHK ++ −  (12) 

The second and third terms are linear in Kv and that the fourth 
term is quadratic in Kv. The two matrix differentiation formulas 
may now be applied to Eq. (12). We wish to minimize the trace 
of Rv because it is the sum of the mean-square errors in the 
estimates of all the elements of the state vector. We can use the 
argument here that the individual mean-square errors are also 
minimized when the total is minimized, provided that we have 
enough degrees of freedom in the variation of Kv, which we do 
in this case. We proceed now to differentiate the trace of Rv, 
with respect to Kv, and we note that the trace of Rv-1Hv

TKv
T is 

equal to the trace of its transpose KvHvRv-1. The result is: 
( ) ( ) ( )v

T
v1vvv

T

1vv

v

v 22
d

traced
VHRHKRH

K
R

++−= −−  (13) 

 
We now set the derivative equal to zero and solve for the 
optimal gain. The result is: 

( ) 1

v
T
v1vv

T
v1vv

−

−− += VHRHHRK  (14) 

where 1v
T

1v −− = RR . This particular Kv, namely, the one that 
minimizes the mean-square estimation error, is called the 
Kalman Gain. 
 
The Kalman Filter Error 
The covariance matrix associated with the optimal estimate may 
now be computed by comparing Eq. (8) and Eq. (12). We the 
put equality and have: 

( ) ( ) T
vvv

T

vv1vvvv KVKHKIRHKIR +−−= −               

( ) T
vv

T
v1vvv

T
v

T
v1v1vvv1v KVHRHKKHRRHKR ++−−= −−−−  (15) 

 
Routine substitution of the optimal Kalman gain expression of 
Eq. (14) into Eq. (15) leads to [5]: 

( ) 1vv

1

v
T
v1vv

T
v1v1vv −

−

−−− +−= RHVHRHHRRR  (16) 
or 

( ) T
v

1

v
T
v1vvv1vv KVHRHKRR −

−− +−=  (17) 
or 

( ) 1vvvv −−= RHKIR  (18) 
We have four expressions for computing the updated Rv from 
the priori Rv-1. Three of these, Eq. (16), Eq. (17) and Eq. (18), 
are only valid for the optimal gain condition. However, Eq. (8) 
is valid for any gain, optimal or suboptimal. All four equations 
yield identical results for optimal gain with perfect arithmetic. 
We note, though, that in the real engineering world Kalman 
filtering is a numerical procedure, and some of the R-update 
equations may perform better numerically than others under 
unusual conditions. 
 
The Kalman Filter Algorithms 
We now would like to generalize the above consideration while 
presenting the Kalman optimal filtering algorithms for two 
common situations [5]. 
 

The first case of m ≥ n: This case corresponds to the 
situation when the number of observations is more or equal to 
the number of the states. First we predict the initial error Rv-1 

and estimate 1v
ˆ

−λ . The Kalman optimal algorithm then 
becomes: 

[ ] v
1

v
T
v

1

v1v1v
T

1v
1

v HVHARAR −−

−−−

− +Ψ+=  (19) 
1

v
T
vvv

−= VHRK  (20) 
( )1v1vvvvv1v1vv

ˆˆˆ
−−−− λ−−ξ+λ=λ AHuKA  (21) 

 
where the gain Kv on Eq. (20) is written straightforward based 
on the one-dimensional case. After the first circle, we change 
step v=v+1 and update estimates. 
 

The second case of m<n: We have considered this 
case above and this is the situation when the number of 
observations is less than the number of the states. The 
alternative way to transfer from the Eq. (19), Eq. (20) and Eq. 
(21) to those equations is based on the use of the lemma of 
matrix conversion, which yields: 

( ) ( ) HRNHRHRHRHNHR 1TT11T
1

−−−

− +−=+  

The Kalman optimal algorithm for assumed Rv-1 and 1v
ˆ

−λ  
becomes then as follows: 

v1v1v
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~ Ψ+= −−− ARAR  (22) 
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~~ −+= VHRHHRK  (23) 

( )1v1vvvvv1v1vv
ˆˆˆ

−−−− λ−−ξ+λ=λ AHuKA  (24) 
( ) vvvv

~RHKIR −=  (25) 
 
where sign “∼” denotes prediction on one step ahead. Now note 
that for all the multidimensional Kalman algorithms, an analytic 
expression of the filter error via error matrix on Eq. (22) and 
gain on Eq. (25) is problematic requiring an extremely routine 
way. The computer-aided calculation is more preferable. The 
Figure 2 shows the Kalman algorithm schematically. It follows 
that before computing, we must enter initial values of error and 
estimate, and the follow the recursive procedure. Each step of 
computation is based on the new measurement data and the 
result is appeared in a form of the current estimate.  
 
 

3. MULTIDIMENSIONAL KALMAN FILTER 
STRUCTURE 

 
The Figure 3 shows the multidimensional structure of the 
recursive Kalman algorithm. 
 
 

4. REAL APPLICATION OF THE 
MULTIDIMENSIONAL KALMAN FILTER 

 
Navigation is defined as the science of getting a craft o person 
from one place to another [6]. In some cases a more accurate 
knowledge of either  our position, intended course and transit 
time to a desired destination is required, on this situations 
navigation aids are used. Some navigation aids are very 
complex and transmit electronic signals, that are referred to as 
radionavigation aids. Signals from one or more radionavigation 
aids enable a person to compute their position. 
 
Various types of radionavigation aids exist. The Global 
Positioning System (GPS) was created in the early 1960s by the 
National Aeronautics and Space Administration (NASA), 
developing satellite systems for positioning determination. 

v=v+1

v=v+1 
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Fig. 2. Kalman Filter Algorithm 
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Fig. 3. Multidimensional Kalman Filter structure 

 
 
The susceptibility of the GPS signals to interference is of 
concern to the GPS user community. Because of the low 
receiver power of the GPS signals, outages can easily occur due 
to unintentional interference. There are two factors that 
determine the accuracy of a GPS position [7]. The first factor, 
the error on a measurement, has many components that are 
controlled by the receiver and the local environment of the 
system. The second factor, the ranging errors, are grouped into 
the six following classes: ephemeris data errors, satellite clock 
errors, ionosphere errors, troposphere errors, multipath errors 
and receiver errors [8]. 
 
The algorithm defined by the figures 1 and 2 is going to be 
implemented for optimal 3-dimensional Kalman filtering to 
reduce the noise of the observation signals to obtain optimum 
estimates those which will be as accurate as possible, based 
only on stationary signals. This will provide the most accurate 
position (latitude, altitude and longitude) of a stationary object 
located anywhere on the Earth, which uses a GPS-based 
positioning receiver. Because this algorithm will be used to 
estimate the three-dimensional position of a stationary object, it 
is necessary to work with three different signals (one for 
latitude, one for altitude and one for longitude). For the design 
and simulation process, we will use noisy signals obtained from 
a UT+ Oncore receiver. The digital information of those signals 
are stored in files, whose characteristics are [9]: 
 
a. Each one of the input files contains two discrete time 

signals following with digitization time T=100sec. 
b. The first signals ξv are obtained as the result of the OCXO 

~5Mhz frequency measurement based on GPS reference 
1pps timing signals. They are presented as time difference 
in the units of 100psec to 1sec that corresponds to 10-10 of 
frequency instability. 

c. The seconds signals λv are the real OCXO frequency 
instability in time measured with reference to the quantum 
rubidium standard of frequency. Those signals are presented 
in the units of 10-12. 

 
The Observations signals ξv are received, but those observable 
signals are noisy. Because this is a design problem, we already 
know the Signals λv (contained on the input files, respectively). 
The next step will be to compare the estimates with the original 
signal, to ensure that the filter can provide an optimal estimation 
with minimum error. Of course, in real practice, the Signals λv 
will not be known, but this approach will show that the filter 
will work with any type of GPS's noisy signals, providing the 
best stationary estimation (the signals λv from the input files are 
used only to compare the results, but they don't affect the 
application of the Kalman filter in any way). 
 
Application of the Algorithm to the Positioning problem 
The noisy signals ξv received from the GPS consists of the sum 
of the original signal λv and white Gaussian noise nov. Based on 
Eq. (1), the three Observation signals can be described as: 

ovvv nxxx +λ⋅α=ξ  (26) 

ovvv nyyy +λ⋅β=ξ  (27) 

ovvv nzzz +λ⋅γ=ξ  (28) 
where: 
ξxv, ξyv, ξzv → Are the discrete Observation Signals 

for latitude, altitude and longitude, 
respectively. 

λxv, λyv, λzv → Are the discrete Signals for latitude, 
altitude and longitude, respectively. 

nxov, nyov, nzov → Are the discrete White Gaussian noises 
of the observations for latitude, altitude 
and longitude, respectively. 
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α, β, γ → Are constant values that gives the ideal 
(noiseless) connection between the 
observations (measurements) and the 
original signals. 

Following this, based on Eq. (2), the original signals can be 
modeled as: 

v1vv nxxx λ− +λ⋅δ=λ  (29) 

v1vv nyyy λ− +λ⋅ϕ=λ  (30) 

v1vv nzzz λ− +λ⋅ρ=λ  (31) 
where: 
λxv, λyv, λzv → Are the discrete Signals for latitude, 

altitude and longitude, respectively. 
λxv-1, λyv-1, λzv-1 → Are the discrete a-priori values of 

the signals for latitude, altitude and 
longitude, respectively. 

nxλv, nyλv, nzλv → Are the discrete White Gaussian 
noises of the signals for latitude, 
altitude and longitude, respectively. 

δ, ϕ, ρ → Are constant values that relates λv to 
λv-1 in the absence of a forcing 
function. 

It is assumed that the connection between the observations and 
the signals is ideal (in the noiseless case), so, the constant α, 
β and γ values are equal to 1. In the same way, in the noiseless 
and stationary case, the a priori values λv-1 are the same than λv, 
so, the constant δ, ϕ and ρ values are equal to 1. We already 
know that nov and nλv are discrete jointly independent 
(uncorrelated) white Gaussian vector noises of an observation 
and signal, respectively. nov is a vector with mean-zero and 
covariance matrix Vv. This matrix is equal to: 

{ } { } { }
{ } { } { }
{ } { } { }⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

T
ovov

T
ovov

T
ovov

T
ovov

T
ovov

T
ovov

T
ovov

T
ovov

T
ovov

v

nznzEnynzEnxnzE
nznyEnynyEnxnyE
nznxEnynxEnxnxE

V  (32) 

For independent and uncorrelated observation noises [5]: 
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ovovv33 2
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Δ
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Δ
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nλv is a vector with mean-zero and covariance matrix Ψv. It is 
supposed that the original signal is not known, so, covariance 
matrix Ψv is also unknown. But this matrix represents the noise 
level that we want to obtain on the estimation signals, then the 
matrix can be adjusted to find the minimum error on the 
estimates. The noises between estimates must be uncorrelated, 
and the variance between the same signals can be defined from 
the matrix Vv, this is: 
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00
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00
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where υ, τ and ζ are constant values that will be adjust to obtain 
the best estimations. Now, following the algorithm shown on 
Figure 2 and Figure 3, the calculations can be made. Also, the 
errors between the estimates and original signals will be 
determined using the following equation: 

vv
ˆe λ−λ=  (37) 

 
 

Programming the Optimal Algorithm 
To obtain the best estimation of the signals, it is necessary to 
use a medium that provide accuracy results. The results are 
carried out in a computer-aided implementation using 
MathLAB© software. This software provide us accurate and fast 
results, and can be transferred to another applications as 
Simulink© software.  
 

5. THE RESULTS 
 
The computer's code implemented in MatLAB© software is 
executed and the expected results are obtained. The program 
calculates the estimates based on the conditions previously 
described and displays the results. The estimates obtained from 
this algorithm are shown in the Figures 4, 5 and 6 for the signal 
x, y and z (latitude, altitude and longitude), respectively, 
showing the observation signals (ξxv, ξyv, ξzv), the original 
signals (λxv, �λyv,� λzv) and the estimated signals ( vxλ̂ , vyλ̂ , 

vzλ̂ ), where it is possible to see that the estimates are very 
approximated to the original signals.  
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Fig. 4. Kalman estimate of the signal x (Latitude) 
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Fig. 5. Kalman estimate of the signal y (Altitude) 
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Fig. 6. Kalman estimate of the signal z (Longitude) 

 
 
The Figure 7 shows the behavior of the error for each estimate, 
which are described in the form of the Eq. (37). It is clear to see 
that the mean of the errors are very approximated to zero in 
each case, this means that the estimates are closest to the 
original values and follows them. The statistical values for the 
errors are described in the Table 1. It is clear to see from the 
results that the 3-Dimensional Kalman Filter produces very 
accurate results for this particular example. 
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Fig. 7. Behavior of the error function for signals x, y and z 

 
 Signal x Signal y Signal z 
Mean value of the Original Signal 4026.66 2935.20 5029.75 
Mean value of the Estimate 4059.92 3008.72 5017.71 
Mean of the error function, ns 31.35 71.77 -14.17 
Root Mean Square Deviation, ns 349.35 285.02 469.40 
Root Mean Square Error, ns 350.76 293.92 469.61 
Maximal value of the Error 1460.30 1152.73 1767.88 

Table 1. Statistical values from the 3D Kalman estimates 
 
 

6. CONCLUSIONS 
 
The Kalman's filter provides a good estimation of a stationary 
signal. This paper showed the methodology to develop this 
algorithm for the multidimensional digital signal estimation and 
its implementation on software for computer-aided applications. 
This is a very important task, because several signal can be 
processed using this algorithm in a very convenient and fast 
way. The positioning estimation problem was used to show the 
development of the algorithm for a particular application 
because this issue is becoming very important in our modern 
life. It is very difficult to imagine an airplane or a ship traveling 
with the most sophisticated electronics on board but still using a 
compass or similar instruments to determine their positions. The 
Kalman filter is not the only available to estimate 
multidimensional digital signals. However, the digital signal 
process developed on this paper provides very good results 
compared with another methods [10]. 
 
Advances on electronics and radiocommunications are 
revolutionizing the way we look our world. Precise position 
used on airplanes can help pilots to land with zero visibility or 
avoid ship collisions on a foggy day. All these examples are for 
non-stationary objects, but the stationary ones play also a 
critical role, by example, to determine the precise position of a 
shipwreck or the position of an archeological discovery in the 
middle of the desert. 
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