
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS
SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

LIN 1.3 DRIVER IMPLEMENTATION IN A

DEMO9S12XEP100 BOARD

Tesina para obtener el grado de:

Especialista en sistemas embebidos

Presenta(n)

Alejandro Alcaraz Zamudio,

Director de tesina: Dr. Esteban Martinez Guerrero

San Pedro Tlaquepaque, Jalisco. Noviembre de 2016.

2

3

Abstract
In this document it is described in detail the implementation of a LIN 1.3 protocol
communication between two commercial boards configured as Master and Slave nodes
respectively.
This implementation is the last part of a series of labs developed in the courses of graduate
program of “Speciality in Embedded Systems” of Instituto Tecnologico y de Estudios
Superiores de Occidente (ITESO), which in addition of granting general knowledge of
embedded systems, it is focused in automotive implementations.
Inside the text, it is explained how a driver was developed to stablish communication
between boards and which consideration were made in order to create a configurable driver.
First, an analysis of different communications options in LIN protocols is presented, then it
is briefly described how the implemented code using resources available in LIN protocol
was designed.
In particular, for the implemented code, two configurable structures were used, one is the
configuration of LIN driver and the other is the configuration of LIN frames. These
structures were used in order to create a status structure for each configured driver and to
implement configurable schedule tables as LIN protocol specifies it.
Once designed, a series of test’s code were performed. A test bench was assembled in order
to perform testing the functionality of code in hardware. The test bench consists of two
Freescale boards DEMO9S12XEP100, a P&E USB-Multilink-Interface debugger, a USB to
Serial Adapter, an Oscilloscope and a Laptop. The main signature that communication
between boards was correctly achieved was the transmission of test frames from Master to
Slave by changing the operation mode of each node.

4

Acknowledgment
I want to acknowledge all the people involved in this phase of my personal development.
As each of them, classmates, teachers, advisors and others, push me through one of the
most important milestones of my personal and professional development.
At this point, it has become clearer to me, that knowledge is not only found aboard, but we
can found here through sharing, experience and hard work. I had found this knowledge
sharing in the right place as this postgraduate degree demands it.
I also would like to acknowledge CONACYT for its support and make possible for me to
take this postgraduate degree.
Also, I want to acknowledge ITESO as it deserves, which make this possible by providing
necessary tools and support though all the cycle, always finding the way to provide any
necessary medium to develop a better student.

5

Index

Abstract ... 3

Acknowledgment .. 4

Index .. 5

1. Introduction ... 6

2. Objectives .. 7

3. Development of driver .. 9

3.1 Driver Configuration ... 9

3.2 Driver Status .. 10

3.3 Driver Functions .. 11

3.4 Driver Functionality .. 13

3.4.1 Master Node ... 13

3.4.2 Slave Node ... 14

3.4.3 State Machine implementation ... 15

4. Driver testing ... 18

5. Conclusions ... 21

6. Personal reflexions .. 21

Reference ... 22

Appendices .. 23

Signals ... 23

Frames ... 23

Schedule Tables ... 24

6

1. Introduction
Local Interconnect Network (LIN) is part of the low cost automotive communication
protocols such as CAN and Flexray for embedded control [1]. “The LIN protocol as
proposed is an automotive focused low speed universal asynchronous receiver transmitter
(UART) based network.”[2] This is the reason of the nominal bit rate being from 1 to 20
kbit/s.
Some key characteristics that LIN protocol offers are [2]:
 Signal based communication.

 Schedule table base transfer.

 Master/Slave communication with error detection.

 Node configuration.

 Diagnostic service transportation.

LIN is based in signals communication, a single signal or a group of signals compose a
frame. Signals transmission is encapsulated in a frame. Each signal is allocated within the
same message's data field, with an offset to determinate start and end of signal value.
The frames are transmitted according to a schedule table, with assigned publisher and
subscribers.
The frame is initiated by the Master and it contains two parts, the frame header sent by the
Master and the frame response, which encompasses the actual message (signals) and a
checksum field.
The frame header contains a Sync Brake (allowing the Slave to recognize the beginning of
a new message), a sync field with a regular bit pattern for clock synchronization and an
identifier field defining the content type and length of the frame response message. The
identifier is encoded by 6 bit (allowing 64 different message types) and 2 bits for
protection.
The frame response contains up to 8 data bytes and a checksum byte. Since an addressed
Slave does not know a priori to the reception of the respective frame header that it has to
send a message, the response time of a Slave is specified within a time window of 140% of
the nominal length of the response frame.
From the Slave’s view, the LIN protocol is a plain polling protocol, since the Slaves only
react on the frame header from the Master. It is the Master’s task to issue the respective
frame headers for each message according to a scheduling table. The configuration of the
network must ensure that each message has exactly one producer. Several nodes can
subscribe to a particular message [3].

7

2. Objectives
In this report we present the implementation of a LIN 1.3 Protocol in DEMO9S12XEP100
board.
The implementation will test the communication between a Master and a Slave node
configured to transmit 3 frames according to a schedule table.
Each node should test the frame's PID field in Master task and, then, corresponding
publisher node should publish signal data (data field).
As stated in LIN standard, subscriber’s node should calculate Check Sum (CRC) value and
test it against transmitted CheckSum in order to validate frame reception. If a transmitted
CheckSum does not match with the internally calculated CheckSum, frame should be
disposed.
All received data will be assigned to a global variable (Rx_Data_Frame array), which only
will be updated with the latest valid data frame received.
The implementation must support Master and Slave LIN nodes and configured to transmit 3
frames according to following specification:

SCH_TBL1
{

Frame1 delay 15 ms;
Frame2 delay 25 ms;
Frame3 delay 40 ms;

}

Frame1:19,MST
{

RearFogLampInd,0;
PositionLampInd,1;
FrontFogLampInd,2;
IgnitionKeyPos,3;
SLVFuncIllum,8;
SLVSymbolIllum,12;

 }
Frame2:34,SLV
{

SLVSWPartNo,0;
SLVHWPartNoB0,8;
SLVHWPartNoB1,24;

 }
 Frame3:59,SLV,6
{

FanIdealSpeed,0;
FanMeasSpeed,16;
WaterTemp,32;

 }

8

In order to achieve proposed LIN protocol implementation, it was required the following
resources. It is used either for debugging purposes or for testing analysis.
Hardware

• 2 Freescale boards DEMO9S12XEP100
• P&E USB-Multilink-Interface debugger
• Oscilloscope
• USB to Serial Adapter
• Laptop

Software
• CodeWarrior for S12 version 5.1 Special Edition
• Docklight terminal

9

3. Development of driver
According to Fig.1, to implement the communication between Master and Slave nodes is to
define its role; so as first step in the design of the driver, we define one as Master and the
other as Slave. As in LIN protocol the Master node will always start the communication
sending the message header, in which a Sync Break field, a Sync Byte field and a Protected
Identifier (PID) field data are encapsulated.

Figure 1: LIN protocol frame format [3]

According to the PID content, the response message can be transmitted from the Master
node or from the Slave node to its subscribers. In the first case, the Master node will
transmit the whole frame, while in the second case it will only transmit the header and
waits for a Slave to transmit the message response.
This implementation was developed to cover both roles, Master and Slave, where
compilation switches were used in order to only compile the needed code according to the
node to be implemented. This was done using the preprocessor macro (MST – Master node,
SLV – Slave node) in cnf_lin_protocol.h file:

#define LIN_CONFIGURED_DEVICE SLV

This file is found under LIN filter folder, along with the following configuration and
program files:

• cnf_lin_protocol.h & cnf_lin_protocol.c: Frame and Signals configuration files.
• lin_protocol.h: Frame and Signals structures declaration file.
• cnf_lin_driver.h & cnf_lin_driver.c: Driver Configuration Structures declaration and assign.
• lin_driver.h & lin_driver.c: Program code of LIN driver.

3.1 Driver Configuration
The second step is the driver configuration; it is stated that driver works with the Serial
Communication Interface (SCI) [3] module and a LIN transceiver (MC33661) that provides
needed voltage levels. This configuration needs to be routed in hardware to desired output.
Also, SCI module provides the capability to detect and send break characters to the bus,
using assigned control registers (SCICR) [4].
Using SCI driver software the used module was configured to work along with developed
software. This SCI configuration holds the information related to bit rate and interruptions
services, as callbacks (see code lines below).

10

const tSCIchannel_config SCI_channel_cfg[] =
{
 {
 (UINT32)9600, /* SCI_baudrate */
 (tCallbackFunction)NULL, /* SCI_TX_callback */
 /* SCI_RX_callback */
 #if (LIN_CONFIGURED_DEVICE == MST)
 (tCallbackFunction)LIN_Send_Frame,
 #elif (LIN_CONFIGURED_DEVICE == SLV)
 (tCallbackFunction)LIN_Send_Frame,
 #endif
 SCI_CH0, /* SCI_Channel */
 (UINT8)ENABLE, /* SCI_TX_enable */
 (UINT8)ENABLE, /* SCI_RX_enable */
 (UINT8)ENABLE, /* SCI_TIE_enable */
 (UINT8)ENABLE, /* SCI_RIE_enable */
 (UINT8)SCI_TX_MAX_SIZE, /* SCI_TX_MAX_BUFFER_SIZE */
 (UINT8)SCI_RX_MAX_SIZE /* SCI_RX_MAX_BUFFER_SIZE */
 }
};

The configuration structures for LIN driver will help to basic information according to
number of channels configured and LIN mode that this will work with, this is specified in
code lines below:

/* Channel Configuration Structure */
typedef struct{
 enum tLIN_Channel u8Channel_ID; /*Channel ID*/
 UINT8 u8Channel_Node; /*Channel Node: Master or Slave*/
 UINT8 u8Channel_Enable; /*Channel Enabled*/
 UINT8 u8Rx_Buffer_Size; /*Max buffer size for RX*/
 UINT8 u8Tx_Buffer_Size; /*Max buffer size for TX*/
}tLIN_Channel_Config;

3.2 Driver Status
The third step is to make the proper configuration that will help to determinate the driver
status. Therefore, a status structure was implemented, which helps the driver and other
modules, to know the current state of such driver itself. The information could be used only
internally or could be readout externally using interfaces.
As the status structure held everything related to current state of the driver, it should
include all variables used by the driver allocated dynamically.
Using the information provided by configuration structures, the following status structure
has been defined:

typedef struct
{

11

 enum tLIN_Channel u8Channel_ID; /*Channel ID*/
 UINT8 u8Channel_State; /*Further Implementation */
 UINT8 PID; /*Protected ID*/
 UINT8 Mode; /*Slave Task Mode: TX / RX*/
 UINT8 * Tx_Buffer; /*Pointer to TX Buffer (Start Reference)*/
 UINT8 * ptrTx_Buffer; /*Pointer to TX Buffer*/
 UINT8 Tx_Buffer_Length; /*TX buffer Length*/
 UINT8 * Rx_Buffer; /*Pointer to RX Buffer (Start Reference)*/
 UINT8 * ptrRx_Buffer; /*Pointer to RX Buffer*/
 UINT8 Rx_Buffer_Length; /*RX buffer Length*/
 UINT16 CheckSum; /*CheckSum Calculation*/
 UINT8 u8TaskState; /*State Machine Task State*/
}tLIN_Channel_Status;

In this implementation it is proposed an internal buffer allocated dynamically to hold any
transmitted and received information, this is used only by the driver. Once that all frame
has been received and validated with the checksum, the received data frame is moved to
Rx_Data_Frame array.
For implementation testing purposes valid received frames will be hold in a global variable.
Such variable is Rx_Data_Frame array, in which last valid received frame will be placed. In
current implementation this variable is not extern with any interface, it is just updated by
frame.
The PID element will be used to be tested against Frames PID and proceed to configure the
message response as transmission or reception mode (Mode element), if the node is
configured in transmission mode, it will be responsible of publishing the data in Data field.
On the other hand, if it is configured in reception mode, it will read data provided by the
publisher.
The CheckSum element is used to calculate the data checksum and, either sends it when
Transmit mode is selected, or validate it if Reception mode is selected.
The u8TaskState is used in state machine control to perform any needed operation
accordingly. The different states used in this implementation are based in the following
definitions of LIN protocol, these are displayed in descending order:

#define SYNC_BRK 0x00
#define SYNC_FIELD 0x01
#define PID_BYTE 0x02
#define DATA_BYTE 0x03
#define CHECKSUM 0x04
#define EOF 0x05

3.3 Driver Functions
This driver implementation resides in the following public and private functions. These
functions are part of the developed code in order to achieve a stable implementation with a
proper abstraction.

12

void vfnLIN_Initialization(const tLIN_Driver_Config * LINDriver_Config):

High Level Initialization of LIN configured channels; reception parameter is a pointer to
configuration structure. In this Initialization, buffers and status structures are allocated into
the dynamic memory, then buffers (vfnLIN_Rx_Clear and vfnLIN_Tx_Clear) are cleared
and status structures are updated to initial values. After, a low level Initialization is
performed with vfnLIN_Init() to send the state machine to initial state.
Also, SCI driver is initialized according to its configuration structure, this SCI driver
initialization should be part of LIN driver as in this hardware LIN and SCI modules are
based in same physical architecture.

void vfnLIN_Rx_Clear (enum tLIN_Channel channel):

Reception buffer clean; in this stage, data reception pointer (ptrRx_Buffer) is set to start
buffer pointer (Rx_Buffer), buffer length and CheckSum are cleared (logical 0). Also,
reception buffer’s allocated memory is cleared.

void vfnLIN_Tx_Clear (enum tLIN_Channel channel):

Same as vfnLIN_Rx_Clear, but no physical memory clear is performed. In this case data is
being overridden instead of cleared.

void vfnLIN_Write_Buffer (enum tLIN_Channel channel, UINT8* pu8Data, UINT8
u8DataLength):

With this instruction, buffer is queued in dynamic memory, then data transmit pointer
(ptrTx_Buffer) is set to start buffer pointer (Tx_Buffer), and data Length is set accordingly.
This data information is the already arranged data to be transmitted byte per byte.

void vfnLIN_Mode_Select (enum tLIN_Channel channel, UINT8 PID, UINT8 Mode,
UINT8 frame_id):

Once the transmitted/received knows frame's PID, the Mode is set according to the PID
publisher and, then, CheckSum is initialized to 0. If PID publisher is the same node, the
frame is created by calling vfnLIN_Tx_Frame_Handler function. Otherwise, PID’s
configured frame size (u8frame_size) is set to reception buffer length (Rx_Buffer_Length).

void vfnLIN_Data_Tx_Task (enum tLIN_Channel channel):

Using this function one can transmit data from data transmit buffer using serial interface,
also it performs CheckSum calculation (add with carry) and decreases data transmit length
(Tx_Buffer_Length). Once reception data length is 0, CheckSum is calculated for the last
time and state machine (u8TaskState) is moved to the next state.

void vfnLIN_Master_Rx_Handler(UINT8 channel):

13

Using this function, serial data received will be enqueued in reception data buffer. Also it
performs CheckSum calculation (add with carry) and decreases expected data length
(Rx_Buffer_Length). Once reception data length is 0, CheckSum is calculated for the last
time, data buffer pointer (ptrRx_Buffer) is restarted and state machine (u8TaskState) is
move to the next state.

void vfnLIN_Tx_Frame_Handler (enum tLIN_Channel channel, UINT8 frame_id):
 This function is used to join frame signals into transmit bytes; it uses two 32 bytes
arrays to arrange the different signals according to its values (u8init_value), size
(u8signal_size) and offsets (u8signal_offset). Then data is enqueued in the transmit buffer.

3.4 Driver Functionality
In this implementation, the main driver functionality is performed with
vfnLIN_Frame_Transmit function, which contains state machine for both cases (Master
and Slave nodes). Each state machine is handled in different ways according to the node
configuration.

3.4.1 Master Node
When the driver is configured as Master (MST) node, the state machine is first accessed
when a frame (u8Active_LIN_Frame) is activated according to its delay values (u8delay).
This action will set a state machine flag (u8State_Machine_set). Flag is used to transmit
data in a background task, and to perform a low level initialization (vfnLIN_Init).
This low level initialization (vfnLIN_Init) clears LIN task state (u8TaskState) and
configures SCI to perform a Break Sync transmission (vfnLIN_Break_config) event (see
Fig. 2).
The frame activation test is performed in a cyclic 1 ms task; if a frame has been activated
for continuous transmission, it will be performed in the background task. Continuous
transmission is performed by accessing to state machine using vfnLIN_Frame_Transmit
function.
When the state machine validates the PID_BYTE data, it can select its mode with function
vfnLIN_Mode_Select. For instance, if reception mode (RX_MODE) is selected the state
machine is accessed via SCI callback function. Otherwise, transmission control will
proceed to be performed in the background task (see Fig. 2). If reception mode
(RX_MODE) is selected the last received byte, CheckSum, will be tested against the one
calculated internally. If both values match, data reception buffer will be copied into
Rx_Data_Frame array. However, if values do not match, data reception buffer will be
cleared in the next initialization step, and no data is updated on Rx_Data_Frame array.

14

Figure 2: Master node machine state representation

3.4.2 Slave Node
When the node is configured as Slave, the state machine function
(vfnLIN_Frame_Transmit) is accessed only by the callback function until PID_BYTE data
is validated. In the low level initialization (vfnLIN_Init) the reception interrupt is disabled
(RIE) and the Sync Break detection feature is enabled (BKDFE and BKDIE [3]). This
action will ensure that the only interruption associated to the SCI is Sync Break detection;
therefore initial state is preserved until this event.
Once the break is detected, the SCI is configured to be interrupted by byte reception (RIE)
until PID_BYTE data is validated; the PID_BYTE is compared against configured PID
frames (u8frame_id), if received value matches a configured frame a mode, Publisher or
Subscriber, is selected (vfnLIN_Mode_Select). If the received PID_BYTE does not match
with any configured PID frame (u8frame_id), state machine is sent to Sync Break state (see
Fig. 3).
Once a mode has been selected (vfnLIN_Mode_Select), the state machine behavior is the
same as the Master.

15

Figure 3: Slave node machine state representation

In both modes a timeout mechanism has been implemented to avoid losing data or frames
mis-reception. Although, this timeout mechanism is implemented in different way for each
node; in both cases the timeout will call the low initialization function from LIN. The
nominal timeout value selected in this development was of 5 ms according to the resolution
value of schedule table.
When driver is configured as Master timeout mechanism is easier, given that, if the frame
was not transmitted in its totality in the space between scheduled frames, so it will
invalidate received information and restart state machine.
On the other hand, if driver is configured as Slave, a timeout timer will be started after
receiving Sync Break byte and when a 5 ms has occurred and the frame has not been
transmitted, a low level initialization is performed as well disposing all information from
this frame.
Data became available to internal transmit buffer (ptrTx_Buffer) once the PID has been
decided and operation mode has been selected. Data from signals are arranged according to
its lengths and offsets, and copied into transmission buffer. This buffer is used to send data
byte in data field, and received by subscriber.
This signals arrangement is performed by vfnLIN_Tx_Frame_Handler function, which uses
configuration structure to access to signals configuration according to frame ID to be
transmitted.

3.4.3 State Machine implementation
As described above, the core logic of implemented driver resides in the state machine. The
state machine implementation depends directly in a compiler switch
(LIN_CONFIGURED_DEVICE) used to determinate implementation type.

16

The main difference is in Master Task part of LIN frame transmission, defined by LIN
standard. Each state of the implemented state machine is described below.

SYNC_BRK (0x00)

This is the state where Sync Break is expected, either to be transmitted or to be received.
Master node: If LIN node is configured as Master, this node is responsible of transmitting
Sync Break. So to start frame transmission, SCI registers is configured to transmit Sync
Break byte. This is performed by writing in SBK (Sync Break) register control register 2
(CR2) [4].
Slave node: If node is configured as Slave, it will wait until a Sync Break byte is received.
Therefore registers AMAP (registers map), BKDFE (Break Field Enable) and BKDIE
(Break Interrupt Enable) should be configured accordingly, and RIE (Reception Interrupt
Enable) will be disabled, so only Sync Break reception is detected. After the Sync Break
reception RIE is enabled again.

SYNC_FIELD (0x01)

SYNC_FIELD is the state where sync byte (0x55) is expected.
In this state Master node is responsible of transmitting Sync byte value (0x55). Once
transmission has been completed, state machine moves to next state (PID_BYTE) (see Fig.
2).
As Slave node concerns, it expect Sync byte reception interrupt from SCI module, if
interrupted, it will validates Sync byte value (0x55). If received value is correct, state
machine will moved to next state (PID_BYTE), otherwise driver is restarted to initial state
(SYNC_BRK) using low level initialization routine (vfnLIN_Init) (see Fig. 3).

PID_BYTE (0x02)

In this state, Protected Identifier is transmitted according to schedule table.
According to schedule table value, Master node transmits PID and moves to the next state.
In PID_BYTE state, Master node will select also operation mode (publisher or subscriber
according to frame configuration) (see Fig. 2).
Regarding Slave node at time when PID value is received, it searches in frames table the
received value. If PID was found, it will select the operation mode and move to next state.
If PID is not found, driver is restarted to initial state (SYNC_BRK) and waits for a Sync
Break interruption (see Fig. 3).

DATA_BYTE (0x03)

This is the state where data transmission or reception is handled. This state considers both
case and it is handled according to PID's subscriber/publisher mode.
If node's mode is publisher, it will retrieve values of current pointer and allocate them in
data buffer (status structure). In each byte transmission, it will perform CheckSum
operation, describes by LIN protocol as add with carry of received bytes.

17

Publisher will write data to SCI transmission register, then moves pointer to next data byte
in buffer, and decrease length value. When length value reaches 0, it inverts CheckSum
value and moves to next state.
If node’s mode is subscriber, data reception is handled by callback interruption. At
interruption, it will read received byte from SCI register and holds it in the internal buffer
(status structure). The subscriber will calculate an internal CheckSum value; as described
by LIN protocol it performs an addition with carry of received bytes.
At each data reception, subscriber will increase buffer pointer to the next byte location and
decrease length, according to expected length from frame configuration. When length value
reaches 0, the pointer's buffer is moved to start of buffer, internal calculated CheckSum
value is inverted and state machine moved to next state (see Fig. 2 and 3).

CHECKSUM (0x04)

In this state the CheckSum validation is performed. To explain this task, it is divided by
publisher and subscriber mode:
In Publisher mode, it will transmit CheckSum value using SCI, and then state machine is
restarted to initial state (SYNC_BRK) using low level initialization routine (vfnLIN_Init).
In Subscriber mode at SCI reception interruption, CheckSum value is readout from SCI
register and validated against internally calculated value. If CheckSum values matches,
internal buffer, from status structure, is copied to global Rx_Data_Frame variable.
Otherwise, no copy operation is performed. Afterward, the state machine is restarted to
initial state (SYNC_BRK) using low level initialization routine (vfnLIN_Init) (see Fig. 2
and 3).

EOF (0x05)

This state (EOF (0x05)) was not implemented in the present work.

18

4. Driver testing
The way the system was tested was by loading the same code in 2 different
DEMO9S12XEP100 boards (see Fig. 4). As indicated above, one board was configured as
Master (macro configuration as MST) node and other one as Slave node (macro
configuration as SLV).

Figure 4: Used set up of LIN protocol communication tests: a Laptop, two DEMO9S12XEP100 boards, a

P&E USB-Multilink-Interface debugger and a USB to Serial adapter.

Physical connections of modules were made and the oscilloscope as snipper to transmission
signals was enabled to validate frame composition and Slave/Master node interaction.
First part of testing consist in verifying frame header transmission according to expected
length, in order to ensure that either Master node send it and Slave node received. In this
stage, Master’s and Slave’s state machine reacts to a frame header reception, but no data
transmission is performed (see Fig. 5).

Figure 5: Master node transmits frame header, but no data transmission is performed.

19

Once frame header transmission is validated, one can says both nodes were tested with
entire functionality. Then, Master node starts frame transmission with message header,
Master task, and switching between different PIDs values (see Fig. 6). Each node should
test PID value and publisher start with the Slave task of the message.

Figure 6: LIN frame transmission, Master node starts frame with header and publisher performs data

transmission.

At CheckSum validation all frames were validated and only positive frames updated to
global variable. The CheckSum validation is performed by Slave node, which reaches this
validation state after frame transmission.
In error validation test mode a “hard-coded” CheckSum was transmitted instead of
calculated one. Therefore no data was updated to global variable as CheckSum validation
fails and data was disposed.

Schedule table was tested with the help of the oscilloscope; to do this we have frozen 2
frames, then the time between start of Sync Break transmission was measured and
compared with the configured one (see Fig. 7).

20

Figure 7: Frame delay measures, this case the delay between frames are 25 ms.

Based on the above presented results, one can said that all performed tests were according
to LIN specifications.

21

5. Conclusions
Given the time constrains, frames validation and composition, LIN protocol is a complex
driver to develop with fulfillment of key characteristics of the protocol itself. However, it is
a very deterministic protocol that became attractive for low cost implementations in
automotive embedded control.
The development of the LIN driver was focused in the usage of the state machines that are
manipulated according to the reception data or by de absent of it by the timeout mechanism.
Each state from the state machine provides valuable information of driver’s functionality
and inner logic.
With this LIN driver implementation, a stable communication between the two boards was
achieved. In each node we were able to change its operation mode as Publisher/Subscriber,
and start transmission data.
Although the implemented code shows reliability and configurability, a better abstraction
could be implemented in order to provide a simpler and easier communication. Timeout
mechanism is another parameter that could be improved as well; so it can be either a
configurable timeout, or attached to LIN protocol timeout values.
As a future work of this project, LIN 2.0 compatibility and configurable feature could be
included, which will make a more scalable and re-usable code.

6. Personal reflexions
Despite the previous knowledge and experience obtained in previous projects and driver
developments, the LIN driver proved to be a challenge in different manners. The first
challenge was to implement configurable and scalable driver that should include frame
configurations, despite the result being far from perfect.
Another challenge that was faced is the development of a driver that could serve both
purposes, master and slave, in which it was decided to implement something new from
developers knowledge, compiler switches. Granting the developed driver the ability to
serve different purposes in other projects. This technique is well known in current job field,
so this way same developed code can be reused in multiple cases by a proper configuration.
Without a doubt while developing this driver it was learn the real usage and functionality of
several techniques taught to us during the course, in this case configuration and status
structures, that are part of the core development to create reconfigurable drivers. Also this
kind of techniques helps to code re-usability and code abstraction itself.
Also, as stated before, the usage of state machines in communication protocols, which
compiles and are a core part of communication protocols implementation. This helps to
distinguish communication mechanism and the perform data segregation where multiple
nodes relays in the same bus.

22

Reference
[1] LIN Specification Package Revision 1.3, (Dec. 12, 2002), [Online] Available:
https://www.cs-group.de/fileadmin/media/.../LIN_Specification_Package_2.2A.pdf
[2] ISO 17987-6:2016(en) Road vehicles — Local Interconnect Network (LIN) — Part 6:
Protocol conformance test specification. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso:17987:-6:ed-1:v1:en
[3] W. Elmenreich and S. V. Krywult (2004, March) A Comparison of Fieldbus Protocols:
LIN 1.3, LIN 2.0, and TTP/A. [Online] Available:
https://pdfs.semanticscholar.org/7fb5/59fd071bdda4aede5d514fe2e250c6099ab9.pdf
[4] Freescale, MC9S12XEP100 Reference Manual Covers MC9S12XE Family,
MC9S12XEP100RMV1 Rev. 1.25 (February 2013) pp. 723-760.

https://www.cs-group.de/fileadmin/media/.../LIN_Specification_Package_2.2A.pdf
https://www.iso.org/obp/ui/#iso:std:iso:17987:-6:ed-1:v1:en
https://pdfs.semanticscholar.org/7fb5/59fd071bdda4aede5d514fe2e250c6099ab9.pdf

23

Appendices
Signals
Test signal used in implementation follows below structure, this structure describes signals
configuration, size, offset and publisher of such signal. This information is used to create
configuration files for each node.

Signals
{

[<signal_name>:<size>,<init_value>,<publisher>[,<subscriber>];]
}

Following such structure the used test signals in this implementation were:
Signals
{

RearFogLampInd:1,0,MST,SLV;
PositionLampInd:1,0,MST,SLV;
FrontFogLampInd:1,0,MST,SLV;
IgnitionKeyPos:3,0,MST,SLV;
SLVFuncIllum:4,0,MST,SLV;
SLVSymbolIllum:4,0,MST,SLV;
SLVSWPartNo:8,0,SLV,MST;
SLVHWPartNoB0:12,0,SLV,MST;
SLVHWPartNoB1:12,0,SLV,MST;
FanIdealSpeed:16,0, SLV,MST;
FanMeasSpeed:16,0, SLV,MST;;
WaterTemp:16,0,SLV,MST;;

}

Frames
Frames composition relays above signals. These test frames structure describes the frame
itself and which signals should be included. Also, they are assigned with a PID and a publisher
node. These frames structure will be read at run time to determinate which node should act as
a publisher when a given PID is transmitted.

 Frames
{
 [<frame_name>:<frame_id>,<published_by>(,<frame_size>)
 {
 [<signal_name>,<signal_offset>;]
 }]
}

Used test frames configuration were the following:
Frames {

Frame1:19,MST
{
 RearFogLampInd,0;

24

 PositionLampInd,1;
 FrontFogLampInd,2;
 IgnitionKeyPos,3;
 SLVFuncIllum,8;
 SLVSymbolIllum,12;
}
Frame2:34,SLV
{
 SLVSWPartNo,0;
 SLVHWPartNoB0,8;
 SLVHWPartNoB1,24;
}
Frame3:59,SLV,6
{
 FanIdealSpeed,0;
 FanMeasSpeed,16;
 WaterTemp,32;
}

 }

Schedule Tables
Schedule table determinates the periodicity of each frame to be transmitted. Also, it is describe
the delay between frames and the order of transmission. Schedule table follows below
structure:

Schedule_tables
{
 [<schedule_table_name>
 {
 [<frame_name> delay <frame_time> ms ;]
 }]
}

Used test frames were schedule within a range of 40 ms, only 3 frames are transmitted and
publisher and subscriber are described by frame itself. The schedule table just determinate the
time between frame transmissions.

Schedule_tables
{

SCH_TBL1
{
 Frame1 delay 15 ms;
 Frame2 delay 25 ms;
 Frame3 delay 40 ms;
}

}

	Instituto Tecnológico y de Estudios Superiores de Occidente
	LIN 1.3 driver implementation in a DEMO9S12XEP100 board
	Abstract
	Acknowledgment
	Index
	1. Introduction
	2. Objectives
	3. Development of driver
	3.1 Driver Configuration
	3.2 Driver Status
	3.3 Driver Functions
	3.4 Driver Functionality
	3.4.1 Master Node
	3.4.2 Slave Node
	3.4.3 State Machine implementation

	4. Driver testing
	5. Conclusions
	6. Personal reflexions
	Reference
	Appendices
	Signals
	Frames
	Schedule Tables

