

Instituto Tecnológico y de Estudios
Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

Especialidad en Sistemas Embebidos

Implementation of a BUS OFF recovery mechanism on a CAN

bus driver.

Tesina para obtener el grado de:

Especialista en sistemas embebidos

Presenta(n)

Alma Karina Pedroza Ornelas

Nombre del director:

Jorge Arturo Pardiñas Mir

San Pedro Tlaquepaque, Jalisco. Diciembre de 2016.

Aknowledgments / Agradecimientos

“To my husband, for being a 4x4 father, otherwise, I would not have been able to attend to
school.

A mi marido, pues de no ser un padre 4x4 no hubiera podido atender a clases.

To my dad, who raised me and my siblings without the so called “genres role norms.

A mi papá, que nos crió sin perjuicios ante los llamados ‘roles de género’ “

1

Abstract

This report presents the implementation of the BUS OFF recovery mechanism on a CAN bus

driver.

The CAN protocol defined in 1991 by Robert Bosh GmbH implements 5 error detection

mechanisms:

1. Bit Monitoring

2. Bit Stuffing

3. Frame Check

4. Acknowledgement Check

5. Cyclic Redundancy Check

If a node in a CAN bus does not return a recessive bit on its reply for a given time, it will be put

in BUS OFF status and will stop transmitting information to the bus, until the BUS OFF status

get cleared either manually or automatically. The implementation of this mechanism is made on

a Freescale’s MC9S12XEP100 and involves modifications to its MSCAN (Scalable

Controller Area Network) module configuration bits to enable both the BUS OFF and the

Automatic BUS OFF recovery. The implementation also includes functions that will recover the

bus from this state, manually, after pressing a button.

This document describes the details on the previously mentioned mechanisms.

2

Table of Contents

Aknowledgments / Agradecimientos .. 2
Abstract ... 3
Introduction ... 5
Implementation ... 7
Results ... 13
Conclusions ... 15
Table of Figures .. 16
References ... 17

3

Introduction

CAN (Controller Area Network) is a protocol designed by BOSCH in 1991 that has been

widely adopted in the automotive sector in order to communicate different devices through a data

serial bus, from engine, suspension and traction controls, to lights, doors, seats, instruments and

even light and environment devices.

The Data Link Layer of the CAN protocol is defined in the ISO-11898- specification,

while the physical layer is defined by the ISO-11898-2 specification. The following image

shows a typical CAN bus system with MSCAN (the MC9S12XEP100RMV1 implementation).

Each CAN node is physically connected to the CAN bus through a transceiver device.

Figure 1- From MC9S12XEP100 Reference Manual, page 608

Please notice that, unlike LIN, the CAN nodes can be connected using different topologies:

 Figure 2- Multi-bus Network

 Figure 3- Star Network

ECU ECU ECU

ECU ECU

ECU

Central

ECU

ECU

ECU ECU

4

The CAN specification is divided in two:

Part A, for the standard format, which implements an 11-bit identifier:

And part B, which is an extended format that implements a 29-bit identifier:

The CAN protocol implements 5 error detection mechanisms:

1. Bit Monitoring

2. Bit Stuffing

3. Frame Check

4. Acknowledgement Check

5. Cyclic Redundancy Check

 This work is focused on the implementation of the error confinement procedure called

BUS OFF, along with the manual and automatic recovery processes.

 All nodes in the bus that correctly receive a message shall send a dominant level in the

Acknowledgement Slot of the message. The transmitter shall transmit a recessive level in this

slot. If the transmitter does not detect a dominant level in the ACK slot, an Acknowledgement

Error is reported by transmitting an Error Flag and destroying the bus traffic. When the

remaining nodes in the bus detect the error will take actions, for example, discard the message.

 Each of the nodes in the bus has two error counters: Transmit Error Counter and

Receive Error Counter. The nodes will start in Error Active mode and, if any of the two errors

counters raises above 127, the node will be set in the Error Passive state. If the Transmit Error

counter rises above 255, the node is set to the Buss Off state.

 Nodes in the Buss Off state do not transmit anything on the bus at all.

The error detection and mitigation in a communication protocol is fundamental, especially for

CAN, a protocol used in the automotive area, where, an error in a node might lead to life

threatening consequences. The Bus OFF mechanism also offers a recovery process for nodes

transmitting erroneous information.

Arbitration Field

11 bits

Control

4 bits

Data

8 bits

CRC field

15 bits

ACK

Slot

ACK

Del

End of frame

7 bits

I

D

R

Arbitration Field

11 bits

Control

4 bits

Data

8 bits

CRC field

15 bits

ACK

Slot

ACK

Del

End of frame

7 bits

I

D

R

2

b

IFS2-0

5

Implementation

As mentioned before, there are 5 errors that should be detected and which can be contained

by the BUS OFF error mechanism. This work was tested using the Acknowledgement Check

error, due to its simplicity to simulate (by configure 0 – Nodes).

 Given that embedded systems are finite, the list of nodes has to be setup previously from the

beginning. If x (where x > 0) nodes are configured, you can send messages to all, a few or none

of them. Nodes are supposed to respond to transmission request with a dominant bit in the ACK

slot within the response. If no dominant bit is detected, it is assumed that the message could not

be acknowledged.

Figure 4- CAN Bus Signal

 This behavior will increase either error counter that applies (Transmit or Receive), which,

sill set the node into the Error Passive state if they raise 127 or BUS OFF, if the errors raise

above 255.

 The CAN protocol is very popular in the automotive industry, therefore, the devices

connected into the bus might transmit information that might turn into a life threatening event.

Not only the implementation must obtain information quickly, but, it must also apply the proper

mechanisms to verify its veracity and reliability.

 The BUS OFF confinement mechanism helps the failing units to be identified in time and

avoids those units to perform harm into the bus, therefore, no more information or nodes can be

affected.

6

Hardware and CAN facilities.

The BUS OFF implementation might be easy to be implemented if the right hardware is

selected. The Freescale’s MC9S12XEP100, used in the automotive industry, is an example or a

complete yet, easy to use, learn and configure card with a CAN implementation. This card

already has a MSCAN (Scalable Controller Area Network) and its architecture is shown in

Figure 5.

Figure 5 - MSCAN architecture

There are two CAN Control Registers: CANCTL0 and CANCTL1. The CANCTL1

register contains the BROM control bit which configures the BUS OFF state recovery mode of

the MSCAN as follows:

0 – Automatic BUS OFF recovery

1 – BUS OFF recovery upon user request (manual).

If a BUS OFF condition occurs, an error interrupt is generated. The MSCAN’s Receiver

Flag Register (CANRFLG) would indicate CAN Status Change. The error is indicated by the

TSTAT and RSTAT flags.

This work is based on a basic CAN driver for the XEP100 card which manages the

transmission, reception and storage of messages on the CAN bus by the MSCAN modules. In

order to apply the BUS OFF functionality to the driver, some parameters and configuration files

of the driver must be modified.

BUSS OFF functionality

The UserApp interface has been added in order be able to identify the BUS OFF status. This

interface includes two functions: LedApp_vBlink and App_vCANSupervisor. The function

App_vCANSupervisor is the one in charge of checking on the CAN0RFLG_RSTAT0 and

CAN0RFLG_RSTAT1 registers. If both of them get the value 1, it means that the node has

been set into BUS OFF state.

7

Figure 6 - App_vCANSupervisor: Function in charge to monitor if the BUS

OFF status has been set up

 When this implementation reaches the bus BUS ERROR and the manual recovery has

been configured, one must use the App_vCANSupervisor in order to trigger the node recovery

mechanism. This function will also poll the PP0 button’s status, to verify if it has been pressed,

therefore, the BUS OFF status has been cleared.

The function LedApp_vBlink allows you to visually identify by a LED when the node has

set itself in the BUS ERROR mode, as a feedback to help you debug and take the proper signals

observations easier.

Figure 7 - LedApp_vBlink

8

CAN node configuration structures.

The file conf_mscan.h contains the CAN node configuration structures. As mentioned

before, two recovery modes are implemented: manual and automatic and managed by the

tMSCAN_BusRecovery structure. Given that they are declared as enum, the values are as

follows:

BUS_OFF_AUTOMATIC_RECOVERY – 0

BUS_OFF_USER_RECOVERY – 1

 The following structure tMSCAN_DeviceConfig holds the CAN nodes configuration.

The enum value tMSCAN_BusRecovery has been added in order to pass the Bus Recovery

mechanism to the device.

 The structures shown above are used for modules, variables and types to be used by

cnf_mscan.c.

Node configuration.

 The configuration for each node in the CAN network must be declared in the file

cnf_mscan.c The following declaration shows the configuration for the node A. Similar

configurations will be made for the N numbers of nodes you want to add on the bus. As shown in

cnf_mscan.h, the BUS OFF configuration value is set to 0 (automatic)

.

9

 No further modifications were done to this section. This screenshot can be taken as an

example, since, you can add as many nodes as you want, as far as you declare the proper values

as shown in all of the MSCAN_A_<values>, lines.

 The mscan.h file exposes the functions created in the mscan.c, plus, adds different objects

needed by the CAN driver.

 The macro MSCAN_CTL1_BORM_MASK is used to modify the 4th bit of the

MSCAN_CTL1 register, in order to modify the BORM field needed to configure the BUS OFF

recovery mechanism.

Initialization of the CAN driver using BUS-OFF recovery.

The last step in the implementation is to initialize the CAN driver using the BUS-OFF

recovery mechanism you want to use. This process is done just once, in the vfnCAN_Init

function.

10

Application Program Interface (API)

Once the driver is configured and compiled the user may initialize the driver and be able to apply

the BUSS OFF recovery mechanism by using the application program interface (API)

comprising the function explained next (definition, input and output).

Service Name: LedApp_vBlink

Syntax: LedApp_vBlink(void)

Sync/Async:

Reentrancy:

Parameters(in): None

Parameters(in/out): None

Return Value:

Description:

Blinks the LED if BUS ERROR

takes place

Service Name: App_vCANSupervisor

Syntax: App_vCANSupervisor(void)

Sync/Async:

Reentrancy:

Parameters(in): None

Parameters(in/out): None

Return Value:

Description:

Checks if the button PP0 has

been pushed.

11

Results

The following test case has been executed in order to validate the BUS OFF condition:

1. Create a two nodes bus

2. Send a message from Node A to node B

3. Configure the node B so no ACK is transmitted

4. The ACK error shall be reported by node A

5. Node B enters in BUS ERROR state

6. Node B does not transmit anymore

The following are the signals taken from two nodes in a CAN bus during the test case.

Both nodes send and receive the information properly.

Figure 8 ad 9 shows the signals corresponding to two nodes in a CAN bus, both, sending and

receiving data.

Figure 8 - CAN bus, both, sending and receiving data

Figure 9- CAN High and CAN Low signals

12

Figure 10 shows the signals corresponding to the BUS OFF status. As you can see, the

node does not send nor receive any information.

Figure 10 - BUS OFF signal (zoom)

Figure 11 shows the transition from a normal transmission to the BUS OFF status set and

recovery, proving that the implementation works correctly.

Figure 11 - BUS OFF Set and recovery

13

Conclusions

The CAN protocol is very popular in the automotive industry, therefore, the devices

connected into the bus might transmit information that might turn into a life threatening event.

Not only the implementation must obtain information quickly, but, it must also apply the proper

mechanisms to verify its veracity and reliability.

The BUS OFF confinement mechanism helps the failing units to be identified in time and

avoids those units to perform harm into the bus, therefore, no more information or nodes can be

affected.

The BUS OFF implementation might be easy to be implemented if the right hardware is

selected. The Freescale’s MC9S12XEP100 is an example or a complete yet, easy to use, learn

and configure card with a CAN implementation.

14

Table of Figures

Figure 1- From MC9S12XEP100 Reference Manual, page 608 .. 5

Figure 2- Multi-bus Network .. 5
Figure 3- Star Network ... 5
Figure 4- CAN Bus Signal .. 7
Figure 5 - MSCAN architecture .. 8
Figure 6 - App_vCANSupervisor: Function in charge to monitor if the BUS OFF status has been

set up ... 9
Figure 7 - LedApp_vBlink .. 9
Figure 8 - CAN bus, both, sending and receiving data ... 13
Figure 9- CAN High and CAN Low signals ... 13
Figure 10 - BUS OFF signal (zoom)... 14
Figure 11 - BUS OFF Set and recovery .. 14

15

References

Semiconductors, F., s.f. MC9S12XEP100RMV1 Reference. [Online]

Available at:

http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XEP100RMV1.pdf?ps

pll=1

16

