Instituto Tecnoldgico y de Estudios
Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior seguin acuerdo secretarial
15018, publicado en el Diario Oficial de la Federacion el 29 de noviembre de 1976.

Departamento de Electronica, Sistemas e Informatica

Especialidad en Sistemas Embebidos

Implementation of a BUS OFF recovery mechanism on a CAN
bus driver.

Tesina para obtener el grado de:

Especialista en sistemas embebidos

Presenta(n)
Alma Karina Pedroza Ornelas
Nombre del director:
Jorge Arturo Pardifias Mir

San Pedro Tlaguepaque, Jalisco. Diciembre de 2016.

Aknowledgments / Agradecimientos

“To my husband, for being a 4x4 father, otherwise, | would not have been able to attend to
school.

A mi marido, pues de no ser un padre 4x4 no hubiera podido atender a clases.
To my dad, who raised me and my siblings without the so called “genres role norms.

A mi papa, que nos crid sin perjuicios ante los llamados ‘roles de género’ “

Abstract

This report presents the implementation of the BUS OFF recovery mechanism on a CAN bus
driver.

The CAN protocol defined in 1991 by Robert Bosh GmbH implements 5 error detection
mechanisms:

1. Bit Monitoring

2. Bit Stuffing

3. Frame Check

4. Acknowledgement Check
5. Cyclic Redundancy Check

If a node in a CAN bus does not return a recessive bit on its reply for a given time, it will be put
in BUS OFF status and will stop transmitting information to the bus, until the BUS OFF status
get cleared either manually or automatically. The implementation of this mechanism is made on
a Freescale’s MC9S12XEP100 and involves modifications to its MSCAN (Scalable
Controller Area Network) module configuration bits to enable both the BUS OFF and the
Automatic BUS OFF recovery. The implementation also includes functions that will recover the
bus from this state, manually, after pressing a button.

This document describes the details on the previously mentioned mechanisms.

Table of Contents

AKnowledgments / AgradeCimIBNTOSveruiiieiieieeie et ae e sre e sreesreenee s 2
A 4111 - (01 PRSPPSO 3
Ty (T [N T4 AT o SRRSO 5
IMPIEMENTALION ...ttt bbbttt bbb 7
TS | USROS 13
(@0 o Tod [155] [0 o S p TP SPP SRR 15
LI 10 L) o OSSR 16
RETEIEINCES ... ettt e e b e e et e e te e e ae e e b e e eab e e b e e e te e nheeaabe e reeereenree e 17

Introduction

CAN (Controller Area Network) is a protocol designed by BOSCH in 1991 that has been
widely adopted in the automotive sector in order to communicate different devices through a data
serial bus, from engine, suspension and traction controls, to lights, doors, seats, instruments and
even light and environment devices.

The Data Link Layer of the CAN protocol is defined in the 1SO-11898- specification,
while the physical layer is defined by the 1SO-11898-2 specification. The following image
shows a typical CAN bus system with MSCAN (the MC9S12XEP100RMV1 implementation).
Each CAN node is physically connected to the CAN bus through a transceiver device.

CAN node 1 CAN node 2 CAN node n

MCU

CAN Controller
(MSCAN)

TXCAN
Y

Transceiver

Figure 1- From MC9S12XEP100 Reference Manual, page 608

Please notice that, unlike LIN, the CAN nodes can be connected using different topologies:

ECU ECU ECU ECU ECU
A A A
A A A
A h Central
\ . ECU
ECU ECU
ECU ECU

Figure 2- Multi-bus Network

Figure 3- Star Network

The CAN specification is divided in two:

Part A, for the standard format, which implements an 11-bit identifier:

Arbitration Field
11 bits

Control
4 bits

Data
8 bits

CRC field
15 bits

ACK
Slot

ACK
Del

End of frame
7 bits

And part B, which is an extended format that implements a 29-bit identifier:

Arbitration Field
11 bits

Control
4 bits

|
D

R
2
b

Data

8 bits

CRC field
15 bits

ACK
Slot

ACK
Del

End of frame
7 bits

IFS2-0

The CAN protocol implements 5 error detection mechanisms:

1. Bit Monitoring

2. Bit Stuffing

3. Frame Check

4. Acknowledgement Check
5. Cyclic Redundancy Check

This work is focused on the implementation of the error confinement procedure called
BUS OFF, along with the manual and automatic recovery processes.

All nodes in the bus that correctly receive a message shall send a dominant level in the
Acknowledgement Slot of the message. The transmitter shall transmit a recessive level in this
slot. If the transmitter does not detect a dominant level in the ACK slot, an Acknowledgement
Error is reported by transmitting an Error Flag and destroying the bus traffic. When the
remaining nodes in the bus detect the error will take actions, for example, discard the message.

Each of the nodes in the bus has two error counters: Transmit Error Counter and
Receive Error Counter. The nodes will start in Error Active mode and, if any of the two errors
counters raises above 127, the node will be set in the Error Passive state. If the Transmit Error
counter rises above 255, the node is set to the Buss Off state.

Nodes in the Buss Off state do not transmit anything on the bus at all.

The error detection and mitigation in a communication protocol is fundamental, especially for
CAN, a protocol used in the automotive area, where, an error in a node might lead to life
threatening consequences. The Bus OFF mechanism also offers a recovery process for nodes
transmitting erroneous information.

Implementation

As mentioned before, there are 5 errors that should be detected and which can be contained
by the BUS OFF error mechanism. This work was tested using the Acknowledgement Check
error, due to its simplicity to simulate (by configure 0 — Nodes).

Given that embedded systems are finite, the list of nodes has to be setup previously from the
beginning. If x (where x > 0) nodes are configured, you can send messages to all, a few or none
of them. Nodes are supposed to respond to transmission request with a dominant bit in the ACK
slot within the response. If no dominant bit is detected, it is assumed that the message could not
be acknowledged.

Volts
|
CAN_HIGH

2.8

CARN_LOWY

0 |

Recessesive Dominant Recessesive

l-l'“

1 0 1
Figure 4- CAN Bus Signal

This behavior will increase either error counter that applies (Transmit or Receive), which,
sill set the node into the Error Passive state if they raise 127 or BUS OFF, if the errors raise
above 255.

The CAN protocol is very popular in the automotive industry, therefore, the devices
connected into the bus might transmit information that might turn into a life threatening event.
Not only the implementation must obtain information quickly, but, it must also apply the proper
mechanisms to verify its veracity and reliability.

The BUS OFF confinement mechanism helps the failing units to be identified in time and
avoids those units to perform harm into the bus, therefore, no more information or nodes can be
affected.

Hardware and CAN facilities.

The BUS OFF implementation might be easy to be implemented if the right hardware is
selected. The Freescale’s MC9S12XEP100, used in the automotive industry, is an example or a
complete yet, easy to use, learn and configure card with a CAN implementation. This card
already has a MSCAN (Scalable Controller Area Network) and its architecture is shown in
Figure 5.

CAN node 1 CAN node 2 CAN node 3 CAN node 4 CANnode 5
KACU

CAN Controller
(MSCAN)

THCAN

r

Transceiver

il B o § SR 5 N 0 AR

Figure 5 - MSCAN architecture

There are two CAN Control Registers: CANCTLO and CANCTL1. The CANCTL1
register contains the BROM control bit which configures the BUS OFF state recovery mode of
the MSCAN as follows:

0 — Automatic BUS OFF recovery
1 — BUS OFF recovery upon user request (manual).

If a BUS OFF condition occurs, an error interrupt is generated. The MSCAN’s Receiver
Flag Register (CANRFLG) would indicate CAN Status Change. The error is indicated by the
TSTAT and RSTAT flags.

This work is based on a basic CAN driver for the XEP100 card which manages the
transmission, reception and storage of messages on the CAN bus by the MSCAN modules. In
order to apply the BUS OFF functionality to the driver, some parameters and configuration files
of the driver must be modified.

BUSS OFF functionality

The UserApp interface has been added in order be able to identify the BUS OFF status. This
interface includes two functions: LedApp_vBlink and App_VCANSupervisor. The function
App_VCANSupervisor is the one in charge of checking on the CANORFLG_RSTATO and
CANORFLG_RSTATL1 registers. If both of them get the value 1, it means that the node has
been set into BUS OFF state.

void App_vCANSupervisor(void)

{
static BOOL boErrorFound = FALSE;

if (boErrorFound == TRUE)
{

if (PP@_push_button == @)
{
PTA PTA1 = 1;
CANOMISC_BOHOLD = 1;
boErrorFound =FALSE;
¥

else

PTA_PTAL = 0;

if((CANORFLG_RSTAT® == 1) 8& (CAN@RFLG_RSTATL == 1))

{
PTA_PTA2 = 1;
boErrorFound = TRUE;
¥

else

PTA_PTA2 = 0;

Figure 6 - App_vCANSupervisor: Function in charge to monitor if the BUS
OFF status has been set up

When this implementation reaches the bus BUS ERROR and the manual recovery has
been configured, one must use the App_VCANSupervisor in order to trigger the node recovery
mechanism. This function will also poll the PPO button’s status, to verify if it has been pressed,
therefore, the BUS OFF status has been cleared.

The function LedApp_vBlink allows you to visually identify by a LED when the node has

set itself in the BUS ERROR mode, as a feedback to help you debug and take the proper signals
observations easier.

void LedApp vBlink(void)

{
static UINT8 u8Time Ctr = @;
u8Time_Ctr++;
it (u8Time Ctr == 5)
{
PTA_PTA® = !PTA_PTA®;
u8Time_Ctr = 8;
¥
return;
}

Figure 7 - LedApp_vBlink

CAN node configuration structures.

The file conf_mscan.h contains the CAN node configuration structures. As mentioned
before, two recovery modes are implemented: manual and automatic and managed by the
tMSCAN_BusRecovery structure. Given that they are declared as enum, the values are as
follows:

BUS_OFF_AUTOMATIC_RECOVERY -0
BUS_OFF_USER_RECOVERY -1

B R]
* Declaration of module wide TYPES

typedef enun
BUS_OFF_AUTOMATIC_RECOVERY, s#%¢ RECOVERY default=r
BUS_OFF_USEER_RECOVERY, s%%¢ RECOVERY for user reguest®/
}tMSCAN_BusRecovery;
typedef enun

MSCAN_A, suxe CAN A =7
MSCAN B /xxc CAN B »/

The following structure tMSCAN_DeviceConfig holds the CAN nodes configuration.
The enum value tMSCAN_BusRecovery has been added in order to pass the Bus Recovery
mechanism to the device.

typedef struct

UINT32 baudrate: /%%, Baudrate */
const tMSCAN _RzHWObjectConfig *r=_hwlbj_cfg: ~#%¢{ pointer to static Rx hw objects configuration =/
const tMSCAN TzHwFifoConfig *tx_hw_fifo_cfg; -#*%¢ pointer to static Tz fifo configuration *~
enum tHSCAN_ Device device; s%%¢ Device ID *-
enum tMSCAN_AccFilterModeCig filter_cfg: s#%{ Rz filter acceptance mode configuration */
TINTS nr_of_rzx_hwOb; ~-#%{ number of rz hw objects being configured =/
TINTE rx_buffer_depth; #%(software buffer depth for each rx hw filter */
TINTS tx_fifo depth; ~#%¢ software queus depth for transmission purposes %/
enum tHSCAN_BusRecowvery enBusOf fHode cfg;/#**< Bus off recovery mode configuration %/
}tMSCAN DeviceConfig;

The structures shown above are used for modules, variables and types to be used by
cnf_mscan.c.

Node configuration.

The configuration for each node in the CAN network must be declared in the file
cnf_mscan.c The following declaration shows the configuration for the node A. Similar
configurations will be made for the N numbers of nodes you want to add on the bus. As shown in
cnf_mscan.h, the BUS OFF configuration value is set to 0 (automatic)

/#%{ Configuration of MSCAN A device =/
const tMSCAN DeviceConfig CAN device cfg[] =

(UINT32)CAN_BAUDRATE_SO0Kbps, s%%¢ Baudrate *7
iC =_msg_cfg[0]. /%#%{ pointer to static Rx hw objects configuration #*/
_t®_m=g_cfg, s®%(pointer to static Tz fifo configuration #*/
/%%¢ Device ID =/
s%##{ Rz filter acceptance mode configuration #*/
g_cfg)ssizeof (HSCAN_A r= m=sg_cig[0]). ~=x%¢ number of rx hw objects being configured =~/
s%%{ zoftware buffer depth for all the r= FIFO =~
. /%%¢ =zoftware queus depth for transmission purposes */
TIC_RECOVERY }*or BUS_OFF_USER_RECOVERV#*/,

RIS MFFE ATITAMATTT RECATERY

No further modifications were done to this section. This screenshot can be taken as an
example, since, you can add as many nodes as you want, as far as you declare the proper values
as shown in all of the MSCAN_A_<values>, lines.

The mscan.h file exposes the functions created in the mscan.c, plus, adds different objects
needed by the CAN driver.

The macro MSCAN_CTL1 BORM_MASK is used to modify the 4th bit of the
MSCAN_CTL1 register, in order to modify the BORM field needed to configure the BUS OFF
recovery mechanism.

¥define MSCAN MATIN NODE OFS B4

fdefine MSCAN CTL1 INITAK MASK
fdefine M { L1 MASKE

JINTE
¥define MSCAN

u) —

;i k {]
CTL1_LISTEN_MASK (UINTS

1116
#define MSCAN CTL1 LOOPE MASK (UINTE)32
#define MSCAN CTL1_CLKSRC_MASK (UINTE)64
#define MSCAN CTL1_CANE MASK (UINTS)128

Initialization of the CAN driver using BUS-OFF recovery.

The last step in the implementation is to initialize the CAN driver using the BUS-OFF
recovery mechanism you want to use. This process is done just once, in the vfinCAN_Init
function.

<% Read settings from CTLl register %~
MSCAN®CTL1_temp = MSCAN_READ CTL1(device):
7% Enable MSCAN module #*~/

MSCAN=CTL1 temp |= MSCAN CTL1 CANE MASK:

7% LoopBack Mode Disabled #*-
MSCANRCTL1_temp &= ~MSCAN CTL1_ LOOPE MASK:
7% Listen only mode Disabled #*~/

MSCAN=CTL1 temp &= ~HSCAN CTL1 LISTEN MASK:
/% Clock source is XKTAL %~

MSCAN=CTL1_temp &= ~MSCAN CTL1 CLESRC MASK:

s#Config Bus Re =
'l_t { o S g zcan_device cfg[device nBus0f f Hode_cfg)

=CTL1l tenp

s# Write settings back onto CTLl register *-
MSCAN_WRITE_CTL1(device, MSCAN=CTL1_temp):

/% Configure Baud Rate as per custoner settings *7

baudrate = nscan_cfg-»mscan_device_cfg[device] baudrate;
vinCAN BaudRateConfig(device, baudrate):

10

Application Program Interface (API)

Once the driver is configured and compiled the user may initialize the driver and be able to apply
the BUSS OFF recovery mechanism by using the application program interface (API)
comprising the function explained next (definition, input and output).

Service Name:

LedApp_vBlink

Syntax: LedApp_vBlink(void)
Sync/Async:

Reentrancy:

Parameters(in): None
Parameters(in/out): | None

Return Value:

Description:

Blinks the LED if BUS ERROR
takes place

Service Name:

App_vCANSupervisor

Syntax: App_vCANSupervisor(void)
Sync/Async:

Reentrancy:

Parameters(in): None

Parameters(in/out): | None

Return Value:

Description:

Checks if the button PPO has
been pushed.

Results

The following test case has been executed in order to validate the BUS OFF condition:

Create a two nodes bus

Send a message from Node A to node B
Configure the node B so no ACK is transmitted
The ACK error shall be reported by node A
Node B enters in BUS ERROR state

Node B does not transmit anymore

ocoukrwhE

The following are the signals taken from two nodes in a CAN bus during the test case.
Both nodes send and receive the information properly.

Figure 8 ad 9 shows the signals corresponding to two nodes in a CAN bus, both, sending and
receiving data.

D50-% 20028, MY51135392 Mon May 02071327 2018

0.0z 20008/

Figure 8 - CAN bus, both, sending and receiving data

DS0-X 20024, MY51133382 Mon May 02 05:0221 2016

500.08/

Depuraci

Figure 9- CAN High and CAN Low signals

Figure 10 shows the signals corresponding to the BUS OFF status. As you can see, the
node does not send nor receive any information.

DSI0% 20028, MV 135332 Mo My 02107 457 2018
g

[anales
I8 01
I 10.0:1

Figure 10 - BUS OFF signal (zoom)

Figure 11 shows the transition from a normal transmission to the BUS OFF status set and
recovery, proving that the implementation works correctly.

DS0-X 20028, MY51135392: Mon May 02073527 2018

1800y 2 003 a00.08/

Agilent

Canales
1001
1001

Figure 11 - BUS OFF Set and recovery

Conclusions

The CAN protocol is very popular in the automotive industry, therefore, the devices
connected into the bus might transmit information that might turn into a life threatening event.
Not only the implementation must obtain information quickly, but, it must also apply the proper
mechanisms to verify its veracity and reliability.

The BUS OFF confinement mechanism helps the failing units to be identified in time and
avoids those units to perform harm into the bus, therefore, no more information or nodes can be
affected.

The BUS OFF implementation might be easy to be implemented if the right hardware is
selected. The Freescale’s MC9S12XEP100 is an example or a complete yet, easy to use, learn
and configure card with a CAN implementation.

Table of Figures

Figure 1- From MC9S12XEP100 Reference Manual, page 608ccoveeiiiiniinieniinneee e 5
Figure 2- MUItI-DUS NETWOTKoiieiicc ettt ns 5
FIQUIE 3- STAr NEEWOTK ... 5
Figure 4- CAN BUS SIQNAL......ccooiiiieiice ettt raeneennaenns 7
Figure 5 - MSCAN AIrCNITECIUIE..........oouiiiiiiiieeeee bbb 8
Figure 6 - App_VvCANSupervisor: Function in charge to monitor if the BUS OFF status has been
1] S o PP PTR PR 9
Figure 7 - LEAAPD_VBIINK......cciiiiiieie ettt ee e ns 9
Figure 8 - CAN bus, both, sending and receiving data..........cccceeverierinieiinnine e 13
Figure 9- CAN High and CAN LOW SINAIS.........cceiieiiiieiieii e sne e 13
Figure 10 - BUS OFF SIgNal (ZOOM)......couiiiiiieiiiie st 14
Figure 11 - BUS OFF St aNd FECOVEIYcviiieeiieieiieesie e see e tesee e ssa e teeaesnaesneanesneesneeneens 14

References

Semiconductors, F., s.f. MC9S12XEP100RMV1 Reference. [Online]

Available at:
http://cache.freescale.com/files/microcontrollers/doc/data sheet/MC9S12XEP100RMV1.pdf?ps

pll=1

