
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS

SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial
15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

MAQUINA DE ESTADOS EN EL

MICROCONTROLADOR S12X PARA UN

PROTOCOLO LIN CONTROLADO POR EVENTOS

Trabajo recepcional que para obtener el diploma de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: Josymar Itzae Guzmán Mercado

Asesor: Raúl Campos Rodríguez

Tlaquepaque, Jalisco. 27 de octubre de 2016.

2

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS

SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial
15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

MAQUINA DE ESTADOS EN EL

MICROCONTROLADOR S12X PARA UN

PROTOCOLO LIN CONTROLADO POR EVENTOS

Trabajo recepcional que para obtener el diploma de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: Josymar Itzae Guzmán Mercado

Becario CONACYT No. 424506

Asesor: Raúl Campos Rodríguez

Tlaquepaque, Jalisco. 27 de octubre de 2016.

3

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS

SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial
15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

EVENT DRIVEN LIN PROTOCOL STATE MACHINE

USING S12X MICROCONTROLLER.

Final work that to obtain the diploma of

EMBEDDED SYSTEM SPECIALIST

Presents: Josymar Itzae Guzmán Mercado

CONACYT Scholarship No. 424506

Advisor: Raúl Campos Rodríguez

Tlaquepaque, Jalisco, octubre de 2016.

4

AKNOWLEDGMENTS

First I would like to express my sincere gratitude to my advisor Dr. Raúl Campos

for the support of achieving this work done.

I also want to thank to Consejo Nacional de Ciencia y Tecnología (CONCACYT)

for promoting scientific and technological research, and for his support by the Scholarship

No. 424506.

Specially tanks to ITESO for having the equipment and facilities for every activity

developed during the specialty, all teachers and students for their patience, motivation and

immense knowledge I exchanged with and enriched my mind.

Finally, I would like thank to Continental Automotive Guadalajara, for the support

in the professional growth and also for the valuable support they have offered me.

5

RESUMEN

Los sistemas embebidos juegan un papel importante en un gran número de

dispositivos de alta tecnología, como los requeridos en la industria automotriz. La creciente

necesidad de entregar una solución de ingeniería que se pueda mantener y depurar con

facilidad, lleva a hacer diseños tan configurables como sea posible, ya sea tanto en la

plataforma de hardware como de software, con un gran énfasis en esta última.

Este trabajo tiene dos propósitos principales: (1) implementar el código fuente del

protocolo de comunicación LIN que trata con restricciones en tiempo real y (2) demostrar

que el uso de un analizador basado en software de PC proporciona una manera poderosa,

rápida y fácil de generar código fuente útil mediante la construcción de archivos de texto

que posteriormente pueden ser utilizados por el ingeniero de desarrollo. Las combinaciones

de ambas soluciones garantizan una herramienta de ingeniería bien diseñada, configurable y

que puede ser mantenida con facilidad.

La primera parte del documento especifica los objetivos, el enfoque propuesto y los

antecedentes teóricos de este trabajo. Enseguida, se ofrecen detalles de implementación de

la solución incorporada en la tarjeta de desarrollo y la solución de interfaz que se ejecuta en

la PC, así como la fase de prueba / validación del proyecto.

Finalmente, se presenta un resumen del trabajo, conclusiones y una reflexión sobre

cómo el conocimiento adquirido en este proyecto mejora mi trabajo diario. Algunas

referencias bibliográficas útiles para una comprensión adecuada de este trabajo se ofrecen

al final del documento, en la sección correspondiente.

6

ABSTRACT

Embedded systems play an important role in a great number of high technology

devices, such as those required in the automotive industry. The incremental need of

delivering a maintainable engineering solutions leads to make configurable designs as

much as possible.

This work has two major purposes: (1) to implement LIN source code dealing with

real-time constrains and (2) to demonstrate that using a PC parser provides a powerful,

faster and easy way to generate useful source code from a text file. Both solutions in

combination ensure a well-designed, maintainable and configurable engineering solution.

First part of the document specifies the objectives, proposed approach and

theoretical background. It’s followed by implementation details of the embedded solution

in the board and the interface solution running in the PC, as well the testing/validation

project phase, and finally summarizing the entire work conclusion and how engineering

knowledge acquired improves my daily work.

7

TABLE OF CONTENTS
AKNOWLEDGMENTS... 4

RESUMEN .. 5

ABSTRACT .. 6

TABLE OF CONTENTS ... 7

LIST OF FIGURES .. 9

LIST OF ACRONYMS AND ABBREVIATIONS .. 10

1. INTRODUCTION .. 11

1.1. AUTOMOTIVE COMMUNICATION PROTOCOLS OVERVIEW .. 12

1.2. OBJECTIVES .. 13

2. BACKGROUNG .. 15

2.1. LIN PROTOCOL .. 16

2.1.1.1. DATA EXCHANGE ... 16

2.1.1.2. LIN MESSAGE FRAME .. 17

2.1.1.3. HEADER ... 17

2.1.1.4. RESPONSE .. 18

2.1.1.5. STATE MACHINES... 19

2.1.1.6. HUMAN MACHINE INTERFACE.. 20

2.1.1.7. SYNTACTIC ANALYZER .. 21

2.1.1.8. INTERRUPT DRIVEN DEVELOPMENT ... 22

2.1.1.9. INTERRUPT SERVICE ROUTINE ... 23

3. DESIGN AND IMPLEMENTATION .. 24

3.1. PROPOSED APPROACH ... 25

3.1.1.1. LIN IMPLEMENTATION ... 25

3.1.1.2. LIN CONFIGURATION PARSER .. 25

3.2. IMPLEMENTATIONS DESCRIPTION ... 25

3.2.1.1. LIN IMPLEMENTATION ... 26

3.2.1.2. INTERRUPT DRIVEN STATE MACHINE .. 26

3.2.1.3. MASTER TASK .. 27

3.2.1.4. SLAVE TASK ... 29

3.2.1.5. LIN CONFIGURATION FILE ... 30

3.2.1.6. LIN CONFIGURATION PARSER .. 34

3.2.1.7. HUMAN MACHINE INTERFACE.. 34

3.2.1.8. OBJECT ORIENTED PROGRAMMING APPROACH .. 35

3.2.1.9. DLL LIBRARY .. 37

3.2.1.10. LABVIEW COMPLEMENTARY APPLICATION ... 40

4. TEST AND RESULTS ... 43

4.1. EXPERIMENT AND TESTING SCENARIO ... 44

4.2. RESULTS ... 45

8

5. CONCLUSIONS .. 49

5.1. CONCLUSIONS .. 50

BIBLIOGRAPHY .. 52

9

LIST OF FIGURES

Figure 1. Master node representation .. 18

Figure 2. Master message stream flow.. 18

Figure 3. Slave node representation. ... 18

Figure 4. Slave response message flow. .. 19

Figure 5. State Machine example. ... 20

Figure 6. Old Human Machine Interface with buttons, switches, levels and light

indicators. .. 20

Figure 7. Nowadays Human Machine Interface with visualization and touch screen. 21

Figure 8. Syntactic Analyzer Diagram example. ... 22

Figure 9. Interrupt Service Routine sequence. ... 23

Figure 10. S12X microcontroller SCI interruption registers. .. 27

Figure 11. State machine chart for Master node task. .. 28

Figure 12. State machine chart for Slave node taks. ... 29

Figure 13. Type definition for enumerations. .. 30

Figure 14. Type definition for signal, frame and table structures. 31

Figure 15. Type definition for channel and driver structures. .. 31

Figure 16. Configuration for signals in frame1. .. 32

Figure 17. Configuration table for frame1.. 33

Figure 18. Configuration table for Master node. .. 33

Figure 19. UML diagram break down implementation. ... 36

Figure 20. Constructor for signal class and attributes. ... 38

Figure 21. Parser withpublic interface exposed to LabVIEW GUI. 39

Figure 22. Parser Class showing public methods available to be used and private

methods. ... 40

Figure 23. LabVIEW with graphical code. .. 41

Figure 24. Producer-Consumer Architecture.. 42

Figure 25. Producer-Consumer Architecture.. 42

Figure 26. Target board – PC/Oscilloscope testing environment. .. 44

Figure 27. Master node initiating the bus activity: SynchBreak, SynchField and PID.

 .. 45

Figure 28. Frame with publisher as MASTER, therefore SynchBreak, SynchField,

PID and data are sent. .. 46

Figure 29. The Master sends the sleep message when a button is pressed. 47

Figure 30. PC Serial Communication Tool with Rx data frames from the MASTER and Tx

data frames from the SLAVE. .. 48

10

LIST OF ACRONYMS AND ABBREVIATIONS

Cross-compilation Process whereby compilation is done on a PC (host) with the purpose to

be executed on other system, called target (target). When cross-

compilation is done, executables for another system are produced. This

happens when the target does not have the toolchain native compilation

or when the host is faster and has better resources (CPU, memory, etc.).

SDK Software Development Kit.

X11 X Window System.

RTOS Real-Time Operating System

11

1. INTRODUCTION

Abstract: This chapter briefly presents the background of the object of study, problem

definition and justification.

12

1.1. Automotive Communication Protocols Overview

Government regulations implemented in order to make automobiles environment

friendly motivated the development of vehicle network technology, followed by the growth

of the semiconductor industry, competition and cost pressures. Electronics played a

decisive role not only to achieve reducing emission, but improving customer satisfaction,

driving safety and comfort.

For many years the car radio was the unique electronic device in vehicle, until the

migration of electronic control units (ECU’s) which began at the end of 1970’s.

The increasing number of requirements in the different domains of a car production

have led to the need of a large number of different automotive networks, such as Controller

Area Network (CAN), Local Interconnect Network (LIN), J1850, FlexRay, MOST, and

most recently Ethernet, among others.

The most used in-car communication protocols are by far the LIN and the CAN. By

the one hand, the LIN protocol works in a single master fashion, with one wire at 12V,

which was adopted by the industry in the 1990’s. This protocol is able to transfers data up

to 20 Kbit/s. On the other hand, the CAN protocol is a multi-master communication

procedure, with a typical dual wire at 5V. It was widely adopted by the industry in the

second half of the 1990’s. This protocol is able to communicate at rates up to 500 Kbit/s.

A common characteristic, sometimes useful o sometimes not, of the majority of the

protocols and buses is that each connected ECU shares a single input port and output port.

Accordingly, the information does not have a pass through the ECU’s. Thus, when an ECU

sends any package of information, all other ECU’s receive it almost at the same time and in

the same order.

13

Since it is quite probable that time-critical applications would be running in each

ECU, then the operation of adding and/or removing nodes is one of the most common

activities in an automotive communication protocols. Hence, tools for debugging activities

such as measurement, diagnostics and sniffing, are aroused and created a new branch in

automotive engineering in the design of developing and support tools.

1.2. Objectives

The main objective is to create a complete project which comprises on one hand a

LIN implementation logic running in a real time environment. On the other hand, a

complementary interface, running in a Windows Operating System PC, capable to receive

meaningful LIN protocol related information in a text file and use it to modify the

configuration in the board.

The entire project can be then broken down into two core implementations:

 LIN implementation. Using MC9S12XEP100 Freescale (now NXP and then

Qualcomm) demo board and a predefined scheduling environment, take advantage

of microcontroller and peripherals capabilities to create a real-time source code to

support LIN protocol requirements.

 LIN configuration parser. Create a syntactic analyzer application running on

Windows Operative Sytem PC, capable to receive as input a text file containing

information describing the LIN configuration and as a result, generate a header and

a source file ready to be used in the LIN implementation. The input file (text file)

must have the information arranged with predefined rules so the parser can analyze

it. The output files must manage all the information provided in the input file

without any change.

14

15

2. BACKGROUNG

Abstract: This chapter briefly reviews some background concepts and protocols that are

relevant in the development of this project.

16

All project implementation requires research and knowledge to know requirements

and constrains; this is not the exception. In this section it is provided an introduction to LIN

protocol, state machines, human machine interface, and syntactic analyzer and interrupt

driven development; which are the core topics to achieve the project implementation.

2.1. LIN Protocol

The LIN is a SCI/UART-based serial, byte-oriented, low cost and low speed and

time triggered communication protocol used for short distance networks.

LIN protocol was developed as cost-effective alternate to CAN protocol, to become

the link between the intelligent control module and the remote sensors/actuators such as:

 Vehicle roof (rain sensor, light sensor, light control)

 Doors/windows/seats (mirrors, windows lift, door locking, mirror switch)

 Steering wheel (cruise control, wipers, turning light)

 Seat (occupancy sensor, control panel)

2.1.1.1. Data exchange

As already mentioned, a LIN network comprises of one master node and one or

more, up to 12, slave nodes. Only the master node initiates the communication. The master

node defines the transmission speed, sends synchronization pulses, monitors data and

switches slave nodes to sleep/wake up mode. It also receives the Wakeup Break from slave

nodes when the bus is inactive and they request some action.

17

2.1.1.2. LIN Message Frame

The LIN protocol uses frames for the communication. A frame consists of a header,

a response and some response space. The master sends out a message header containing a

synchronization break, synchronization byte and the message identifier, each part begins

with a start bit and ends with a stop bit.

A slave node waits for the synchronization pulse, processes the message identifier

and according the ID, it transmits, receive data or do nothing. The response contains one to

eight data bytes and one checksum byte.

Once the bus becomes inactive, either the master starts over the communication or

the slave sends a weak up break to request the master to do something.

2.1.1.3. Header

The LIN protocol is byte oriented; this means the data is sent byte by byte, the LSB

first.

Synch Break is the field transmitted by the master to notify the start of the LIN

message frame. It must be at least 13 bit periods in duration to allow master-slave

synchronization.

Synch Byte is a specific pattern for determination of time base. It precedes any

message frame.

The identifier incorporates information about the sender, the receiver, the purpose

and the data field length.

18

Figure 1. Master node representation

Figure 2. Master message stream flow.

2.1.1.4. Response

The response is composed mainly by the data and checksum, the data sent could be

1, 2, 4 or 8 data bytes, the checksum to identify data integrity.

Figure 3. Slave node representation.

19

Figure 4. Slave response message flow.

2.1.1.5. State Machines

A finite state machine is one of the most common design patterns used in the

embedded systems world. The main purpose of a state machine is to define the proper

transition amount pre-defined states; a state is a condition that captures relevant aspects of

the system’s history. Each state transition is event triggered. The event could be due to an

interrupt, timer, signal or input from other module in the system.

It is common to find state machine diagrams to have a big picture of the state

machine life cycle. A state is regularly represented as a rectangle with rounded corners and

the state name inside the rectangle, but using a circle is also accepted. A transition is

represented by an arrow leading from one state to another and an event is simply the

occurrence of something in the system indicating a change.

One of the simplest and intuitive state machines is that of a puss button. It has two

states (Power On and Power Off), two transitions (Power On – Power Off, Power Off –

Power On) and one event (Button click). The Figure 5 shows an example of a State

Machine capturing the button behavior.

20

Figure 5. State Machine example.

2.1.1.6. Human Machine Interface

A Human Machine Interface (HMI) did not start as it is known nowadays. The first

approach of a Human Machine Interface was using buttons, lights and switches to monitor

machine operations. Since the possibility to replace the buttons with an electronic terminal,

in 1990, along with integrated circuit evolution, HMI were considered as a system add-on.

Then, the PC was born, and the HMI grew exponentially; a lot of improvements

have been done to make what we know today as displays (late in 1990’s), not only for

visualization purposes but for creating an interaction mean.

HMI history is huge, and we will focus only on the HMI purpose and definition.

Figure 6. Old Human Machine Interface with buttons, switches, levels and light

indicators.

21

Figure 7. Nowadays Human Machine Interface with visualization and touch screen.

2.1.1.7. Syntactic Analyzer

Some applications provide tools to create, modify and verify the syntax of their

configuration files, and this tools have a graphical interface. In some applications a more

understandable file is consider as input to convert into a complex file used in the system.

Such tools are known as parsers or syntactic analyzer which processes a string of

symbols to produce an advanced file usable by the system.

The parsing process consists of two parts: Scanner and Parser. The Scanner analyses

the input file to separate the meaningful information into tokens with a predefined pattern.

Once the Scanner finishes a stream of tokens are sent to the Parser. The Parser then builds

nodes according predefined rules to finally take an action, for example, commit information

to a database, send information to a server or, add text to a file.

There are a lot of high level frameworks and programming languages that can help

achieving this task (.net, java, LabView/TestStand, python, among others). The Figure 8

shows a conceptual diagram of an analyzer.

22

Figure 8. Syntactic Analyzer Diagram example.

2.1.1.8. Interrupt Driven Development

A rough definition of interrupt is that: interrupt is a mechanism by a microcontroller

interrupts the normal processing of the processor and requests the device to execute a

specific action. They can be categorized in program, input/output, timer and hardware

failure.

 Program: generated as a result of an instruction execution, such as arithmetic

overflow or an invalid machine instruction.

 Input/Output: generated by an I/O event, generally hardware related to remark an

event.

 Timer: generated by timer expiration in the processor/microcontroller.

 Hardware failure: generated due to a hardware failure.

We will focus mainly in Input/Output and Timer interrupts for this document, since

are the base for the software developed.

SCANNER/PARSER

23

2.1.1.9. Interrupt Service Routine

Interrupts are one of the most powerful and useful features in embedded systems

development to make the system more efficient and responsive to critical events or time

constrain actions.

When an interrupt is generated, the microcontroller jumps to the Interrupt Handler

or Interrupt Service Routine to execute a dedicated code the designer/developer has

prepared for the interrupt source. For every interrupt, there is a fixed location in memory

that holds the address of its interrupt service routine. Once the interrupt is attended, the

microcontroller returns from the interrupt and it resumes the normal code execution as

interruption has never occurred.

Figure 9. Interrupt Service Routine sequence.

Vector with all interruptions

Interuption

in peripheral X

Normal code

execution

Normal code

execution

Interrupt Service Routine

24

3. DESIGN AND

IMPLEMENTATION

Abstract: This chapter details some of the most relevant aspects of the design and

implementation of this work.

25

3.1. Proposed approach

3.1.1.1. LIN Implementation

All automotive communication protocols require a quick response to acquire

incoming data and response; hence, interrupt scheme in microcontrollers is suitable for this

task, besides a real-time scheduling is available to achieve this.

Once information is available in the microcontroller, the next step is to arrange it

properly according the LIN protocol. In order to know what information is already

processed, completed, remaining and what action is coming next, a state machine is

proposed to know current process state and transition to take action if needed.

3.1.1.2. LIN Configuration Parser

Most of enterprise computers run on Windows Operating System. Most of the

engineering tools as well run one version of the Windows Operating System. Considering

this, either a Windows framework, .NET framework for example, or a multiplatform

language, such as Java, can be selected. Due previous experience working with Window

framework, .NET is proposed to build the parser application.

3.2. Implementations description

This work focuses mainly in solving two activities, its design and related problems and

challenges. These activities are briefly described as follows:

1. Implementing a time-constraint solution to handle LIN protocol messages;

2. To provide the user the capability to create a LIN configuration easily.

26

An ISR, the involved state machines and configuration files compound the solution

to accomplish the point number 1. These elements are fully described later in this chapter of

the document.

Syntactic Analyzer tool is the solution to accomplish the second point, which is as

well described this chapter of this document.

The combination of these two solutions provides a real-world industry

implementation solution.

3.2.1.1. LIN Implementation

3.2.1.2. Interrupt Driven State Machine

For implementing the state machine, this work used a conditional statements

approach. This approach is quite simple, it consists of switch-case statement containing

each predefined state, an evaluation is made to determine the proper time to transition or

not to another state.

Master and Slave behavior were handled by using state machines. This work

defined 4 states machines, depending on the selection of the node behavior. One is

dedicated for the transmission as master, one is dedicated for reception as Master, one

dedicated for transmission as Slave and finally one dedicated for reception as Slave.

To make package transmission and reception faster, easier and better, this work

decided to use an interrupt event driven mechanism.

27

This event driven mechanism is ISR (interrupt Service Routines). The

microcontroller provides ISR which are external events the microcontroller. Each interrupt

has a unique ID which can be used in the software to refer to certain interrupt. In this way,

interrupts allow a rapid response to time-critical events often occur in measurement and

control applications (also in automotive industry).

Since the LIN protocol is SCI based protocol, this work has made use of the SCI

block. The S12X microcontroller data sheet provides a detailed description of the SCI

related registers and considerations for its operation.

The Figure 10 depicts the registers related to the SCI interrupt module in the S12X

microcontroller.

Figure 10. S12X microcontroller SCI interruption registers.

3.2.1.3. Master Task

The Master task is the one in charge of handling the communication flow, once the

task starts running the first state is IDLE, which means the task is ready to start the

information transmission, it transitions to SendSynchBreak state, here the task fulfill a byte

array to be loaded in an SCI buffer and be transmitted, until the last byte is transmitted it

then transitions to SendSynchField state, in similar way as the previous state, it arranges a

28

byte array with 0X55 value, once the last byte is transmitted, the task starts preparing the

PID; if the publisher is the master it proceeds to send data, if it’s a slave, the master waits

for receiving the response from the corresponding slave.

The Figure 11 details the state machine for the master node task. The machine is

composed of seven states and ten transitions.

Figure 11. State machine chart for Master node task.

29

3.2.1.4. Slave Task

Following the same concept as the Master task, once it is detected the SCI buffer

has information the Slave task verifies it is the SynchBreak and then wait for the

SynchField reception, if there are no errors the state machine transitions to Receive PID

state, depending on the PID, the slave task evaluates to either receiving data or transmit

data.

The Figure 12 depicts the state machine of the slave task. It is composed of seven

states and nine transitions. This machine includes two initial states, one for the reception of

a message and one for the transmission of a message.

Figure 12. State machine chart for Slave node taks.

30

3.2.1.5. LIN Configuration File

In computing area and embedded systems as well the configuration files are

intended to set parameter or initial setting an application will use.

In this case the configuration file resides in the pair header-source file (.h and .c data

type files). The header file (.h) includes only data types created to make easier handling the

frames transmission-reception used by the application, the data type definitions is based in

enumerations and structures.

The Figure 13 shows the type definition for the enumeration required by the

implementation.

Figure 13. Type definition for enumerations.

31

Figure 14. Type definition for signal, frame and table structures.

Figure 15. Type definition for channel and driver structures.

32

The source file (.c) uses the predefined data types to construct constant tables, in

this way the application is configurable and maintainable, it’s easier to modify the “shape”

of the frames to adapt them according the application needs.

Figure 16. Configuration for signals in frame1.

33

Figure 17. Configuration table for frame1.

Figure 18. Configuration table for Master node.

When the application is running, it looks for the constant data specified by these two

files to work.

34

3.2.1.6. LIN Configuration Parser

3.2.1.7. Human Machine Interface

HMI stands for Human Machine Interface, as stated in 1.4 Human Machine

Interface section, the HMI provides an interface the user can interact with the system, in

this case an HMI was developed to be an interface to a parser to provide an easy way the

final user can generate configuration files and use them directly in the system without

making any change.

Due previous experience using .NET framework and National Instruments tools, in the

design of the solution described in this work, it has been decided to use the combination of

both environments, LabVIEW and Visual C#. Object Oriented Programming was used,

integrating the full functionality of both implementations using .NET Assembly to be called

from vi(LabVIEW).

 The development was divided in the following sections:

 Open the configuration file.

 Scan sections.

 Generate configuration objects.

 Use configuration objects to generate .c sections.

 Concatenate sections and generate .c content.

 Save to .c file.

35

3.2.1.8. Object Oriented Programming Approach

Objects are the key to understand object-oriented programming. Real-world objects

are involved in our life: a dog, a desk, a television, a bicycle, etc. Software objects are

conceptually similar to real-world objects; they both consist of state and related behavior,

an object stores its state in fields (variables) and exposes its behavior through methods

(functions). Methods operate on an object’s internal state. For example, a bicycle, its state

could be: current speed or current pedal cadence or current gear; and providing methods to

change its state, accelerate, break, changeGear, etc.

Object oriented programming provides benefits, such as:

 Modularity. Source code for an object can be written, maintained and replace easily.

 Information hiding. Object’s methods hide the implementation details.

 Code re-use. Existing code can be used in you program/application.

Since the number of elements can change and its information, OOP fits to solve the

problem of getting from a text file a configuration with a specific format and information

arrangement.

36

Figure 19. UML diagram break down implementation.

The intention of this implementation is to split all into smaller procedures and

objects. As it can be seen, the Scanner object takes an important part, because it is the one

that contains all the objects. Based on the sections it has, it will translate them to objects

with the help of the Parser.

37

3.2.1.9. DLL Library

For Microsoft Windows operating system much of the functionality is provided by

Dynamic Link Libraries (DLL). For example, some programs may contain many different

modules, and each module of the program is contained and distributed in DLLs.

Using DLLs helps modularize the code, reuse it, make memory usage more efficient

and also, reduce disk space. Therefore, the operating system and programs load faster.

DLL is a library that contains code and data that can be used by one or more

programs at the same time, in other words, it’s sharable code amount programs. The DLL

module can be loaded into programs at run time.

For the developing the library Microsoft Visual C# was used; it gives you the option

to develop software as a DLL project type.

For developing the DLL this work has considered while the scanning process the

Interface uses DLL methods to create proper objects with its attributes, so when it finishes

scanning, all the needed information is available and ready to start parsing and constructing

the output source files.

38

Figure 20. Constructor for signal class and attributes.

39

Figure 21. Parser withpublic interface exposed to LabVIEW GUI.

40

Figure 22. Parser Class showing public methods available to be used and private

methods.

3.2.1.10. LabVIEW Complementary Application

LabVIEW is a software development environment with numerous components. It’s

a graphical-based programming tool own by National Instruments. It main feature is

selecting amount the plenty building blocks to wire, connect and control many different

tasks.

41

Figure 23. LabVIEW with graphical code.

LabVIEW, as graphical programming, already provides an easy way to construct an

HMI, it is also compatible with .NET framework, so it can consume DLL’s to access the

system and other applications.

A Producer-Consumer like architecture was used. The producer (First loop on top)

handles the events generated by the user. The consumer handles instructions that require

more processing, like the scanning, parsing and building processes.

42

Figure 24. Producer-Consumer Architecture.

Figure 25. Producer-Consumer Architecture.

43

4. TEST AND RESULTS

Abstract: In this chapter, the results obtained after executing a set of tests to the

implementations are shown. The experimental scenario is briefly described.

44

4.1. Experiment and Testing Scenario

In order to verify the functionality, it is needed the master and at least one node.

This work decided to set the code configuration as MASTER and use as serial

communication tool to simulate the SLAVE response. Additionally, a Docklight tool is

used, and an oscilloscope to see the frames in the physical bus.

LIN bus is running at 19200 baudrate, the serial communication tool must be

configured at the same bus speed. S12EX board Tx/Rx channels connected to PC’s Rx/Tx

channels accordingly. Put the scope probe to the Tx channel in the board and start both, the

application in the target and the pc simulator tool.

Figure 26. Target board – PC/Oscilloscope testing environment.

Tx/Rx Board-PC UART bus

Tx/Rx scope probes

45

4.2. Results

The MASTER configuration implements both, the start of bus communication and

reception of response. The first step is to verify the fix data in the protocol, which is: The

SynchBreak, SynchField and PID. Therefore, the PID must be the SLAVE. In the image it

can be seen the initial transition indicating the start of the bus activity, followed by the

SynchField, which is 0x55 and then the PID. Here the MASTER is ready to receive

information coming from the SLAVE.

Figure 27. Master node initiating the bus activity: SynchBreak, SynchField and PID.

The application after receiving the information coming from the PC simulation tool,

continuing running sending the frames scheduled at the right timing.

46

Now the next step is to verify of the MASTER sending not only the initial frame,

but also the complete frame corresponding to be published by the MASTER.

Figure 28. Frame with publisher as MASTER, therefore SynchBreak, SynchField,

PID and data are sent.

47

Figure 29. The Master sends the sleep message when a button is pressed.

48

Figure 30. PC Serial Communication Tool with Rx data frames from the MASTER

and Tx data frames from the SLAVE.

Knowing the configuration file information frames, in the PC serial simulation tool

it is possible to verify that the MASTER data transmitted is correct.

49

5. CONCLUSIONS

Abstract: In this chapter, some conclusions and how the abilities I have developed through

this work was improved my daily activities at my job are described.

50

5.1. Conclusions

Regarding the results got testing the implementation in the target board (S12EX),

there are three major things to get this working. A well-defined state machines, make use of

the interruption scheme to send and receive information in the time constrain established,

build the information in a backup task to avoid time consumption critical to achieve the

frame transmission and the compilation switches to decide whether using as Master or

Slave.

I experienced a weird behavior at time of sending the sync break we started using a

serial monitor interface, I noticed the sync break byte was sometimes inverted, I decided to

use an oscilloscope to get a second look to the same bytes, the signal was sent every time in

the right way. The problem was the sync break is not a native serial data and the tool could

have misunderstood the information.

Regarding the HMI parser and library implementation, this assignment taught me

that sometimes, in order to have a complete implementation, it is necessary to use high-

level tools. It is good to know how to use them because a good usage can help to have a

really good solution in all aspects.

I had some difficulties when scanning the text configuration file because of the

curly braces. Sometimes more than one level exists, so this leveling should be taken into

account.

In case of the c-file parsing, I had the difficulty of building the file because of the names of

the variables. At the end, the OOP approach helped a lot to split up the processes and

achieve the objectives.

Summarizing, going from low level development with interrupt event handling,

state machine and Operative System task running in backup to the high level HMI parser

development and DLL library, it creates a whole engineering solution.

51

This project has been divided in two main solutions (one as the solution running in

the target device and the other one as HMI parser). This has remarked the importance of

requirements definition, development scope, engineering constrains, development

environment and development skills; it’s all different in each solution.

All knowledge acquired enriches the work flow in my dailies activities, since are

base in the software development for automotive industry; microcontrollers uses

interruption to forward information to the Operative System, regardless which is, to execute

specific actions. Besides, high level tools are always needed to interact with the target

devices.

52

BIBLIOGRAPHY

[1]. DEMO9S12XEP100: Demo Board for the 16-bit MC9S12XE and XS-Families,

http://www.nxp.com/products/automotive-products/microcontrollers-and-

processors/16-bit-s12-s12x-mcus/demo-board-for-the-16-bit-mc9s12xe-and-xs-

families.:DEMO9S12XEP100

[2]. LIN Consortium, http://www.lin-subbus.org/

[3]. ISO 17987-6:2016 Road vehicles -- Local Interconnect Network (LIN) -- Part 6:

Protocol conformance test specification,

http://www.iso.org/iso/catalogue_detail.htm?csnumber=61227

[4]. LabVIEW System Design Software, http://www.ni.com/labview/#

[5]. Docklight - Test & Simulate Serial Protocols, http://docklight.de/

[6]. Agilent Oscilloscope, http://www.keysight.com/en/pcx-

x2015004/oscilloscopes?cc=MX&lc=eng

http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/16-bit-s12-s12x-mcus/demo-board-for-the-16-bit-mc9s12xe-and-xs-families.:DEMO9S12XEP100
http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/16-bit-s12-s12x-mcus/demo-board-for-the-16-bit-mc9s12xe-and-xs-families.:DEMO9S12XEP100
http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/16-bit-s12-s12x-mcus/demo-board-for-the-16-bit-mc9s12xe-and-xs-families.:DEMO9S12XEP100
http://www.lin-subbus.org/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=61227
http://www.ni.com/labview/
http://docklight.de/
http://www.keysight.com/en/pcx-x2015004/oscilloscopes?cc=MX&lc=eng
http://www.keysight.com/en/pcx-x2015004/oscilloscopes?cc=MX&lc=eng

