Evaluación de vulnerabilidad de viviendas afectadas por hundimientos en función de los tipos de materiales empleados en el pueblo de Jocotepec, Jalisco

Leal-Rubio, Oscar

Enlace directo al documento: http://hdl.handle.net/11117/4777

Este documento obtenido del Repositorio Institucional del Instituto Tecnológico y de Estudios Superiores de Occidente se pone a disposición general bajo los términos y condiciones de la siguiente licencia: http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf

(El documento empieza en la siguiente página)
Evaluación de vulnerabilidad de viviendas afectadas por hundimientos en función de los tipos de materiales empleados en el pueblo de Jocotepec, Jalisco

Trabajo recepcional que para obtener el grado de

MAESTRO EN PROYECTOS Y EDIFICACIÓN SUSTENTABLES

Presenta: Oscar Leal Rubio

Tutor: Dr. Adolfo Preciado Quiroz

San Pedro Tlaquepaque, Jalisco, a 2 de mayo de 2017.
ÍNDICE

Resumen ... 1
Agradecimientos ... 2

Capítulo 1. Marco contextual ... 3
 1.1 Introducción .. 4
 1.2 Delimitación de la investigación .. 4
 1.2.1 Ubicación en campos disciplinares .. 5
 1.2.2 Descripción del problema ... 5
 1.3 Hipótesis .. 8
 1.4 Objetivo general ... 8
 1.5 Objetivos particulares .. 8
 1.6 Antecedentes empíricos (casos de referencia) .. 9
 1.6.1 Autores y estudios previos ... 11
 1.7 Ubicación geográfica del caso de estudio .. 14
 1.8 Contenido del TOG .. 16

Capítulo 2. Marco teórico ... 18
 2.1 Introducción ... 19
 2.2 Riesgo .. 20
 2.3 Amenaza .. 21
 2.3.1 Falla geológica .. 21
 2.3.2 Subsidencia .. 24
 2.4 Resiliencia .. 25
 2.5 Vulnerabilidad estructural .. 25
 2.6 Metodología de evaluación de la vulnerabilidad estructural .. 27
 2.7 Propuestas de vivienda emergente ... 36
 2.8 Propuestas de mejoramiento estructural ante sismos y refuerzo ante asentamientos diferenciales .. 39
 2.9 Normas técnicas complementarias ... 43
 2.10 Resumen ... 45

Capítulo 3. Planteamiento metodológico .. 46
 3.1 Definición de observables y criterios de análisis .. 47
 3.2 Diseño de instrumentos y métodos de obtención de información .. 49
Capítulo 4. Análisis del caso (parte 1).. 51
 4.1 Introducción... 52
 4.2 Caracterización del caso de estudio.. 53
 4.3 Identificación de particularidades generales ... 54
 4.4 Tipologías de edificaciones por zona de estudio.. 61
 4.5 Evaluación de la vulnerabilidad estructural por subsidencia ... 65
 4.6 Conclusiones .. 70
Capítulo 5. Análisis del caso (parte 2).. 71
 5.1 Introducción.. 72
 5.2 Evaluación de la vulnerabilidad estructural por el método de la escala macro sísmica europea .. 73
 5.3 Evaluación de vulnerabilidad por el método de inspección y puntaje .. 75
 5.4 Evaluación de la vulnerabilidad social .. 81
 5.5 Conclusiones .. 82
Capítulo 6. Conclusiones generales e investigación futura .. 84
 6.1 Resumen ... 85
 6.2 Conclusiones generales ... 86
 6.3 Perspectivas de investigación futura ... 89
Referencias... 90
Resumen

Esta investigación se plantea como estudio de caso sobre el diagnóstico que se hizo mediante la evaluación de vulnerabilidad de viviendas que se encuentran en riesgo. El enfoque fue profundizar en los elementos y variables para la evaluación y análisis de los materiales empleados en las edificaciones que se ubican en Jocotepec, Jalisco. Las cuales han sido dañadas estructuralmente por una falla geológica que atraviesa la localidad que ocasiona movimientos y desplazamientos de la tierra afectando la infraestructura del pueblo y viviendas de sus habitantes. En el estudio se utilizó una metodología mixta, cuantitativa y cualitativa ya que se comenzó realizando un levantamiento de datos de campo mediante la observación de los tipos de agrietamientos que presentan las edificaciones las cuales fueron analizadas asignando un valor de daño de acuerdo a un conjunto de parámetros que ayudaron a categorizar el nivel de daño de las viviendas. Adicionalmente, con esta información de campo se procedió a utilizar dos métodos de evaluación de vulnerabilidad estructural asociada a la subsidencia para aplicarse en las viviendas de las zonas de estudio destinadas de acuerdo a un mapa de hundimientos. El resultado de la evaluación en general mostró en ambos métodos que la mayoría de las edificaciones tienen vulnerabilidad alta que se atribuye a la vivienda típica del pueblo construidas con un sistema a base de mampostería no confinada y mal reforzada sin seguir diseño sísmico o el reglamento de construcción apropiado. En el mismo polígono de estudio se tomó en cuenta la participación de los habitantes al aplicar un cuestionario para conocer la percepción local que tienen acerca del riesgo y se pudo tomar un resultado de vulnerabilidad social. Finalmente se plantean recomendaciones de solución para la reparación de las estructuras dañadas o para nuevas construcciones.

Palabras clave: vulnerabilidad estructural, mampostería no reforzada, falla geológica, subsidencia, sismos, riesgo, evaluación.
Agradecimientos

Agradecimiento especial a CONACYT por el apoyo que fue indispensable para desarrollar este trabajo.

A Dios por la vida y la oportunidad de lograr este objetivo.

A mi familia, en especial a mis padres por el apoyo incondicional que me brindaron en este periodo para poder culminar esta etapa.

A mis amigos por estar conmigo en momentos importantes de la maestría.

A mis profesores por compartirme sus conocimientos y aportar a mi trabajo de obtención de grado.

A mi tutor el Dr. Adolfo Preciado Quiroz por aceptar formar parte de este estudio asesorándome de la mejor manera y guiándome en cada etapa del proceso.

Al profesor Dr. Alejandro Mendo por alentarme desde el inicio de la maestría con mi tema de investigación y consejos durante el programa.

A las instituciones: Protección Civil del municipio de Jocotepec, Jalisco por colaborar en este estudio para que se pudiera llevar a cabo.
Capítulo 1. Marco contextual
1.1 Introducción

En este capítulo se describe el alcance y delimitación del trabajo de obtención de grado (TOG), definición de términos relacionados a la problemática que se contextualiza situando el área de estudio por la amenaza que afecta la localidad y determinando el alcance del estudio de manera espacial. Además, se llevó a cabo una revisión bibliográfica intensiva sobre estudios previos realizados en el área de estudio y las diferentes metodologías reportadas en la literatura para evaluar la vulnerabilidad de viviendas ante subsidencia geológica y por sismo.

La zona de estudio se localiza en la cabecera municipal de Jocotepec, Jalisco que cuenta con 18,852 habitantes de los cuales una parte son vulnerables al riesgo por hundimientos de terreno que desde hace algunos años ha ocasionado daño en la infraestructura de sus hogares. En la descripción del problema se explica más a detalle el origen de la amenaza y los tipos de daños en las viviendas.

Finalmente se describe a detalle la ubicación geográfica de Jocotepec, el área de estudio con mapas y la zona sísmica donde se ubica el estudio elaborado por medio de sistemas de información geográfica con el objetivo de tener de referencia y tener localizadas las zonas en donde posteriormente se describirá el trabajo realizado.

1.2 Delimitación de la investigación

El alcance de esta investigación tiene un enfoque cualitativo y cuantitativo a nivel diagnóstico, ya que se pretende profundizar en los elementos y variables para la evaluación y análisis de los materiales empleados en las edificaciones que se ubican en Jocotepec, Jalisco, las cuales han sido dañadas estructuralmente por una falla geológica. La falla atraviesa la localidad ocasionando movimientos y desplazamientos de la tierra lo que ha afectado la infraestructura del pueblo y viviendas de sus habitantes. Además, se evaluó la vulnerabilidad de las estructuras existentes y conforme a los resultados obtenidos mediante el análisis se describieron algunas propuestas de medidas de refuerzo estructural o medidas extremas como la demolición total y substitución por estructura más ligera como la madera. La evaluación de la vulnerabilidad (ante subsidencia geológica y por sismo a través
del daño observado, y calificación de los materiales, sistema constructivo, nivel de diseño sísmico, mantenimiento o deterioro) servirá para diagnosticar el nivel de seguridad con el que cuentan sus pobladores y realizar propuestas de mejoramiento estructural desde una perspectiva sustentable que busca reducir el riesgo sísmico reduciendo la vulnerabilidad estructural, ya que la amenaza y la exposición no se pueden cambiar.

Se contempla también que el estudio se enfoque en un área seleccionada la cual considera un polígono de la superficie total en peligro que servirá posteriormente para implementar las recomendaciones en todo el pueblo. Este mapa se presenta más adelante en la Figura 4.1.

1.2.1 Ubicación en campos disciplinares
El presente estudio se integra a la perspectiva de la sustentabilidad desde sus tres dimensiones; económico, social y ambiental, además del enfoque hacia el desarrollo sustentable, aunque principalmente el trabajo se centra en contribuir mayormente en la sustentabilidad social. Desde el concepto de desarrollo urbano sustentable (DUS), la aplicación de cualquier proyecto de DUS requiere íntima articulación de los distintos sistemas urbanos: el económico, el social, el físico y el medio ambiente en sus interacciones dinámicas, así como el manejo y control de distintas externalidades que lo afectan (Yory, 2004).

1.2.2 Descripción del problema

Jocotepec Jalisco, se encuentra en el graben de la cuenca de Chapala, una falla geológica que corre de poniente a oriente desde el entronque del crucero con la carretera Guadalajara-Morelia hacia el centro de Jocotepec y que se interna en la zona montañosa, también afectando varias colonias del poblado. El municipio se encuentra en la zona volcánica, y en zona de placas tectónicas a la que se le conoce como “Placa de Norteamérica” la cual abarca en la costa a los estados de Jalisco, Nayarit, Colima, Michoacán y Guerrero (ver Fig. 1.1).
De acuerdo a las visitas de campo en el pueblo de Jocotepec se identificaron tres tipologías principales de estructuras que conforma viviendas, locales comerciales, escuelas e iglesia. Se trata de un porcentaje mínimo de estructuras con muros de adobe con cubierta ligera, mampostería no reforzada y confinada con dalas y castillos con diseño sísmico insuficiente al no seguir una reglamentación establecida en un código de diseño, y por ser estructuras autoconstruidas. Estos factores incrementan enormemente la vulnerabilidad estructural (susceptibilidad a ser dañadas) ante las diferentes amenazas cercanas al pueblo de Jocotepec.

La falla geológica ha afectado a más de 200 edificaciones incluidas una iglesia y una escuela. Los daños principales se han identificado en la cimentación y en la estructura resistente vertical (muros de carga). Además, se han observado daños no estructurales en muros perimetrales (muros tapón) que no son de carga como los que se encuentra en los patios y delimitaciones de terrenos. Como ejemplo de estos daños en el pueblo se identifican edificaciones donde la deformación del suelo hace que se ocasione un agrietamiento y deformación de la vialidad en calle y banqueta y también se prolongue el asentamiento al muro de la fachada (ver Fig. 1.2a). Otras edificaciones han sido abandonadas después de intentar asegurar la estructura de cualquier forma, en la Figura 1.2b se aprecia un muro colindante apuntalado para evitar su colapso (ver Fig. 2b). De igual manera en la Figura 1.2c los propietarios de la vivienda han tratado de dar mantenimiento a las grietas que han aparecido en los muros, en este caso de la fachada se aprecian los daños en la ventana y en la puerta (ver Fig. 1.2c). En la Fig. 1.2d se observa otro fenómeno donde existe una sobre elevación en la banqueta y también
presenta grietas en el muro de la fachada (ver Fig. 1.2d). El tipo de vivienda típica en la zona está construida de mampostería de tabique recocido, en la mayoría no confinada. Además, existen algunas viviendas construidas de adobe que son las más antiguas del pueblo. Hasta hoy se han demolido algunas viviendas porque su estabilidad estructural es muy frágil y algunos elementos de la estructura han colapsado fuera del plano por inestabilidad poniendo en peligro la vida de los habitantes y transeúntes. Además, se han detectado daños en las tuberías de agua potable y alcantarillado, así como en los postes de alumbrado público, afectando fuertemente la calidad de vida de los pobladores de Jocotepec, Jalisco.

Figura 1.2. Viviendas dañadas en Jocotepec, Jalisco: a) deformación del suelo b) apuntalamiento en muros c) agrietamiento en muros d) deformación de suelo y muros (2016).
Por estos incidentes algunos propietarios de terrenos en peligro se han detenido a llevar a cabo la construcción de viviendas por preocupación a que también sufran daños en su patrimonio. Al momento solo se han realizado algunos estudios empíricos por parte del Departamento de Protección Civil Municipal en colaboración con un grupo de voluntarios de la comunidad en el periodo del año 2013-2014. Sus resultados han sido la información que se tiene hasta ahora de viviendas dañadas y valoración de casas que su grado de daño es muy alto y se han diagnosticado como inhabitables por lo que tuvieron que ser demolidas. En el caso de estudios técnicos, solo un grupo de académicos de la Universidad Autónoma de Aguascalientes encabezados por Hernández-Marín et al. (2014), han publicado un estudio donde monitorean el hundimiento de Jocotepec por ocho meses determinando que zonas sufren mayores subsidencias.

1.3 Hipótesis
Si se evalúa la vulnerabilidad estructural de las edificaciones dependiendo de los materiales de edificación podrían recomendarse alternativas de reparación o construcción sustentable que mitigue los riesgos de estos hogares.

1.4 Objetivo general
Diagnóstico de edificaciones afectadas por la falla geológica de acuerdo al tipo de material de construcción de la vivienda y realizar propuestas de reducción de la vulnerabilidad estructural.

Pregunta de investigación: ¿cuál es el diagnóstico de la evaluación de vulnerabilidad de las viviendas en Jocotepec afectadas para poder establecer algunas recomendaciones de alternativas de reparación y construcción sustentable?

1.5 Objetivos particulares

A continuación, se describen los objetivos particulares:

- Realizar un estado del arte intensivo sobre amenaza, riesgo y vulnerabilidad estructural
- Elaborar una revisión bibliográfica adicional sobre alternativas de reparación de daños (grietas y asentamientos diferenciales) en edificaciones
- Reconocer los diferentes tipos de materiales de edificación que han utilizado las viviendas más dañadas
• Implementar en sitio el cuestionario de la metodología seleccionada para la evaluación de vulnerabilidad estructural de las edificaciones
• Realizar trabajo en campo de observación e implementación de metodología para la evaluación de la vulnerabilidad
• Desarrollar conclusiones generales sobre la evaluación de la vulnerabilidad estructural ante subsidencia geológica y sismo del caso de estudio
• Realizar propuestas de intervención estructural desde un punto de vista sustentable que reduzcan la vulnerabilidad estructural de las viviendas de Jocotepec, Jalisco
• Proponer diferentes líneas de investigación futura encaminadas a la reducción de la vulnerabilidad sísmica del pueblo de Jocotepec

1.6 Antecedentes empíricos (casos de referencia)

Como un caso de referencia, en la localidad de Ameca, Jalisco se han presentado problemas similares a los de Jocotepec desde 1982 afectando numerosas casas, bienes y servicios y se manifiestan como escalones en el pavimento y en las banquetas, fracturas en paredes y pisos y en algunos casos en techos. Diversos estudios se han realizado en Ameca por parte del Servicio Geológico Mexicano (SGM, 2005) enfocándose en el estudio de grietas en el terreno, los daños en las viviendas y a personas afectadas. Determinaron que la ubicación de la localidad se encuentra en una depresión tectónica relacionada al movimiento de una porción de la corteza terrestre denominada como “bloque de Jalisco” dentro de un sistema de fallas normales, desde Chapala hasta Compostela, donde probablemente se encuentre Jocotepec también en dicha zona. Además, manejaron una relación de variables de riesgo como la sumatoria del peligro, la exposición y la vulnerabilidad estructural (ver fig. 1.3).
Otro estudio de evaluación de riesgo sísmico demuestra los daños que puede sufrir un edificio por la amenaza y vulnerabilidad que existe en la zona de riesgo. Preciado et al. (2015) explica que los terremotos interplaca son movimientos de gran magnitud, intensidad y duración, teniendo un grado destructivo alto para estructuras de mampostería no reforzadas (*URM*) compactas y esbeltas como la mayoría de las edificaciones en México (ver Fig. 1.4).
Por otro lado, en la localidad de Santa Lucia se sitúa un caso de riesgo, en el valle de Tesistán al noroeste del área metropolitana de Guadalajara. En el 2004, se registraron grandes grietas que variaban entre 8 y 10 m de profundidad y 3.5 de ancho afectando principalmente parcelas agrícolas y una parte del fraccionamiento Prados de Nextipac (Suárez et al., 2005).

En el estudio se propuso que el desarrollo de las grietas está relacionado con las estructuras geológicas que forman el Valle de Tesistán. Su hipótesis sugiere que las fallas y/o fracturas que afectan a la secuencia volcánica son los conductos por los que el agua de lluvia circula. Al final, se concluyó que en la zona afectada no se debe permitir ningún uso de suelo que no sea agropecuario y se emitieron algunas recomendaciones, una de ellas fue que los habitantes de la colonia Prados de Nextipac sean reubicados a otro sitio ya que la grieta afectó al poblado y podría reactivarse.

1.6.1 Autores y estudios previos

El estudio más reciente desarrollado en Jocotepec fue publicado en el 2014 por investigadores de la Universidad Autónoma de Aguascalientes, Hernández-Marín et al. (2014) en el cual realizaron una serie de mediciones en la zona mediante lecturas de deformaciones verticales en relación con el hundimiento de la tierra y patrones de discontinuidad del suelo.

Se definieron puntos estratégicos alrededor de la localidad para establecer un mapa en el cual se observa que zonas son las que sufren las mayores deformaciones verticales del suelo representadas en centímetros (cm), incluso con valores positivos, es decir, al contrario del hundimiento del suelo existe una sobre elevación del mismo (ver Fig. 1.5). Específicamente fueron 15 puntos los que se midieron durante el periodo de abril a noviembre del 2012, utilizando uno de estos puntos como base para medir los otros 14.
FIGURA 1.5. Mapeo de deformaciones verticales clasificadas por rangos (Hernández-Marin et al. 2014).

Por otro lado, se identificó que geológicamente el suelo del área de estudio está compuesto por un sistema de capas de depósitos fluvial-aluviales, arenas y arcillas que tienen alto grado de compresibilidad lo que hace al terreno susceptible a deformaciones debido al peso de las edificaciones o durante la extracción de agua del subsuelo.

Adicionalmente, se menciona la evidencia de actividad tectónica en el graben de Chapala que es rodeado por un sistema complejo de fallas, consideradas algunas de estas como activas.

Se llegó a la conclusión de que la subsidencia máxima en promedio fue de 0.89 cm por mes de acuerdo al periodo de medición del estudio. Esto indica que casi 1 cm por mes se hunde la zona con más índice de subsidencia lo que pudiera causar a largo plazo mayores daños en edificaciones y posibles colapsos.
Una de las viviendas más representativas dañadas por la subsidencia, ubicada en la calle Juárez de la cabecera municipal de Jocotepec (ver Fig. 16) se encuentra en el área amarilla del mapa de la Fig. 1.5, en un intervalo de hundimiento entre los 3 y 4 cm. Este hundimiento del terreno ocasionó daños principalmente en muros. En la Fig. 1.6 se aprecia en el muro de la fachada una grieta que comienza de manera horizontal y después en diagonal. Por el deterioro del recubrimiento se nota que el muro fue construido con mampostería de ladrillo rojo recocido y una dala de cerramiento. También se observa que no se utilizó un confinamiento en la ventana y probablemente la distancia entre castillos supera la recomendada en los reglamentos. Además, se aprecia el uso de mortero para tratar de sellar las grietas, pero como es un material rígido tiende a agrietarse nuevamente.
1.7 Ubicación geográfica del caso de estudio

La cabecera municipal de Jocotepec se encuentra a 25 km al sur de la ciudad de Guadalajara, Jalisco. Además, se localiza dentro de la cuenca del lago de Chapala, al este de la ribera del lago. La Figura 1.7 muestra las fallas geológicas en el país, de acuerdo a datos del INEGI la zona de estudio se encuentra cerca de una línea de falla geológica principal.

![Mapa de ubicación geográfica de la zona de estudio](image)

Figura 1.7. Mapa de ubicación geográfica de la zona de estudio.

De acuerdo al Servicio Geológico Mexicano (SGM), el municipio de Jocotepec se encuentra geográficamente en zona D de regiones sísmicas del país que es donde se han reportado grandes sismos históricos (ver Fig. 1.8), donde la ocurrencia de sismos es muy frecuente y las aceleraciones del suelo pueden sobrepasar el 70% de la aceleración de la gravedad.
La escala de sismicidad comienza con la zona A considerada como baja intensidad hasta la zona D como muy alta. La zona A es una zona donde no se tienen registros históricos de sismos, no se han reportado sismos en los últimos 80 años y no se esperan aceleraciones del suelo mayores a un 10% de la aceleración de la gravedad a causa de temblores. Las zonas B y C son zonas intermedias, donde se registran sismos no tan frecuentemente o son zonas afectadas por altas aceleraciones pero que no sobrepasan el 70% de la aceleración del suelo.

En la Fig. 1.9 se muestra un mapa de aceleraciones máximas de terreno que variarían entre 0.6 y 0.5 g. Se indican los valores para cinco ciudades importantes: Acapulco (0.47), Guadalajara (0.14), Coatzacoalcos (0.20), Monterrey (0.08) y Mérida (0.06) (MDS-CFE,1993).

Figura 1.8. Mapa de zonas sísmica de la República Mexicana.
1.8 Contenido del TOG

En este Capítulo 1 se presenta la delimitación de la investigación, el alcance que tiene por objetivo el estudio y la ubicación geográfica en la que se concentra el área de estudio. Además, fue importante la descripción del problema para enfatizar el riesgo que existe en Jocotepec por la subsidencia del terreno haciendo vulnerables las estructuras de los edificios y poniendo en peligro la vida de sus habitantes. También, se mencionan los antecedentes empíricos de otros estudios que ayuden a entender más el contexto de esta investigación.

En el Capítulo 2 se aborda la revisión literaria del estudio, conceptos básicos como riesgo, vulnerabilidad, falla geológica y principalmente el tema relacionado a la evaluación de la vulnerabilidad estructural concentrándose en las diferentes metodologías de evaluación y algunos parámetros característicos que se emplean para cuantificar y describir el índice de daño. Así también propuestas
de construcciones con materiales alternativos y de reparación de daños en viviendas ubicadas en zonas con subsidencias.

El Capítulo 3 describe el planteamiento metodológico en el cual se menciona que tipo de metodología se utiliza para esta investigación, cual es el alcance de la misma y qué paradigma se adopta al estudio. Además, se desarrolla el diseño del instrumento que se utilizará para la obtención de la información que será analizada en el capítulo 4.

El análisis del estudio se desarrolla en los Capítulos 4 y 5 en los cuales se lleva a cabo la metodología seleccionada para realizar la evaluación de la vulnerabilidad estructural ante subsidencia y sismo en las viviendas de la zona de estudio. Se determinarán cuales edificaciones son más vulnerables una vez elaborado los cuestionarios con los parámetros necesarios. Finalmente se elaborará una comparación de daños de las edificaciones evaluadas y su ubicación en el mapa de subsidencias.

Finalmente, en el Capítulo 6 se encuentran las conclusiones finales del estudio a partir de la obtención de la información y el análisis de esta. Posteriormente se harán algunas recomendaciones de propuestas de solución al problema y para finalizar se mencionarán propuestas de investigación futura que complementen al presente estudio de caso.
Capítulo 2. Marco teórico
2.1 Introducción

En este capítulo se aborda la revisión literaria del estudio, conceptos básicos como amenaza, riesgo, vulnerabilidad, exposición, falla geológica y principalmente el tema relacionado a la evaluación de la vulnerabilidad estructural concentrándose en las diferentes metodologías de evaluación y algunos parámetros característicos que se emplean para cuantificar y describir el índice de daño (ver Fig. 2.1).

Figura. 2.1. Esquema conceptual de riesgo y sus factores.

Partiendo del principal problema de la falla geológica que está afectando la localidad de Jocotepec, en este marco teórico se describe y sitúa el concepto en otra parte del mundo que ha sufrido severamente de este fenómeno natural y además se caracterizan los diferentes tipos de fallas.

Se integran también algunos casos en los cuales se han utilizado viviendas emergentes con materiales alternativos que tienen como propósito ser viviendas diseñadas para resistir ante diferentes fenómenos naturales y para evitar cualquier tipo de catástrofe.

Es importante describir las palabras clave que se mencionan a lo largo del estudio ya que intervienen algunos temas los cuales son desarrollados y estudiados por distintos autores que serán citados a lo
largo del estado del arte. También se mencionan algunos proyectos y publicaciones que ayudarán a contextualizar el presente estudio de caso.

2.2 Riesgo

El concepto de riesgo puede ser muy diverso y tener distintas clasificaciones, en este caso nos concentramos en los riesgos geológicos, haciendo referencia a todo aquel proceso natural en el que interviene algún aspecto geológico o en el que resulta imprescindible entender la geología del fenómeno para una correcta caracterización de dicho proceso y por tanto, del riesgo (Llorente y Laín, 2009). En relación con otros tipos de riesgos, el sismo se puede considerar como un riesgo geológico ya que es impredecible y no se tiene la certeza de cuándo y que grado de evento sucederá ya que esto depende de los movimientos de las placas tectónicas.

Como parte de la evaluación de riesgos es necesario el análisis territorial, es decir, el historial de la región, los eventos que han sacudido al poblado a lo largo de su historia, como fueron los primeros asentamientos humanos y cómo impacta hasta hoy el crecimiento de la población que esto ocasiona un aumento en su expansión territorial. Font et al. (1995-1996) hablan sobre los riesgos geológicos en la ordenación territorial al afirmar: “...el aumento de catástrofes naturales obedece al efecto del crecimiento demográfico en los últimos tiempos, lo cual se han ocupado zonas sometidas a riesgos geológicos...” Esto es un punto clave para la problemática del riesgo geológico que enfrenta el municipio al estar en crecimiento la población desde hace años, al ocupar zonas con alto grado de vulnerabilidad sin saber que en cualquier momento se pudiera presentar un evento catastrófico.

Según Keller y Blodgett (2007) las consecuencias de los riesgos pueden ser minimizadas ya que reducir las consecuencias potencialmente adversas y los efectos de los riesgos naturales requiere un enfoque integrado que incluye conocimiento científico, planificación y regulación del uso de la tierra, ingeniería y preparación previa al desastre.

Un riesgo, o riesgo natural, es cualquier proceso natural que representa una amenaza para la vida humana o la propiedad, es decir, un proceso natural se convierte en un riesgo cuando amenaza los intereses humanos. Un desastre, o desastre natural, es el efecto de un riesgo en la sociedad, normalmente en forma de un suceso que ocurre en un periodo de tiempo limitado y en una zona
geográfica definida. El término se utiliza cuando la interacción entre seres humanos y un proceso natural tiene como resultado un daño considerable en la propiedad, heridas o pérdidas de vidas. Una catástrofe, dicho sencillamente, es un desastre masivo que requiere un gasto considerable de tiempo y dinero para la recuperación (Keller y Blodgett, 2007).

2.3 Amenaza

El fenómeno caracterizado por una amenaza, es expresado por un factor de riesgo, es decir, la vulnerabilidad, que se define como la predisposición o susceptibilidad física, económica, política o social que tiene una comunidad de ser afectada en caso de sufrir un fenómeno desestabilizador de origen natural o antrópico. Particularmente, en caso de zonas sísmicas en relación con la planificación territorial, la vulnerabilidad se considera constante ya que el elemento está expuesto o ubicado en el área de influencia del fenómeno peligroso. Muchos mapas de amenaza se han convertido en mapas de riesgo donde la vulnerabilidad es invariante por estar los elementos físicamente expuestos (Cardona, 2003). Ciertamente la vulnerabilidad es constante al estar permanentemente expuestos todos los elementos ante un fenómeno natural, considerando la vulnerabilidad física (infraestructura) y vulnerabilidad social (respuesta social, conocimiento de la amenaza) que son datos indispensables para la determinación del riesgo.

2.3.1 Falla geológica

En algunas regiones, los límites de placas son distintos y fáciles de identificar, mientras que en otros pueden ser separados con los bordes de las placas rotas para formar plaquetas menores o microplacas atrapadas entre las placas más grandes. Localmente, el movimiento entre dos porciones de la corteza se producirá en las separaciones nuevas o preexistentes en la estructura geológica de la corteza conocida como fallas (Kramer, 1996).
Figura 2.2. Superficie de ruptura de falla debido a sismo en Nueva Zelanda (BBC, 2016).

Recientemente Nueva Zelanda sufrió dos terremotos seguidos el 13 y 14 de noviembre de 2016. El primero había sido de magnitud 7,8 y ocurrió a la medianoche dejando dos personas muertas, informó el primer ministro, John Key (ver Fig. 2.2). Un segundo potente terremoto de magnitud 6,3 golpeó en la madrugada a la Isla Sur de Nueva Zelanda, tal como había sucedido 24 horas antes en la misma zona (ver Fig. 2.3).

Nueva Zelanda está situada sobre el que se conoce como el Cinturón de Fuego del Pacífico, también conocido como Cinturón Circumpacífico o Anillo de Fuego (BBC, 2016).

Figura 2.3. Superficie de ruptura de falla debido a sismo en Nueva Zelanda (BBC, 2016).
De acuerdo a Robles et al. (2012) los tipos principales de falla geológica son: Con movimiento vertical de los bloques (ver Fig. 2.4):

a) Falla normal: las disposiciones de los bloques se mueven por esfuerzos de tensión o extensión, el plano de falla queda expuesto a la intemperie y relativamente los bloques se separan o alejan (ver Fig. 2.4a).

b) Falla inversa: cuando la disposición de los bloques parece responder a esfuerzos de compresión. Por el empuje de los bloques parecen aproximarse entre sí; en ella el plano de falla, que también se puede observar en el bloque levantado, que es el techo, queda a la sombra (ver Fig. 2.4b).

c) Falla lateral o transcurrente: la superficie de falla suele ser próxima a la vertical. El movimiento responde a fuerzas de cortante horizontal que causan el desplazamiento lateral de un bloque respecto al otro (ver Fig. 2.4c).

d) Falla oblicua: implica los movimientos complejos que presentan una combinación de movimientos de deslizamientos. Un fallo de deslizamiento puede mostrar un movimiento lateral derecho, y el bloque de muro colgante también puede moverse hacia abajo con respecto al bloque de techo (ver Fig. 2.4d).

![Esquema de Tipos de fallas](image_url)

Figura 2.4. Esquema de Tipos de fallas (Robles et al., 2012).
2.3.2 Subsistencia

El concepto de hundimiento es relacionado con subsidencia, el asentamiento de una masa material terrestre por debajo del nivel del material circundante. La subsidencia puede ser causada por la disolución y el derrumbe de roca, eliminación de fluidos y compactación de sedimento, eliminación de roca o fracturación.

“La subsidencia es un tipo de colapso del terreno caracterizado por una deformación casi vertical o el asentamiento de los materiales de la tierra. Este tipo de colapso del terreno puede ocurrir en pendientes o en terreno llano. Con frecuencia produce hoyos circulares en la superficie, pero puede producir un patrón lineal o irregular” (Keller y Blodgett, 2007).

Las dolinas conocidas también como sinkholes son depresiones geológicas que se forman por la erosión y sedimentación del suelo generando usualmente grandes socavones. Lei et al. (2016) menciona que los sinkholes pueden formarse naturalmente o inducida por el humano y cada sinkhole es único y su formación está asociada con condiciones geológicas e hidrogeológicas específicas del lugar.

La Figura 2.5 muestra una formación de sinkhole en Quito, Ecuador la cual alcanzó en su etapa inicial un diámetro de 30 m. El colapso siguió creciendo los siguientes días hasta alcanzar un diámetro de 120 m y una profundidad 40 m. Toulkeridis et al. (2016).

Figura. 2.5. Fase inicial de sinkhole (Toulkeridis et al., 2016).
2.4 Resiliencia

Existen diferentes tipos de fenómenos naturales, unos más impredecibles que otros, y cada uno de ellos tienen formas de prevención y mitigación distintas contra cualquier posible catástrofe que puedan ocasionar. La Organización de las Naciones Unidas publica un informe en el cual presenta un esquema para los tomadores de decisiones de cada ciudad, específicamente el gobierno, para lanzar una campaña “Desarrollando ciudades resilientes” promoviendo las mejores prácticas sobre una variedad de actividades para aumentar la resiliencia, es decir, la respuesta del gobierno y sociedad a la prevención y gestión de amenazas naturales para poder reducir el riesgo (UNISDR, 2012). Es importante prevenir cualquier evento que sea más probable que ocurra en una localidad, se debe de analizar las características de la zona de estudio y dependiendo de esto, poner en orden los riesgos potenciales tomando en cuenta reglamentos adecuados, la capacidad para gestionar emergencias, la evaluación de permisos de construcción donde la población y las autoridades locales sean conscientes que no se puede construir en zonas de mayor amenaza como en una falla geológica.

2.5 Vulnerabilidad estructural

Vulnerabilidad es el nivel de riesgo que afronta una familia o individuo a perder la vida, sus bienes y propiedades, o un sistema de sustento (esto es, su medio de vida) ante una posible catástrofe. Dicho nivel guarda también correspondencia con el grado de dificultad para recuperarse después de tal catástrofe (Pérez, 1999).

El concepto de vulnerabilidad ha sido adaptado en los últimos años dependiendo el contexto en el que los autores consideran pertinente. La vulnerabilidad es una dimensión relativa puesto que se presenta en función de circunstancias y condiciones socioeconómicas, pero también dentro de contextos determinados (espaciales-geográficos medioambientales), lo que hace que cada región o ciudad presente variadas características y tipos de vulnerabilidades específicas. Además, enfocando el concepto hacia el desarrollo sostenible, se plantea la definición de nueva vulnerabilidad como motor de un desarrollo sostenible en tanto que disminuye o anula las vulnerabilidades (físicas, medioambientales y socio-políticas) actuales teniendo incidencia en una mejor calidad de vida tanto para las poblaciones actuales como para las generaciones futuras (Vergara, 2011).
Según la Organización Panamericana de la Salud OPS (1999) el término estructural o componentes estructurales, se refiere a aquellas partes de un edificio que lo mantienen en pie. Esto incluye cimientos, columnas, muros, vigas y diafragmas (entendidos estos como los pisos y techos diseñados para transmitir fuerzas horizontales, como las de sismos, a través de las vigas y columnas hacia los cimientos). Entonces, la vulnerabilidad estructural se refiere a la susceptibilidad que la estructura se presenta frente a posibles daños en estas partes del edificio que lo mantienen de pie ante un sismo de mediana a gran intensidad (OPS, 1999).

Maldonado and Chio (2009) comentan que la vulnerabilidad sísmica es una medida que permite clasificar a las estructuras de acuerdo con sus características y calidad estructural, dentro de un rango de vulnerabilidad baja, intermedia y alta, ante la acción de un sismo. De otra parte, una de los aspectos más importantes de los estudios de riesgo sísmico a nivel urbano es que la metodología de evaluación de la vulnerabilidad sísmica de las edificaciones tiene que ser de alguna manera cualitativa y simplificada, para que se pueda aplicar a grandes áreas como centros urbanos donde la cantidad de sus edificaciones es grande y la variedad de sus propiedades es considerable. Luego, cualquier metodología se puede aplicar tomando como base que se adapte a los fines propuestos en el estudio de riesgo sísmico. De esta manera en estudios a gran escala, la vulnerabilidad se puede definir mediante funciones de vulnerabilidad y matrices de probabilidad de daño entre otros.

La vulnerabilidad sísmica de un conjunto de edificios es la susceptibilidad a sufrir daños causados por el movimiento sísmico y por tanto en los estudios de vulnerabilidad es importante distinguir entre diferentes tipos de edificio ya que cada uno responde diferente bajo fuerzas sísmicas similares (Hill y Rossetto, 2008). La vulnerabilidad es una característica intrínseca del edificio que depende de sus características de diseño, materiales y construcción. La evaluación de la vulnerabilidad consiste en determinar cuál es el grado de daño esperable en un edificio para cada nivel del movimiento sísmico del terreno. De acuerdo a Ruiz et al. (2016) existen dos métodos que se utilizan frecuentemente en la estimación de la vulnerabilidad sísmica:

1.- Los empíricos, que provienen del campo de la sismología, basados en estudios después de ocurrir un terremoto donde los daños a diferentes tipos de construcción se correlacionan con el movimiento del suelo estimado o medido. Estos métodos cuantifican la acción mediante un solo parámetro,
generalmente la intensidad macrosísmica o la aceleración pico del terreno (PGA), y definen las características resistentes de los elementos expuestos mediante clases o índices de vulnerabilidad.

2.- Los deterministas o analíticos, que provienen del campo de la vulnerabilidad estructural y de la ingeniería sísmica, donde se calcula el funcionamiento sísmico a través del análisis dinámico de estructuras individuales y de edificios tipo, como hace HAZUS, un software de estimación de riesgos desarrollado por el Federal Emergency Management Agency (FEMA). Estos métodos cuantifican la acción mediante espectros de demanda y la resistencia sísmica con base en parámetros con significado físico directo, como los espectros de capacidad (se denominan también espectrales o multi-paramétricos).

2.6 Metodología de evaluación de la vulnerabilidad estructural

Para diagnosticar el nivel de vulnerabilidad de un edificio es necesario realizar un análisis de los daños a través de metodologías y técnicas de evaluación. Existen actualmente algunos tipos de evaluación de vulnerabilidad estructural para diversas estructuras existentes como de mampostería que pueden ser aplicables a gran escala, y se basan en parámetros asociados a aspectos geométricos, constructivos, estructurales, de cimentación, de suelo y entorno.

La metodología a emplear se determina dependiendo con la escala del análisis y las características de los elementos bajo estudio; por ejemplo, el estudio del riesgo sísmico de elementos particulares como edificios, puentes, presas, etc., básicamente se basa en evaluaciones determinadas de vulnerabilidad. Por otro lado, el estudio de riesgo sísmico en el territorio o categorías de elementos como tipos de edificios, líneas vitales, etc., generalmente se basan en métodos probabilísticos que permiten aplicaciones regionales del modelo a diferentes escalas, tomando esto como ventaja que pueden organizarse y procesarse con sistemas de información geográfica (SERGISAI, 1998).

En la medida que se implante en el estudio depende del modelo adoptado y puede estar orientado a cuantificar los efectos sobre la población, los daños en las edificaciones y los sistemas, etc. Estos efectos típicamente se expresan en parámetros monetarios (OPS, 1999).

A partir de estas condiciones se han propuestos diversos esquemas de clasificación como ayuda para tratar de sistematizar las diferentes metodologías propuestas. Una clasificación más general y
simplificada de las metodologías de evaluación se basa en el tipo de medida que se utiliza y se agrupan como: Cuantitativas; establecen las probabilidades de daño o relaciones determinísticas equivalentes en términos numéricos y el comportamiento dinámico de las estructuras. Técnicas Cualitativas; optan por descripciones cualitativas a través de términos como vulnerabilidad baja, media, alta o similares (Safina, 2003).

Rondón et al. (2007) presentan un conjunto de modelos comparando sus parámetros utilizados en cada uno, se observa relevancia de algunos de ellos, como el tipo y capacidad del sistema estructural, la irregularidad en planta y elevación y el tipo de suelo (ver Tabla 2.1).

<table>
<thead>
<tr>
<th>METODOLOGÍA</th>
<th>CRITERIOS DE EVALUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMA-154 (1988)</td>
<td>-Altura de la edificación
-Irregularidad en planta
-Irregularidad en altura
-Año de construcción</td>
</tr>
<tr>
<td>EMS-98 (1998)</td>
<td>-Materiales empleados
-Nivel de desempeño sísmico</td>
</tr>
<tr>
<td>Índice de Vulnerabilidad</td>
<td></td>
</tr>
<tr>
<td>Benedetti y Petrini (1984)</td>
<td>-Organización del sistema resistente
-Calidad del sistema resistente
-Capacidad-demanda
-Posición del edificio y la cimentación
-Diafragmas horizontales
-Irregularidades en planta
-Irregularidad en altura
-Distancia máxima entre muros
-Cubierta
-Elementos no estructurales
-Estado de conservación</td>
</tr>
<tr>
<td>Cardona y Hurtado (1990)</td>
<td>-Capacidad-demanda
-Irregularidad en planta
-Irregularidad en altura
-Tipo de suelo</td>
</tr>
<tr>
<td>AIS (2001)</td>
<td>-Aspectos geométricos: irregularidades en planta, cantidad en muros, irregularidades en alturas.
-Aspectos constructivos: calidad de las juntas de pega, tipo y disposición de las unidades, calidad de los materiales.
-Aspectos estructurales: Muros confinados y reforzados, detalles de aceros, vigas de amarre coronas, aberturas en muros, entrepiso y amarre de cubierta.
-Cimentación
-Suelo
-Entorno</td>
</tr>
<tr>
<td>ATC – 13 (1985)</td>
<td>-Tipo de estructura
-Sistema estructural</td>
</tr>
</tbody>
</table>
Con base en el estudio de los anteriores modelos, se identificaron 11 parámetros como los de mayor influencia en la valoración de la vulnerabilidad sísmica de edificaciones de mampostería:

1. Sistema estructural
2. Calidad del sistema resistente
3. Resistencia estructural
4. Posición de la cimentación
5. Suelo y pendiente del terreno
6. Diafragmas horizontales
7. Configuración en planta
8. Configuración en elevación
9. Distancia máxima entre los muros
10. Tipo de cubierta
11. Estado de conservación

El método italiano por los autores Benedetti y Petrini (1984) considera once parámetros para evaluar la vulnerabilidad de edificaciones de mampostería no reforzada y edificaciones de concreto armado desarrollados a partir de los daños de edificios. El método ha sido utilizado en Italia durante los últimos años y ha sufrido de modificaciones mejorándolo producto de una experimentación continua y el monitoreo de daños en ciertos tipos de estructuras después de sismos de diferentes intensidades, creando una amplia base de datos y vulnerabilidad. El método se conforma por 11 parámetros que fueron integrados en un cuestionario para la evaluación de edificios mediante observaciones de campo y trabajo de escritorio.

Además, este método también es conocido como inspección y puntaje ya que se realiza por medio de inspecciones visuales en campo y complementados con trabajo de escritorio. El método originalmente
con los 11 parámetros no puede ser evaluado directamente ya que son necesarios los planos de la edificación lo cual no es práctico para la evaluación de edificaciones a escala territorial ya que podría tomar mucho tiempo su implementación (Preciado et al., 2015). Por ello, el método propuesto por Preciado et al. (2015) de inspección y puntaje se ha validado anteriormente en estudios de vulnerabilidad sísmica en México y Nueva Zelanda, adaptando y modificando el cuestionario a 9 parámetros para realizar una evaluación más rápida sin necesitar los planos del edificio (Ver Tabla 2.3).

Los parámetros están en función de la escala numérica, en la cual se le asigna una calificación K_i a cada valor de la escala desde A hasta D, donde A es óptimo y D es pésimo (Ver Tabla 2.2).

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Clase K_i</th>
<th>Peso Wi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1. Organización del sistema resistente.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2. Calidad del sistema resistente.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3. Resistencia convencional.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4. Posición del edificio y cimentación.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5. Diafragmas horizontales.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6. Configuración en planta.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>7. Configuración en elevación.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8. Distancia máxima entre los muros.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>9. Tipo de cubierta.</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>10. Elementos no estructurales.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11. Estado de conservación.</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabla 2.2. Escala de vulnerabilidad (Benedetti y Petrini, 1984).

<table>
<thead>
<tr>
<th>i</th>
<th>Parámetro</th>
<th>$K_i A$</th>
<th>$K_i B$</th>
<th>$K_i C$</th>
<th>$K_i D$</th>
<th>W_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Organización del Sistema resistente</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>Calidad del Sistema resistente</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>Posición y cimentación</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>Diafragmas horizontales</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>Configuración en planta</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>Configuración en elevación</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>Tipo de cubierta</td>
<td>0</td>
<td>15</td>
<td>25</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>Elementos no-estructurales</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>45</td>
<td>0.25</td>
</tr>
<tr>
<td>9</td>
<td>Estado de conservación</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Tabla 2.3. Parámetros para el método de inspección y puntaje (Preciado et al., 2015).
Otro método de evaluación tipo cualitativo fue aplicado en edificios educativos de Venezuela implementando un cuestionario en el cual se diseñó para obtener las mediciones de las columnas, vigas, altura de entrepiso, altura de elementos verticales, longitud y espesor en muros en cada dirección, así también las superficies de los muros y sus aberturas. En este cuestionario (Ver Tabla 2.4) existen dos tipos de preguntas principales y otras que se derivan de estas, para las principales cada respuesta tiene una clasificación determinada y para las derivadas cada respuesta asocia un factor por el cual se multiplica la calificación de la pregunta principal, esto con el propósito de mantener o incrementar su magnitud (Suárez et al., 2009).

Aunque esta metodología cualitativa fue usada para evaluar edificios educativos como escuelas y edificios administrativos, también puede ser adaptada o modificado de modo que pueda ser utilizada en edificios tipo casas-habitación.
Otro tipo de evaluación cualitativa se basa en los tipos y el estado de daños en la edificación, según Iglesias et al. (1988) y Rodríguez y Castrillón (1995) donde puede diagnosticarse desde una edificación no estructural a un estructural grave (Ver Tabla 2.5). También se representa por el grado de daño en una escala del 1 – 5 de acuerdo al ancho de la grieta evaluada (Ver Tabla 2.6).
Tabla 2.5. Clasificación y evaluación del tipo de daño (Iglesias et al., 1988).

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Tipo de daño</th>
<th>Evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>No estructural</td>
<td>Daños únicamente en elementos no estructurales</td>
<td>No existe reducción en la capacidad sismo-resistente. No se requiere desocupar. La reparación consistirá en la restauración de los elementos no estructurales.</td>
</tr>
<tr>
<td>Estructural ligero</td>
<td>Grietas de menos de 0.5 mm de ancho en elementos de concreto. Fisuras y caídas de aplanados en paredes y techo. Grietas de menos de 0.3 mm de ancho en muros de mampostería.</td>
<td>No existe reducción en la capacidad sismo-resistente. La reparación consistirá en la restauración de los elementos dañados.</td>
</tr>
<tr>
<td>Estructural fuerte</td>
<td>Grietas de menos de 0.5 a 1 mm de ancho en elementos de concreto.</td>
<td>Existe una reducción importante en la capacidad sismo-resistente. Debe desocuparse y mantenerse sólo acceso controlado, previa rehabilitación temporal. Es necesario realizar un proyecto de reparación para la restauración y el refuerzo de la estructura.</td>
</tr>
<tr>
<td>Estructural Grave</td>
<td>Grietas de más de 1 mm de ancho en elementos de concreto. Desprendimiento del concreto, rotura de estribos y pandeo del refuerzo en columnas y muros de concreto. Agrupamiento de las losas planas alrededor de las columnas. Aberturas en muros de mampostería. Desplomados en columnas de más de 1:100 de su altura. Desplomos del edificio de más de 1:100 de su altura.</td>
<td>Existe una reducción importante en la capacidad sismo-resistente. Debe desocuparse y suprimirse el acceso y la circulación en la vecindad. Es necesario proteger las calles y los edificios vecinos mediante rehabilitación temporal, o proceder a la demolición urgente. De ser posible deberá recurrirse a una evaluación definitiva que permita decidirse procede la demolición o bien el refuerzo generalizado de la estructura.</td>
</tr>
</tbody>
</table>
Por otro lado, dentro de los métodos cuantitativos se encuentran los métodos numéricos elaborados con modelos matemáticos, es decir, este método se basa en más datos del edificio para llevarse a cabo de evaluación. Se debe contar con los planos del edificio y tener el conocimiento de las propiedades mecánicas de los materiales empleados en su construcción, tal y como de elasticidad, densidad, resistencia a la compresión, cortante, tensión, etc. Además, resulta de gran importancia el conocer las propiedades dinámicas de la estructura como lo son la frecuencia natural (periodo) y sus formas de vibrar.

En Perú se utilizó esta metodología en un Hotel donde se utilizó un software para implementar el método de elementos finitos para el análisis de la estructura para el conocimiento de la demanda sísmica (Cárdenas, 2008).

La configuración de la estructura en el programa SAP 2000® (Ver Fig. 2.6a) se desarrolla a partir de los planos y de observaciones del edificio ya que puede haber ciertas modificaciones no señaladas en los planos originales. Se construye el modelo de elementos finitos y se analiza ante cargas verticales generadas por su propio peso o generadas por hundimientos diferenciales. Los análisis por sismo
pueden ser de forma estática o dinámica y su objetivo es investigar la capacidad de la estructura para soportar cargas laterales. Una vez analizado el modelo, previamente asignado dimensiones y características de los materiales a cada elemento de la geometría, se obtiene como resultado los esfuerzos (Ver Fig. 2.6b) y deformaciones que serán utilizados para la evaluación de la vulnerabilidad sísmica al comparar con los esfuerzos resistentes y deformaciones de los materiales constituyentes.

Figura 2.6. Modelación numérica de edificios por medio del método de elemento finito; (a) Geometría desarrollada en software SAP 2000® (b) Esfuerzos verticales en compresión máximos de fachada (Cárdenas, 2008).
2.7 Propuestas de vivienda emergente

Investigadores de la Universidad de Sao Paulo, Salado y Sichieri (2014) desarrollaron sistema modular de muros con paneles hechos con tubos de cartón, obteniendo buenos resultados en las pruebas que realizaron a dichos elementos con el propósito de realizar una construcción sustentable. Concluyeron que los tubos de cartón utilizados en los componentes de construcción son un material alternativo que tiene diferentes características técnicas y comportamientos en relación con los materiales convencionales. Una ventaja de los paneles de tubos de cartón sobre el sellado vertical de materiales convencionales es que cuando se someten a cargas de compresión excesivas, pierden estabilidad sin sufrir desintegración, rotura o grietas en sus elementos. En el ensayo de compresión, los desplazamientos se consideraron normales a la situación, con respecto a las características del material ensayado. Por lo tanto, los paneles mostraron una resistencia satisfactoria a las fuerzas de compresión y pueden utilizarse en interiores o exteriores para viviendas y otros edificios, como refugios de emergencia para personas sin hogar y construcciones temporales o permanentes, con o sin función estructural. Por otro lado, una de sus desventajas es que las normas técnicas actuales no incluyen estos materiales de construcción alternativos. Es importante cambiar esta situación, ya que el desarrollo de nuevos materiales está creciendo en necesidad y su uso también se ha investigado más comúnmente (ver Fig. 2.7).

Figura 2.7. Sistema constructivo con paneles de tubos de cartón (Salado y Sichieri, 2014).
Un caso de vivienda emergente registrado en el estado de Jalisco fue realizado por un equipo de estudiantes de la universidad ITESO en un concurso convocado por la comisión nacional forestal CONAFOR a través del consejo nacional de la madera en la constricción COMACO en el cual consistió en desarrollar una propuesta de diseño para vivienda sustentable con madera en la categoría vivienda emergente, obteniendo un tercer lugar a nivel nacional.

La vivienda está diseñada para situaciones de emergencia en casos de sismo o inundaciones severas debido a las condiciones del municipio de Cuautitlán de García Barragán, estado de Jalisco (ver Fig. 2.8).

La solución que se brinda con esta vivienda es la eficacia en su estructura prefabricada que reduce en tiempos y mano de obra la construcción, lo que lo vuelve apta para ser construida en casos de emergencia. Dicha estructura principal está basada en un sistema prefabricado plegable que al ser extendido reduce la necesidad de un equipo de trabajo mayor y a su vez disminuye el tiempo de construcción. Así otros diversos elementos arquitectónicos como muros de marcos portantes, ventanería y techos llegan a ser construidos predeterminadamente y fuera de la zona, lo que agiliza la logística, transporte y rápida respuesta en dichos casos de emergencia. La vivienda cuenta con un levantamiento de 1.50 m apoyada sobre pilotes de madera para prevenir inundaciones y siniestros que la catástrofe pudo haber ocasionado. Así también cuenta con estructura de techo a dos aguas que
previene la acumulación y desplome del techo en caso de catástrofes hidrológicas severas (COMACO, 2014).

Otra solución con el objetivo de conocer nuevas tecnologías e innovaciones de la construcción de viviendas sustentables la madera es un material orgánico renovable que en la actualidad es muy poco utilizada como elemento estructural de edificaciones debido al desconocimiento de las personas sobre este recurso.

La vivienda rural sustentable representa un concepto de plataforma central, como punto focal de las amenidades que se puedan llevar dentro del proyecto. La característica principal de la vivienda tiene su estructura en forma de una "herradura" la cual se forma por los núcleos de dormitorios y el área de alimentos, se convierte también en el vestíbulo central que da circulación a todas las actividades del proyecto. Dos núcleos de dormitorios independientes solo ligados por la plataforma central dan aislamiento térmico y acústico así mismos (ver Fig. 2.9).

Las persianas de madera perimetrales permiten regular la visión y la temperatura del espacio, pudiéndose abrir totalmente hacia el núcleo central dando una percepción del espacio mucho más amplio.

Figura 2.9. Vivienda sustentable de madera (García, 2015).
2.8 Propuestas de mejoramiento estructural ante sismos y refuerzo ante asentamientos diferenciales

En Venezuela, Yépez et al. (2016) desarrolló una adecuación estructural para un conjunto residencial en la ciudad de Barquisimeto, ya que las viviendas presentaron innumerables agrietamientos que se presentan principalmente en paredes que en la mayoría de los casos están inclinados en 45 grados (Ver Fig. 2.10a), así también se observaron fisuras por asentamientos diferenciales, hundimientos en vialidades, estacionamientos y en muros de colindancia. En la Fig. 2.10b se aprecia un agrietamiento en el muro de fachada con dicha inclinación de 45 grados.

![Figura 2.10. Vivienda dañada; (a) agrietamiento en muros (b) agrietamiento en fachada (Yépez et al., 2016).](image)

Como propuesta de reforzamiento primeramente se decidió analizar cada vivienda de forma individual por razones de diferencias en los asentamientos del terreno. El reforzamiento estructural propuesto para la superestructura consistió en la construcción de muros tipo “sándwich”, este se conforma revistiendo el muro existente con dos capas de concreto armado con un espesor de 6 cm por cada lado, es decir, el muro existente quedaría en medio de las dos capas del concreto. Para garantizar la continuidad de trasmisión de esfuerzos a través de los muros, este debe ir anclado a la losa o viga superior e inferior según sea el caso. En reforzamiento de la infraestructura, solo se recomendó mejorar el suelo o la construcción de micro pilotes o losa de cimentación armada.
Finalmente él estudió concluyó en sugerir abandonar algunas viviendas debido a los resultados del análisis estructural donde los elementos estructurales presentaron valores de resistencia del concreto a la compresión bajos, los daños existentes en los muros de tabique y elementos estructurales originados por los asentamientos diferenciales y la condición sísmica de la zona, esto da como resultado un alto riesgo para los habitantes (Yépez et al., 2016).

Por otro lado, en Colombia la Asociación colombiana de Ingeniería Sísmica (2005) publicó el manual para la rehabilitación de viviendas construidas en adobe y tapia pisada propone medidas para la reparación de daños y refuerzo estructural para las edificaciones que típicamente son más antiguas construidas con materiales naturales.

Existe innumerables edificaciones construidas con adobe y tierra compactada que no cuentan con un sistema adecuado de cimentación, esto provoca que se generen los asentamientos diferenciales y debiliten los muros de carga y se disminuya la capacidad estructural ante las fuerzas que debe soportar la estructura. Además, al no tener cimentación esto permite acumulación de humedad en los muros de tierra deteriorándose con el tiempo (Ver Fig. 2.11a).

Para la rehabilitación de cubiertas en el manual proponen reconstruirse utilizando elementos de madera o bambú de uso estructural y debidamente realizado su tratamiento. Se debe construir un

Figura 2.11. Rehabilitación de vivienda de adobe; (a) deterioro de vivienda con adobe (b) rehabilitación de cubierta (Asociación colombiana de Ingeniería Sísmica, 2005).
adecuado arriostramiento en la estructura de la cubierta en tipo armadura, por ejemplo, para mejorar el comportamiento estructural ante las cargas verticales y horizontales (Ver Fig. 2.11b). Se puede utilizar teja de barro sobre una película de papel asfáltico para evitar pasar humedad a la estructura de la madera (Asociación colombiana de Ingeniería Sísmica, 2005).

Aunque el manual propone utilizar teja de barro en la cubierta se podría cambiar por otro material ya que el barro es pesado y con humedad incrementa aún más su peso y esto por consecuencia exige más resistencia a la estructura de madera que lo soporta.

Existen otras técnicas tradicionalmente utilizadas para la rehabilitación de muros de mampostería confinada y adobe que han sufrido tipos de daños observados en los puntos anteriores. Una de ellas consiste en la instalación de malla de alambre, que pudiera ser electrosoldada o tipo gallinero, la cual es colocada en la superficie del muro dañado y posteriormente es recubierta con mortero de cemento (Ver Fig. 2.12). Esta técnica ha sido evaluada por algunos estudios donde concluyen que en promedio los muros reparados aumentan el 64% su capacidad de deformación y la resistencia es superior en 2.26 veces respecto a los muros originales (Ruiz, 2007).

Figura 2.12. Intervención estructural con malla electrosoldada y mortero (Ruiz, 2007).
Por otro lado, existen alternativas también en concreto y acero reciclado, es decir, la sustentabilidad en la construcción puede ser favorecida con estos materiales de construcción típicos utilizándolos posteriormente a un proceso de reciclado. Tal es el caso de un estudio realizado por la Universidad Autónoma Metropolitana en el cual se basan en el diseño sismo-resistente de las edificaciones de concreto reforzado enfocado en la sustentabilidad.

Figura 2.13. Sistema estructural sismo-resistente de concreto reforzado para una edificación verde (Terán, 2010).

Al usar los sistemas estructurales prefabricados se puede realizar un avance rápido durante la construcción de una edificación y por consiguiente esto genera obras más limpias, se ahorra en cimbras y se le puede dar un mejor control de calidad. Estos sistemas estructurales son compuestos por elementos prefabricados que son elaborados en plantas industriales haciendo posible emplear concretos de alto desempeño durante su fabricación. Esto puede impactar favorablemente en la economía reduciendo costos y disminuyendo notablemente el uso de recursos naturales aportando a la sustentabilidad.
En el ejemplo de una edificación de concreto reforzado está estructurada con base en marcos prefabricados elaborados con concreto de alta tecnología y marcos colados en sitio construidos con concretos que aprovechan materiales de desecho (Ver Fig. 2.13). El sistema de piso del edificio estará compuesto por sistemas aligerados de piso diseñados esencialmente para funcionar como el diafragma estructural (Terán, 2010).

Así como el concreto reciclado, otro estudio de Gervásio (2009) revela que las estructuras metálicas pueden ser sustentables ya que por lo general son estructuras de elementos prefabricados lo que ayuda a un proceso de construcción más rápido y eficiente y una minimización de los riesgos y deterioros de la obra. Se trata de estructuras relativamente livianas, la cimentación puede ser más reducida y esto permite a realizar menos movimientos de tierra y preservar el suelo. Además, el acero puede ser reciclado innumerables veces sin perder sus propiedades, aportando a la sustentabilidad consumiendo menos recursos naturales y maximizando la reutilización de estos mismos recursos.

2.9 Normas técnicas complementarias

Para un óptimo desempeño de cualquier estructura previamente se debe de realizar un diseño sísmico, es decir, los elementos estructurales deben de estar diseñados para resistir cargas locales, vivas y muertas y a movimientos sísmicos que puedan presentarse según la localización del edificio. Además de tener una correcta configuración y distribución de castillos, trabes y columnas en el caso de sistema constructivo de mampostería, para ello deben de seguir las normas técnicas complementarias para diseño y construcción de estructuras de mampostería (NTC para el diseño y construcción, 2004).

Uno de los requisitos indispensables para una estructura de mampostería es su confinamiento, es decir, que los muros estén reforzados con castillos y dallas que son elementos de concreto reforzado con varillas de acero. Para cumplir este requerimiento según la NTC para el diseño y construcción (2004) los muros deben de tener una dala en todo extremo de muro a una separación máxima de 3 metros de altura, castillos en cada intersección de muros, en sentido horizontal se deben colocar castillos a una distancia no mayor a 4 metros o 1.5 veces la altura del muro y refuerzo en el perímetro de aberturas (Ver Fig. 2.14).
Para el refuerzo en el contorno de aberturas, deberán ser colocados elementos de refuerzo con las mismas características de los castillos y dalas en el perímetro de toda abertura cuyas dimensiones horizontal o vertical sean mayor de la cuarta parte de la longitud del muro o separación entre castillos o 60 cm (Ver Fig. 2.15).

Figura 2.15. Refuerzo en el perímetro de aberturas (NTC, 2004).
2.10 Resumen

En este capítulo se describieron conceptos claves de los temas relacionados con el estudio tales como riesgo, amenaza, vulnerabilidad, descripción y caracterización de los tipos de falla geológica entre otros. Además, se presentaron algunas metodologías de evaluación de la vulnerabilidad sísmica de edificaciones de mampostería ya que existen actualmente diferentes sistemas y modelos de evaluación desde sencillos hasta muy complejos dependiendo las condiciones y parámetros a utilizar en cada estudio. También, se habla de algunas intervenciones y propuestas de mejoramiento estructural en casos similares a el presente estudio.

Así como los materiales alternativos de construcción buscan aportar a la sustentabilidad, los materiales y sistemas constructivos típicos se están revolucionando por medio del reciclaje, tales son el caso del concreto y el acero donde también se expusieron en este apartado. Esto servirá para los capítulos posteriores de manera que en el análisis del estudio se presente que tipo de metodología se utilizó en la presente investigación.
Capítulo 3. Planteamiento metodológico
3.1 Definición de observables y criterios de análisis

El planteamiento metodológico de este trabajo adopta una metodología mixta ya que se toma la base del paradigma científico realista-positivista desde la parte cuantitativa y el paradigma interpretativo-hermenéutico desde el modelo explicativo en la parte cualitativa.

Desde el paradigma realista-positivista, se utiliza puesto que este estudio pretende realizar la evaluación de vulnerabilidad estructural de la zona con más daños en el pueblo de Jocotepec y obtener los datos actuales de la cantidad de edificaciones dañadas en la localidad. Además, se estimó una proporción precisa del número de personas que son vulnerables al riesgo que está afectando la zona. Por ello, este paradigma es el más pertinente para obtener los aspectos físicos cuantificables de la vulnerabilidad en la cabecera municipal de Jocotepec.

Por otro lado, mediante el paradigma interpretativo-hermenéutico se analiza la percepción de los habitantes ante el riesgo y los daños que los han afectado, qué conocimiento tienen de ello y cómo responden ante el fenómeno y sus consecuencias.

En el tema de la evaluación de la vulnerabilidad, el alcance de este trabajo adopta un grado de profundidad aplicativo a nivel diagnóstico, esto quiere decir que el resultado presenta el estado y grado de vulnerabilidad que tienen las edificaciones observadas y conforme estos resultados mediante el análisis se podrán emitir ciertas recomendaciones finales.

Se contempla también que el estudio sea micro en la medida que se enfoca específicamente en un polígono con algunas manzanas de la cabecera municipal de Jocotepec como área de estudio ya que son las áreas que se identificaron más afectadas y se ubican en zona de subsidencia de riesgo medio y alto.
Se plantea un modelo heurístico (ver Fig. 3.1) inicial de la investigación en el cual se categorizan las unidades de análisis integrando el riesgo como concepto ordenador del estudio en el cual se incluye el criterio de evaluación y diagnóstico. Como elemento importante también se encuentra la amenaza sísmica de la región que se presenta como falla geológica relacionada con la vulnerabilidad y tendrá que tener una caracterización para el conocimiento de cada tipo de daño. Además, se integran los materiales de construcción utilizados en las edificaciones y nivel de diseño sísmico donde se deberá de plantear algunas consideraciones para garantizar su resistencia.

Figura 3.1. Modelo heurístico inicial de la investigación.
3.2 Diseño de instrumentos y métodos de obtención de información

Se realizó observación directa para registrar los daños en las viviendas ocasionados por los hundimientos, esta técnica de campo servirá para obtener datos no solo de daños, sino que se identificarán los tipos de sistemas constructivos y materiales de edificación utilizados en cada vivienda de la zona de estudio.

Se tomaron como muestra dos conjuntos de viviendas identificadas como manzanas en dos zonas distintas del pueblo las cuales se determinaron a partir de las condiciones del terreno y el grado de riesgo al hundimiento en las que se localizan.

Por otro lado, se realizó un cuestionario con el objetivo de obtener información de los habitantes de Jocotepec, su percepción acerca del fenómeno y el riesgo que existe por la falla geológica, así como obtener datos de la vivienda como su procedimiento constructivo y materiales. La tabla 3.1 muestra la parte final del cuestionario en el cual dependiendo de la calificación que acumulen las respuestas de las personas se valorizará en un resultado final de grado de vulnerabilidad.

Tabla 3.1. Resultado final del informe (percepción local).

<table>
<thead>
<tr>
<th>Rangos</th>
<th>Percepción Local</th>
<th>Valor asignado según condición de vulnerabilidad</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 5</td>
<td>Muy Alta</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>De 5.1 a 10</td>
<td>Alto</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>De 10.1 a 15</td>
<td>Medio</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>De 15.1 a 20</td>
<td>Bajo</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Más de 20</td>
<td>Muy Baja</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Grado de vulnerabilidad social

<table>
<thead>
<tr>
<th>Valor Final</th>
<th>Grado de Vulnerabilidad Social</th>
<th>Resultado Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 0.20</td>
<td>Muy Bajo</td>
<td></td>
</tr>
<tr>
<td>De 0.21 a 0.40</td>
<td>Bajo</td>
<td></td>
</tr>
<tr>
<td>De 0.41 a 0.6</td>
<td>Medio</td>
<td></td>
</tr>
<tr>
<td>De 0.61 a 0.80</td>
<td>Alto</td>
<td></td>
</tr>
<tr>
<td>Más de 0.80</td>
<td>Muy Alto</td>
<td></td>
</tr>
</tbody>
</table>
La metodología de este estudio se llevará a cabo a través de las siguientes etapas:

ETAPA 1:
Por medio de la revisión literaria se pretende investigar estado del arte sobre conceptos clave del estudio como amenaza, riesgo, vulnerabilidad estructural, alternativas de reparación de daños tales como grietas y propuestas de reducción de vulnerabilidad estructural para edificaciones que se ubican sobre asentamientos diferenciales.

ETAPA 2:
En esta etapa la intención es reconocer los diferentes tipos de materiales de edificación que han utilizado las viviendas más dañadas de la zona de estudio y también las edificaciones vecinas en la misma zona que no han presentado daños severos. Esta actividad servirá para realizar una comparación en el mapa que señala el terreno con menor a mayor peligro de hundimiento junto con el tipo de material de la vivienda que se encuentra en la zona.

ETAPA 3:
Se realizará el trabajo de campo y observación para la medición de grietas en viviendas dañadas e implementar el cuestionario de la metodología para la evaluación de vulnerabilidad estructural ante la amenaza por subsidencia y sismo de las viviendas en la zona de estudio seleccionada. Además, con los resultados obtenidos se procederá al análisis del caso de estudio.

ETAPA 4:
Finalmente, una vez llevado a cabo el análisis del estudio se plantearán las conclusiones pertinentes de la evaluación y se emitirán algunas recomendaciones para reducir la vulnerabilidad estructural ante la amenaza por subsidencia geológica y por sismo en el pueblo de Jocotepec, Jalisco. Además, se realizarán propuestas de investigación futura.
Capítulo 4. Análisis del caso (parte 1)

Evaluación de la vulnerabilidad estructural asociada la subsidencia en Jocotepec Jalisco
4.1 Introducción

Este capítulo presenta el análisis y evaluación de la investigación, desde la descripción y caracterización del caso donde se plantea la ubicación del área de estudio por medio de un mapa que muestra las zonas específicas en las que se concentró el trabajo de campo.

Como parte esencial del análisis se identificaron daños en las viviendas de las manzanas seleccionadas y se tomaron las estructuras más deterioradas para su evaluación y diagnóstico de cada zona. Además, se encontraron daños generales en infraestructura urbana tal y como vialidades y banquetas por la misma amenaza del hundimiento generado por la subsidencia geológica.

Una vez analizada la información de campo, se realiza la evaluación de hallazgos donde se aplican los cuestionarios de la metodología para la evaluación de la vulnerabilidad en las viviendas de las manzanas tomadas como muestra. Posteriormente, se identifica el grado de vulnerabilidad de las viviendas de forma individual y por manzana, para posteriormente comparar esta evaluación con el nivel de amenaza (zonas identificadas con mayor subsidencia) en donde se encuentran localizadas.

La evaluación de la vulnerabilidad también se aplica ante amenaza de sismo, la cual no ha generado daños, pero permite tener indicadores en el caso de que suceda un evento. Tanto como la amenaza como la exposición no pueden ser reducidas ya que son fenómenos naturales que existen y lo que ayuda la evaluación es tener el diagnóstico y con el resultado tratar de reducir la vulnerabilidad para que también el riesgo baje.
4.2 Caracterización del caso de estudio

Para el análisis de esta investigación se tomaron dos manzanas del pueblo como zona de estudio para emplear el método de evaluación de vulnerabilidad y posteriormente realizar un diagnóstico general a partir de los resultados de estas muestras representativas. Se tomó una manzana por rango de riesgo por subsidencia de acuerdo al estudio de Hernández-Marin et al. (2014) estratéigicamente localizadas para conocer cómo afecta el peligro del terreno en las estructuras de las viviendas que conforman cada manzana.

La manzana 1 se localiza en un rango de subsidencia entre (-4.0 cm y -7.0cm) el cual será considerada como zona de riesgo alto. La manzana 2 se ubica en la zona considerada de riesgo intermedio con un rango de subsidencia entre (-1.0 cm y -4.0cm) (ver Fig. 4.1).

Figura 4.1. Deformaciones verticales (cm) (Hernández-Marin et al., 2014).
4.3 Identificación de particularidades generales

Como parte de la identificación de características y detalles en las manzanas para inspección, se tomaron viviendas representativas como muestra de cada manzana en las cuales presentan daños.

Manzana 1 (en zona con riesgo alto)

En otra vivienda es notorio el cambio de sistema constructivo en su cubierta, alcanzándose a apreciar tabique de barro rojo recocado en la parte del techo. Además, muestra agrietamientos de tipo diagonal y horizontal en la parte ubicada del lado derecho de la fachada (ver Fig. 4.2 a). La grieta fue medida con un flexómetro cerca del medidor de luz la cual tiene un ancho de 1 cm (ver Fig. 4.2b).

Figura 4.2. Vivienda V1 de la manzana M1; a) presencia de grieta diagonal y b) medición de grieta.

Figura 4.3. Vivienda V2 de la manzana M1; a) presencia de grieta vertical b) medición de grieta.
También se encuentra una edificación que presenta daños por humedad a lo largo de todo el muro, en la parte inferior de la fachada y grietas muy cerca al muro de colindancia (ver fig. 4.3a). Además, en la Fig. 4.3b se puede observar que la entrada está cubierta con un techo ligero de lámina. La grieta mide un espesor de 0.7 cm.

Figura 4.4. Vivienda V3 de la manzana M1; a) presencia de grieta b) medición de grieta.

La Fig. 4.4a ilustra una vivienda que ha sido reparada en su muro de la fachada, en la Fig. 4.4b se aprecia que se intentó resanar y pintar una grieta, pero ésta volvió a salir midiendo un ancho de 0.5 cm. La vivienda tiene una cubierta tipo bóveda, se observa el ladrillo de barro recocado y las trabes de acero.

Figura 4.5. Vivienda V4 de la manzana 1 con intervención estructural.
Adicionalmente, se observó una vivienda la cual fue intervenida estructuralmente. Probablemente se canceló una ventana del lado izquierdo de la fachada y se introdujeron dos castillos de concreto al igual que al costado de la puerta de acceso. También se observa una trabe de acero que fue adaptada para recibir la carga del techo y transmitirla a las columnas de concreto (ver Fig. 4.5).

![Figura 4.6. Vivienda V5 de la manzana M1; a) vista de la fachada principal y b) grieta de tipo escalonada y vertical.](image)

En otra vivienda de mampostería (ver Fig. 4.6) sin recubrimiento se pudieron observar algunos agrietamientos de tipo escalonado y vertical. En la Fig. 4.6a se muestra el muro de la fachada de la vivienda que carece de un confinamiento óptimo. Debido a la subsidencia geológica del terreno se aprecia el agrietamiento escalonado y vertical del muro, entre las unidades de tabique de barro rojo recocido y el mortero. Este tipo de agrietamientos es característico de edificaciones de mampostería no reforzada que sufren asentamientos diferenciales debido a que se encuentran desplantadas sobre un suelo pobre y muy compresible, o por la falta de una cimentación rígida.
Figura 4.7. Vivienda V1 de la manzana M2.

Esta vivienda ubicada por la calle Juárez es una de las casas que se identificaron con más daños, como se muestra en la Fig. 4.7 el muro de la planta baja presenta numerosas grietas a tal grado de caerse el recubrimiento en algunas superficies y comienzan a notarse que tanto como ventanas y puertas se encuentran descuadradas. Las grietas mayormente se identifican de tipo diagonal.

Otra vivienda por la misma calle Juárez presenta grietas de tipo vertical y escalonada en su muro de mampostería de tabique de barro rojo recocido, la Fig. 4.8b muestra la medición de la grieta con un espesor de 1.2 cm. Esta edificación fue construida con una cubierta de tipo bóveda utilizando también tabique de barro rojo recocado y perfiles de acero (Ver Fig. 4.8a).
Figura 4.8. Vivienda V2 de la manzana M2; a) agrietamiento vertical y escalonado en muro b) medición de grieta.

Figura 4.9. Vivienda V3 de la manzana M2; a) agrietamiento diagonal en muro y b) medición de grieta.

La edificación de la Fig. 4.9a muestra agrietamientos desde su puerta de acceso hasta el muro de colindancia derecho como indican las flechas. La medición de la grieta indica un espesor de 1.0 cm (ver Fig. 4.9b). Se observa también que la ventana se encuentra descuadrada ya que posiblemente no esté confinada debidamente como indican las normas de diseño de estructuras de mampostería en México.
La vivienda de la Fig. 4.10 presenta una grieta de gran espesor (2.5 cm) que atraviesa una ventana que fue instalada en esquina de dos muros, esto permite aún más el daño ya que no se permite el refuerzo en esquina. Otra vivienda que ha sufrido por mucho tiempo agrietamientos significativos en sus muros de fachada ha sido reconstruida ya que originalmente se había utilizado adobe para su construcción. Se le colocó otro sistema de muros adosados a la estructura original a base de mortero y a pesar de estas intervenciones se siguen formando grietas de 1.0 a 2.0 cm de espesor. En la Fig. 4.11 se identifican el avance de este agrietamiento, después de hacerle dicha reparación a través de los años.

Figura 4.10. Vivienda V4 de la manzana M2.

Figura 4.11. Vivienda V5 de la manzana M2; a) fotografía del 2013 y b) fotografía del 2016.
La Fig. 4.11a presenta los daños de la vivienda en el año 2013 en el cual se observan diversas grietas y también la deformación de la banqueta y cubierta. La Fig. 4.11b presenta los daños en el año 2016 donde se aprecian las reparaciones y los daños que vuelven a surgir en el muro.

En esta otra vivienda (Fig. 4.12) se ha tratado de rehabilitar la estructura más dañada por parte de los propietarios con concreto reforzado, aunque en ese periodo de tres años se han presentado más niveles de hundimientos las grietas volvieron a formarse. En esta zona que aparentemente pasa una línea de falla haciendo que la vialidad también sufra un desnivel considerable.

![Figura 4.12. Vivienda V6 de la manzana M2; a) fotografía del 2013 y b) fotografía del 2016.](image)

En la Fig. 4.12b se aprecia una grieta considerable generada en un transcurso de tres años, la cual se encuentra separada aproximadamente a un metro de la columna de carga. Además, se aprecia el reforzamiento de la columna de concreto reforzado que originalmente tenía un diámetro de aproximadamente 25 cm y actualmente es de 40 cm como se observa en la Fig. 4.12a.
4.4 Tipologías de edificaciones por zona de estudio

Manzana 1

Figura 4.13. Tipos de vivienda de mampostería en manzana M1; a) tabique sin confinamiento b) tabique c) adobe d) block de jal.

Son 30 viviendas que conforman la manzana M1 que generalmente fueron hechas con un sistema constructivo a base de muros de mampostería y cubiertas ligeras, aunque también hay viviendas hechas con adobe. Esta área de estudio es considerada como zona de riesgo alto según el mapa de mediciones de hundimientos (ver Fig. 4.1).
La bóveda catalana es típicamente utilizada en esta región como sistema constructivo de losa ligera, aunque también es utilizada la cubierta de lámina de asbesto y galvanizada. Además, otro tipo de cubierta es la losa llena de concreto armado como cubierta pesada.

El material más común es el tabique de barro rojo recocido que es utilizado para construir los muros y las losas de bóveda. En la Fig. 4.13a se nota un confinamiento deficiente en la zona de la puerta ya que solo se colocó un segmento de dala de concreto sin castillos para mayor rigidez. En la vivienda siguiente también se utilizó el tabique de barro rojo recocido en el muro y la losa y se aprecia el mismo patrón de ineficiencia constructiva para el confinamiento adecuado de los muros (ver Fig. 4.13b).

Como se mencionaba anteriormente la Fig. 4.13c muestra una vivienda hecha de adobe con un recubrimiento de mortero y una losa ligera de lámina. La vivienda de la Fig. 4.13d muestra aún más la ineficiencia en el sistema constructivo de la estructura ya que se aprecia un traslape de dala de concreto entre la puerta y la ventana, los muros están hechos de block de jal y la losa de bóveda con tabique de barro rojo recocido.

Estas viviendas no cumplen con lo establecido en las normas técnicas complementarias para diseño y construcción de estructuras de mampostería (2004) ya que al no realizar un correcto confinamiento en la estructura del muro es más vulnerable a sufrir daños. La Figura 2.13 muestra que en aberturas mayores de 60 cm debe de colocarse elementos de refuerzo como dalas y castillos en todo el perímetro de la apertura ya sea venta o puerta. Las viviendas de la Fig. 4.13 no cumplen con esta norma, así como un diseño antisísmico adecuado que brinde la seguridad para los ocupantes.
Manzana 2

En la manzana M2 se ubican 65 viviendas consideradas en zona de riesgo intermedio siguiendo el mismo patrón de daños y la tipología de vivienda en materiales de construcción y sistema constructivo. En el mapa de medición de hundimientos se observa la zona de peligro en que se encuentra esta manzana (ver Fig. 4.1).

En la Figura 4.14a se aprecia que en el muro de tabique de barro rojo recocido no fue utilizado ningún tipo de refuerzo como elementos de castillos y dalas de concreto y tampoco alguna estructura de acero, aunque la cubierta es ligera de tipo lámina de acero. La vivienda siguiente está construida también con muros de tabique de barro rojo recocido y a pesar de su longitud considerable del muro no se aprecia refuerzo alguno (ver Fig. 4.14b).

![Figura 4.14. Tipos de vivienda en manzana M2; a) tabique sin confinamiento b) tabique c) tabique y d) tabique con cubierta de bóveda.](image-url)
La vivienda que ilustra la Figura 4.14c se observa un muro de tabique de barro rojo recocido con una longitud corta pero aun así se nota un confinamiento inadecuado al solo colocar segmentos de dala sobre la puerta y ventana (sin castillos), además se aprecia una pequeña dala de cerramiento que debe soportar las trabes de acero que componen la losa de bóveda. La vivienda de la Figura 4.14d muestra un mejor confinamiento en el muro que se observa el muro aparente de tabique de barro rojo recocido con castillos y dalas de concreto. Las viviendas de esta manzana también carecen de un estricto seguimiento a las normativas y diseño anti-sísmico que al no contar con un recubrimiento es muy notoria la deficiencia de su construcción. La NTC (2004) establece que cada extremo de muro e intersección deberá colocarse un castillo y la separación máxima entre ellos será de 4 m (ver Fig. 2.12). Se puede observar en la Figura 4.14a-b una longitud mayor a lo que marca la norma y no fue colocado ningún castillo al igual que en sus esquinas.

En general, analizando las viviendas tomadas como muestra de cada manzana se identificaron algunos patrones que siguen los daños en las construcciones de mampostería de tabique de barro rojo recocido. Todas estas viviendas no fueron construidas con muros confinados, es decir, no cumplen el reglamento de construcción el cual especifica a máximo 4 m. de distancia de muro se tiene que colocar un castillo de refuerzo, al igual que marcos de tipo dala de cerramiento en puertas y ventanas los cuales daaría mayor rigidez y resistencia a la estructura evitando las fracturas y grietas en los muros y posibles colapsos. Además, otra peculiaridad que se identificó en los muros de mampostería fueron las grietas de tipo escalonada observadas en las manzanas M1 y M2 donde también surgieron grietas de tipo vertical y horizontal en viviendas de adobe. También se observaron grietas en diagonal que es la que más se originan por asentamientos diferenciales.

Al momento de analizar y comparar los daños de las viviendas de acuerdo al riesgo donde se encuentran localizadas, se notó que la manzana 1 que es la de alto riesgo de acuerdo a el mapa de la Figura 4.1 se encontraron menos viviendas dañadas que en la manzana 2 que está localizada en zona de riesgo intermedio donde se observaron más viviendas dañadas. Esto se pudiera interpretar como que si en la zona de mayor riesgo que es la que se clasifica con el rango más grande de subsidencia se esté hundiendo de forma uniforme y esto hace que no dañe tanto las edificaciones y la infraestructura vial. Lo contrario de la zona de riesgo intermedio donde se encuentra la manzana 2,
aunque su rango de subsidencia es menor podrían existir más asentamientos diferenciales que originen los daños en más edificaciones.

4.5 Evaluación de la vulnerabilidad estructural por subsidencia

Una vez analizada la información de campo se tomará en cuenta el criterio de evaluación propuesto por Julio-Miranda et al. (2012), el cual es de gran utilidad para poder asignar una clasificación de daño a las viviendas afectadas por el fenómeno de subsidencia en el pueblo de Jocotepec, Jalisco. Para este propósito, se estimará la clase de daño según la siguiente tabla para las viviendas de la manzana M1 y M2 en las cuales se identificaron daños estructurales de consideración. (ver tabla 4.1).

<table>
<thead>
<tr>
<th>Valores de daño</th>
<th>Daños</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02 Bajo</td>
<td>-Grietas ligeras en paredes</td>
</tr>
<tr>
<td></td>
<td>-Desprendimiento de pequeños fragmentos de recubrimiento</td>
</tr>
<tr>
<td>0.10 Moderado</td>
<td>-Estrechos y amplios agrietamientos en paredes</td>
</tr>
<tr>
<td></td>
<td>-Desprendimiento de medianos fragmentos de recubrimiento</td>
</tr>
<tr>
<td>0.40 Alto</td>
<td>-Grietas en paredes con separación <1cm</td>
</tr>
<tr>
<td></td>
<td>-Deformación de puertas o marcos de ventanas de herrería que previenen movimiento óptimo</td>
</tr>
<tr>
<td></td>
<td>-Hundimiento o deformación ligera en pisos</td>
</tr>
<tr>
<td>0.75 Severo</td>
<td>-Grandes grietas en paredes con separación >1cm</td>
</tr>
<tr>
<td></td>
<td>-Deformación de puertas o marcos de ventanas de herrería que previenen su movimiento</td>
</tr>
<tr>
<td></td>
<td>-Hundimiento y deformación en el suelo</td>
</tr>
<tr>
<td></td>
<td>-Separación de edificaciones colindantes</td>
</tr>
<tr>
<td></td>
<td>-Deformación o grietas sobre el piso</td>
</tr>
<tr>
<td></td>
<td>-Hundimiento parcial del edificio</td>
</tr>
<tr>
<td>1.00 Demolición</td>
<td>Parcial o total</td>
</tr>
</tbody>
</table>

A partir de estos datos se analizaron los daños de cada vivienda para poder asignarle una clasificación de acuerdo a las características de cada categoría (ver Tabla 4.2). Las fotografías de las viviendas anteriormente analizadas fueron categorizadas por el grado de daño que sufren. La categoría de valor de daño que más viviendas obtuvieron fue de tipo severo, en el cual se aprecian grietas con un ancho mayor a 1 cm y deformaciones en marcos de ventanas y puertas, así mismo se identificaron deformaciones que van desde los muros hasta el suelo.
Tabla 4.2. Clasificación de daño en viviendas de la Manzana 1 de Jocotepec Jalisco.

<table>
<thead>
<tr>
<th>Valores de daño</th>
<th>Daños</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02 Bajo</td>
<td>Vivienda V3 en manzana M1. Calle Guadalupe Victoria</td>
</tr>
<tr>
<td>0.10 Moderado</td>
<td>Vivienda V5 en manzana M1. Calle Degollado</td>
</tr>
<tr>
<td>0.40 Alto</td>
<td>Vivienda V2 en manzana M1. Calle Aldama</td>
</tr>
<tr>
<td>0.75 Severo</td>
<td>Vivienda V1 en manzana M1. Calle Matamoros</td>
</tr>
</tbody>
</table>
En la categoría de menor valor de daño considerada tipo bajo se encuentra una vivienda de la manzana M1 ubicada por la calle Guadalupe Victoria la cual presenta daños menores, agrietamientos ligeros de tipo horizontal y vertical sin afectar severamente marcos de puertas y ventanas, se observa además que el daño pudiera presentarse sólo en el recubrimiento sin afectar estructuralmente al muro (ver Tabla 4.2).

En viviendas típicas con muros sin acabado o recubrimiento de tipo aparente es posible observar más a detalle el tipo de daño como en otra vivienda de la manzana M1 considerada con valor de daño de tipo moderado ya que presenta medianas aberturas en los agrietamientos entre los tabiques de tipo escalonado.

Otra vivienda de la manzana M1 en la calle Aldama designada con valor de daño tipo alto presenta fractura en sentido vertical en un extremo de su muro lo que se puede contemplar este un daño local ya que se observa la medición de la grieta menor a 1 cm. en un muro que no está funcionando estructuralmente para cargar alguna cubierta.

La primera vivienda identificada con un valor de daño tipo severo se encuentra en la calle Matamoros de la manzana M1 la cual presenta grietas mayores a 1 cm muy cerca de una ventana. El recubrimiento no permite observar a detalle si el confinamiento es el óptimo para el desempeño de la estructura, pero por el tipo de falla lo más probable es que exista una deficiencia en el confinamiento de la ventana y también de la puerta.
<table>
<thead>
<tr>
<th>Valores de daño</th>
<th>Daños</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 Severo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 Demolición</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.2. (Parte 2) Clasificación de daño en viviendas de la Manzana 2 de Jocotepec, Jalisco.
La categoría de valor de daño de tipo severo es contemplada la más grave antes de considerar la estructura como colapsada o propensa a la demolición, esta clase es la que se designó el valor a la mayoría de viviendas dañadas.

Sobre la calle Juárez de la manzana M2 se sitúan algunas viviendas vecinas con valor de daño severo. Un caso en particular que se identificó entre dos viviendas fue el daño que sufren cada una y una apertura que existe entre el muro de colindancia entre ellas (ver Fig. 4.15). La Figura 4.15a muestra como comienzan a separarse los muros desde la parte inferior de la fachada con una separación de 1cm, la Figura 4.15b ilustra un nivel más arriba del muro con una separación de 2.5 cm y la Figura 4.15c muestra una separación de aproximadamente 12 cm a nivel de cubierta de ambas viviendas.

Esta separación de edificaciones colindantes es similar a la presentada por las viviendas de la manzana 2 previamente analizadas (ver Figs. 4.9 y 4.10). Estas viviendas son las que presentan agrietamientos muy severos. En general, el daño observado y clasificado en estos parámetros de valores de daño puede ser reparado siempre y cuando no sea de tipo severo, es decir, que la vivienda esté muy dañada y la mayor parte de sus elementos estructurales no puedan ser modificados de tal manera que puedan resistir a los movimientos de los asentamientos diferenciales o a la misma vulnerabilidad que se encuentra de recibir un sismo. Además, la integridad estructural de cada vivienda será lo que determine si se puede reparar la estructura contemplando que el porcentaje de daño de la edificación no sea muy alto de tal manera que la estructura pueda ser intervenida con la modificación idónea que siga la reglamentación y diseño antisísmico que evite nuevamente los daños.
4.6 Conclusiones

En este capítulo se analizaron los daños en dos conjuntos de viviendas designadas como manzanas M1 Y M2 las cuales de acuerdo a un mapa de subsidencias son las que se ubican en un terreno con grado considerable de hundimiento. Las particularidades encontradas fueron daños que siguen un mismo patrón que se presentan en muros de mampostería construida con tabique de barro rojo recocido sin un correcto confinamiento y sin seguir los reglamentos, normas de construcción y diseño antisísmico adecuado para evitar estos tipos de daños. Adicionalmente, la auto-construcción es factor para no seguir adecuadamente un proceso constructivo y las consecuencias se pueden ver reflejadas en fallas de la estructura.

Los tipos de grietas en muros siguen también un patrón de tipo escalonado que se observa detalladamente en muros aparentes sin recubrimiento, y también grietas en diagonal escalonada a través de las juntas de mortero que se ocasionan típicamente por asentamientos diferenciales en el terreno.

Evaluando los daños de las viviendas analizadas de acuerdo a unos parámetros y categorías establecidos, se asignaron valores de daño a cada vivienda las cuales el mayor número de daños fueron clasificados como severo, en el cual se aprecian grietas con una separación mayor a 1 cm y deformaciones en marcos de ventanas y puertas comúnmente de herrería, presentando también agrietamientos y deformaciones en el suelo.

Es importante contemplar en este estudio la integridad estructural, es decir, cuando se puede recuperar o reparar la estructura cuando el daño solamente afecte una parte del edificio, aunque sea muy severo localmente se puede realizar una intervención estructural para que la estructura siga funcionando de manera adecuada. Esto se podría realizar analizando primeramente el porcentaje de daño del edificio para posteriormente considerar la reparación o la demolición total.
Capítulo 5. Análisis del caso (parte 2)

Evaluación de vulnerabilidad estructural asociada a sismos en Jocotepec, Jalisco
5.1 Introducción

El pueblo de Jocotepec se encuentra ante una amenaza sísmica importante por estar localizado en zona D de acuerdo al mapa de zonas sísmicas del país (ver Figura 1.8), el cual según la escala, es la zona con intensidad muy alta y se encuentra en riesgo constante a sismos.

Además, la exposición que se genera al estar cerca de la fuente sísmica es también ocasionada por fallas geológicas que producen movimientos diferenciales y vulneran la estructura de las viviendas localizadas en zonas de riesgo.

Anteriormente en el capítulo 2 se habló de diferentes metodologías para evaluar la vulnerabilidad sísmica de un conjunto de viviendas las cuales utilizan diferentes técnicas de estimación para diversas estructuras existentes (e.g. de mampostería) que pueden ser aplicables a gran escala, y se basan en parámetros asociados con aspectos geométricos, constructivos, estructurales, de cimentación, de suelo y entorno.

Para este caso de estudio, se evaluará la vulnerabilidad sísmica de un conjunto de viviendas en Jocotepec de acuerdo a un método cualitativo (EMS-98), en el cual los parámetros deberán ser valorados con un cierto puntaje y así poder realizar la evaluación de las viviendas por clase de vulnerabilidad. Es importante tener en cuenta que las adaptaciones, actualizaciones y mejoras que se le han hecho a la metodología facilitan su aplicación al presente caso de estudio ya que no se necesitan planos y solo se realiza la inspección general de la edificación por medio del cuestionario propuesto por Preciado et al. (2015).

Además, en este estudio de caso, la vulnerabilidad estructural se evaluará con el método de la escala macro sísmica europea (EMS1998) por Grünthal (1998) y el método de inspección y puntaje en el cual las clases de vulnerabilidad y los parámetros con que se evalúan las estructuras son pertinentes para realizar la evaluación de las viviendas dañadas de Jocotepec.
5.2 Evaluación de la vulnerabilidad estructural por el método de la escala macro sísmica europea

El método de evaluación de la escala macrosismica europea Grünthal (1998) es de tipo cualitativo, se le asigna una clase de vulnerabilidad de acuerdo al tipo de estructura y material de la edificación. En este estudio se concentrará solamente en el sistema constructivo con mampostería ya que es el tipo de estructura que gobierna en la zona de estudio.

En la observación de viviendas por manzanas se detectaron solamente tres clases del tipo de estructura de mampostería: adobe, mampostería sin refuerzo de tabique rojo recocido o block de jal y mampostería reforzada o confinada. Localizando estos grupos estructuras en la Tabla 5.1 se asignan las clases de vulnerabilidad A, C y D.

<table>
<thead>
<tr>
<th>Tabla 5.1 Clasificación de vulnerabilidad de la escala macrosismica europea (Grünthal, 1998).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Estructura</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cantos rodados, rocas</td>
</tr>
<tr>
<td>Adobe (ladrillo de tierra)</td>
</tr>
<tr>
<td>Roca simple</td>
</tr>
<tr>
<td>Roca masiva</td>
</tr>
<tr>
<td>Sin refuerzo, con unidades de rocas manufacturadas</td>
</tr>
<tr>
<td>Sin refuerzo, con pisos de concreto reforzado</td>
</tr>
<tr>
<td>Reforzada o confinada</td>
</tr>
</tbody>
</table>

De acuerdo al análisis de las viviendas en las dos manzanas observadas se clasificaron estas por la tipología de su estructura y la clase de vulnerabilidad mencionado anteriormente. Los resultados ordenados por clases se observan en la Tabla 5.2 en la cual se evaluaron las 30 viviendas de la manzana 1 y 65 viviendas de la manzana 2 siendo un total de 95 viviendas bajo estudio.
Tabla 5.2 Resultados de la evaluación de vulnerabilidad por el método EMS 98.

<table>
<thead>
<tr>
<th>Manzana 1</th>
<th>Manzana 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerabilidad</td>
<td>No. De viviendas</td>
</tr>
<tr>
<td>Media</td>
<td>8</td>
</tr>
<tr>
<td>Alta</td>
<td>19</td>
</tr>
<tr>
<td>Muy Alta</td>
<td>3</td>
</tr>
<tr>
<td>Total de viviendas</td>
<td>30</td>
</tr>
</tbody>
</table>

Los resultados demuestran que las viviendas de adobe que representan el porcentaje menor de viviendas totales son las que son más vulnerables al tener una clase de vulnerabilidad como muy alta según la EMS en su clasificación de clase de vulnerabilidad tipo A.

En clasificación C se designó al grupo de estructuras de mampostería no reforzadas y mal confinadas obteniendo una clase de vulnerabilidad alta y la clase D se designó a la tipología de estructuras de mampostería reforzadas y confinadas clasificándose con una vulnerabilidad media.

Este método evalúa el sistema resistente vertical de la estructura, es decir, cualitativamente se analiza la estructura dependiendo de los materiales de construcción y el estado de conservación de la vivienda. Además, el método EMS fue diseñado para representar la clase de vulnerabilidad para cualquier pueblo, pequeña comunidad o sección de una ciudad en lugar de ser asignada a una sola vivienda. Esto resulta práctico para poder obtener un diagnóstico a escala del pueblo de Jocotepec al evaluar dos manzanas representativas localizadas en diferentes condiciones de hundimiento de terreno y por lo tanto existen diferencias en tipos de daños de las viviendas.

Fue importante caracterizar por tipo de sistema constructivo y estructura las viviendas para realizar la evaluación de manera que se aplicara correctamente la escala macrosísmica. En general, en las dos manzanas la clase de vulnerabilidad que más predomina es la vulnerabilidad alta y la menor es la vulnerabilidad muy alta que son representadas por las viviendas de adobe.
5.3 Evaluación de vulnerabilidad por el método de inspección y puntaje

El método de inspección y puntaje utiliza un procedimiento más cuantitativo en el cual se utiliza un proceso matemático posteriormente de haber analizado la edificación por medio de los 9 parámetros del cuestionario diseñado originalmente por los autores Benedetti y Petrini (1984) conocido como método italiano. Conforme es utilizado este método se ha modificado el cuestionario de evaluación adaptándose a estudios en los cuales se requiere una inspección más práctica y rápida para la evaluación en campo.

Este método califica toda la estructura y su entorno, desde su cimentación hasta su cubierta, la pendiente en la que está ubicado el edificio y elementos no estructurales. En comparación con el método EMS 98, el método de inspección y puntaje es más completo al considerar diferentes partes del sistema estructural y parámetros con valores que son procesados obteniendo como resultado un índice de vulnerabilidad (ver Tabla 5.3).

<table>
<thead>
<tr>
<th>i</th>
<th>Parámetro</th>
<th>Ki A</th>
<th>Ki B</th>
<th>Ki C</th>
<th>Ki D</th>
<th>Wi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Organización del Sistema resistente</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>Calidad del Sistema resistente</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>Posición y cimentación</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>Diáfragmas horizontales</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>Configuración en planta</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>Configuración en elevación</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>Tipo de cubierta</td>
<td>0</td>
<td>15</td>
<td>25</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>Elementos no-estructurales</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>45</td>
<td>0.25</td>
</tr>
<tr>
<td>9</td>
<td>Estado de conservación</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>1.0</td>
</tr>
</tbody>
</table>
En la tabla anterior se presentan los 9 parámetros del cuestionario propuesto por Preciado et al. (2015) con sus respectivas clases de vulnerabilidad A, B, C, o D siendo A de vulnerabilidad baja y D vulnerabilidad alta. Conforme la a inspección de campo se observarán las edificaciones para aplicar el cuestionario, dependiendo del parámetro y la clase seleccionada, el método asigna un valor numérico (Ki) que va de 0 – 45 y es afectado por un coeficiente (Wi) que es un factor de importancia que va de 0.25 – 1.0. En la etapa final del método, el índice de vulnerabilidad sísmico (Iv) del edificio se obtiene por medio de la ecuación (a).

\[Iv = \sum_{i=1}^{9} Ki Wi \]

(a)

Analizando la ecuación (a) y la tabla 5.3 se observa que el índice de vulnerabilidad delimita una escala de valores que parten de 0 hasta el valor máximo de 303.75 siendo el 100% lo cual permite obtener un rango del orden de 0 < Iv < 100. Obteniendo este rango de vulnerabilidad se puede proceder a realizar una conclusión sobre la clase de vulnerabilidad sísmica del edificio (baja Iv < 15, media 15 ≤ Iv < 35 o alta Iv ≥ 35) (Preciado et al., 2015).

La vulnerabilidad sísmica se evalúa en cada una de las viviendas de las dos manzanas seleccionada como zona de estudio, tomando en cuenta la vulnerabilidad individual de las 95 edificaciones de mampostería. Se tomó como muestra una edificación según el grupo clasificado previamente con el método EMS en el cual las viviendas fueron caracterizadas según su sistema estructural; 3 grupos de cada manzana.
Figura 5.1 Evaluación de vulnerabilidad sísmica vivienda de mampostería no reforzada mal confinada, vivienda V2 en manzana M2.

Figura 5.2 Evaluación de vulnerabilidad sísmica vivienda de mampostería no reforzada de adobe, vivienda V3 en manzana M2.
Figura 5.3 Evaluación de vulnerabilidad sísmica vivienda de mampostería reforzada, vivienda V6 en manzana M2.

Vulnerabilidad Media 15 ≤ Iv < 35
Viv: 78,25
Viv%: 25,25

Figura 5.4 Evaluación de vulnerabilidad sísmica vivienda de mampostería no reforzada de adobe, vivienda V6 en manzana M1.

Vulnerabilidad Muy Alta Iv ≥ 55
Viv: 168,75
Viv%: 56,55
Figura 5.5 Evaluación de vulnerabilidad sísmica vivienda de mampostería no reforzada mal confinada, vivienda V3 en manzana M1.

<table>
<thead>
<tr>
<th>i</th>
<th>Parametro</th>
<th>Clase</th>
<th>Ki</th>
<th>Wi</th>
<th>Iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Organización del sistema resistente</td>
<td>C</td>
<td>20</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Calidad del sistema resistente</td>
<td>C</td>
<td>25</td>
<td>0,23</td>
<td>6,23</td>
</tr>
<tr>
<td>3</td>
<td>Posición y cimentación</td>
<td>B</td>
<td>5</td>
<td>0,75</td>
<td>3,75</td>
</tr>
<tr>
<td>4</td>
<td>Diaphragmes horizontales</td>
<td>C</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Configuración en planta</td>
<td>C</td>
<td>25</td>
<td>0,5</td>
<td>12,5</td>
</tr>
<tr>
<td>6</td>
<td>Configuración en elevación</td>
<td>B</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Tipo de cubierta</td>
<td>C</td>
<td>25</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Elementos no-estructurales</td>
<td>C</td>
<td>25</td>
<td>0,25</td>
<td>6,25</td>
</tr>
<tr>
<td>9</td>
<td>Estado de conservación</td>
<td>C</td>
<td>25</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Vulnerabilidad Alta $35 \leq Iv < 55$ $\bar{I}_{v} = 118.75$

Figura 5.6 Evaluación de vulnerabilidad sísmica vivienda de mampostería reforzada, vivienda V7 en manzana M1.

<table>
<thead>
<tr>
<th>i</th>
<th>Parametro</th>
<th>Clase</th>
<th>Ki</th>
<th>Wi</th>
<th>Iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Organización del sistema resistente</td>
<td>B</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Calidad del sistema resistente</td>
<td>B</td>
<td>5</td>
<td>0,5</td>
<td>1,75</td>
</tr>
<tr>
<td>3</td>
<td>Posición y cimentación</td>
<td>C</td>
<td>25</td>
<td>0,75</td>
<td>18,75</td>
</tr>
<tr>
<td>4</td>
<td>Diaphragmes horizontales</td>
<td>B</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Configuración en planta</td>
<td>C</td>
<td>25</td>
<td>0,5</td>
<td>12,5</td>
</tr>
<tr>
<td>6</td>
<td>Configuración en elevación</td>
<td>B</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Tipo de cubierta</td>
<td>B</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Elementos no-estructurales</td>
<td>C</td>
<td>25</td>
<td>0,25</td>
<td>6,25</td>
</tr>
<tr>
<td>9</td>
<td>Estado de conservación</td>
<td>B</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Vulnerabilidad Media $15 \leq Iv < 35$ $\bar{I}_{v} = 24,26$
Estas seis evaluaciones empleando el método de inspección y puntaje sin la necesidad de planos propuesto por Preciado et al. (2015) demuestran que dependiendo la tipología de estructura y materiales de construcción empleados en cada edificio influyen de forma importante en la clase de vulnerabilidad obtenida. La de la vivienda de la manzana 2 (ver Fig. 5.2) y la vivienda de la manzana 1 (ver Fig. 5.4) son viviendas de adobe y como resultado de este método numérico su vulnerabilidad es muy alta, se nota que en una edificación el puntaje es mayor que la otra ya que se observa muy deteriorada y con daños. Por parte del grupo de viviendas de mampostería no reforzada y sin confinar, la evaluación se representa por la vivienda de la manzana 1 (ver Fig. 5.5) y la vivienda de la manzana 2 (ver Fig. 5.1) las cuales el resultado fue el mismo para ambas con una clase de vulnerabilidad alta. De igual manera para el grupo de viviendas de mampostería reforzada se evaluaron la vivienda de la manzana 1 (ver Fig. 5.6) y la vivienda de la manzana 2 (ver Fig. 5.3) obteniendo como resultado de una evaluación la clase de vulnerabilidad media.

![Gráfico Figura 5.7 Clases de vulnerabilidad sísmica de 95 edificaciones.](image)

El resultado final de la evaluación es representado por la gráfica de la Figura 5.7 teniendo en total 6 viviendas con vulnerabilidad muy alta, 62 viviendas con vulnerabilidad alta y 27 viviendas con vulnerabilidad media. El total de viviendas evaluadas es de 95, entre las dos manzanas de las cuales por su ubicación de acuerdo al mapa de la Figura 4.1 pueden representarse en todo el pueblo ya que el grado de hundimiento donde están localizadas es una gran parte de superficie de la localidad.
Además, los tres grupos representativos de estructuras pueden ser encontradas en cada manzana de las restantes en todo el pueblo.

5.4 Evaluación de la vulnerabilidad social

Para realizar la evaluación social, se aplican encuestas en la zona de estudio de las dos manzanas observadas y evaluadas estructuralmente con el fin de también conocer la percepción del riesgo de los ocupantes de las viviendas y como resultado obtener una vulnerabilidad social. Por motivos de algunas viviendas ya deshabitadas o que al momento no se encontraban los ocupantes solo se tomó una muestra de 30 encuestas del total de las 95 viviendas entre las dos manzanas obteniendo resultados representativos para esta evaluación.

Dentro de los datos interesantes del resultado de la encuesta se observa en la Figura 5.8 que el tipo de construcción que más fue utilizado en las edificaciones fue con cuadrillas de albañiles seguido de la auto-construcción y la minoría contrató a un ingeniero o arquitecto para que llevara a cabo la construcción de la vivienda.

![Figura 5.8 Tipo de construcción en las viviendas.](image)

Como resultado final de la evaluación, se pudieron concentrar los datos de las encuestas para desarrollar el informe de percepción local de riesgo, el cual se representó como grado de...
La clasificación que gobierna es el grado alto como se observa en la figura 5.9 y por debajo se encuentra el grado medio. Esto puede representar un problema aún mayor si las viviendas se localizan en una zona de riesgo de hundimiento alto y las personas no saben precisamente qué está pasando en el pueblo, solamente ven como son deterioradas y dañadas las casas al pasar del tiempo sin tener conocimiento de la amenaza que está afectando al pueblo.

![Grado de vulnerabilidad social](image)

Figura 5.9 Grado de vulnerabilidad social.

5.5 Conclusiones

Se realizó la evaluación de vulnerabilidad sísmica de las dos manzanas tomadas como muestra del pueblo por medio de dos métodos, uno cualitativo y otro cuantitativo tratando de analizar los resultados finales y comparar los mismos. Antes de aplicar estos métodos a las viviendas se realizó una clasificación de todas las viviendas de las dos manzanas por tipología de estructura y materiales de construcción empleados para así tener grupos representativos y para que el proceso de evaluación fuera de la mejor manera empleado.
Los tres grupos de viviendas fueron de mampostería de adobe, mampostería no reforzada sin confinamiento y mampostería con refuerzo o confinada. Esta caracterización fue clave para la interpretación de datos en las metodologías ya que los resultados por los dos métodos fueron similares al momento de asignar las clases de vulnerabilidad aplicando los diferentes valores de parámetros de cada uno de los procedimientos.

En general las dos metodologías concluyen con los resultados de una mayoría de viviendas categorizadas en la clase de vulnerabilidad alta, lo que quiere decir que la muestra que es representada en el resto de las manzanas del pueblo puede considerarse también el resto de las manzanas del pueblo que se ubiquen en las mismas condiciones del terreno y que presenten similitudes de daños o mismos materiales de construcción.

La vulnerabilidad social en el muestreo resultó en su mayoría de grado alto lo que resulta algo preocupante con la percepción local del riesgo, esto incrementa el riesgo que existe en el pueblo ya que la vulnerabilidad de las estructuras en promedio es alto.

Los resultados de la vulnerabilidad estructural en conjunto con la vulnerabilidad social hacen que Jocotepec sea un pueblo que periódicamente se esté hundiendo dañando edificaciones sin que sus habitantes tengan información precisa de qué hacer en caso de una catástrofe.
Capítulo 6. Conclusiones generales e investigación futura
6.1 Resumen

El presente caso de estudio inició estableciendo el alcance de tipo diagnóstico y describiendo el problema del riesgo que existe en Jocotepec por las subsidencias del terreno haciendo vulnerables las estructuras de los edificios y poniendo en peligro la vida de sus habitantes. Adicionalmente, se mencionaron los antecedentes empíricos de otros estudios de manera que ayudara a entender más el contexto de esta investigación.

Además, en el estado del arte se establecieron las partes fundamentales del estudio, conceptos básicos como riesgo, vulnerabilidad, falla geológica y principalmente el tema relacionado a la evaluación de la vulnerabilidad estructural concentrándose en las diferentes metodologías de evaluación y algunos parámetros característicos que se emplean para cuantificar y describir el índice de daño de las cuales fueron tomadas dos métodos para la evaluación del pueblo de Jocotepec. La evaluación se obtuvo tomando en cuenta dos amenazas, la subsidencia y el sismo donde la subsidencia ha generado daños y los sismos por el momento no. Así también propuestas de construcciones con materiales alternativos y de reparación de daños en viviendas ubicadas en zonas con subsidencias.

Se realizó un trabajo de campo en distintas visitas al pueblo en las cuales se hizo un levantamiento fotográfico del muestreo de 95 viviendas en dos diferentes manzanas del pueblo las cuales fueron identificadas las viviendas afectadas y se evaluaron los daños de las mismas. En estas observaciones de campo se observaron más a detalle los agrietamientos y se midieron los mismos para posteriormente ser evaluados. Además, se caracterizaron en grupos de viviendas por sistema estructural y materiales utilizados para su construcción, esto ayudó a realizar la evaluación de vulnerabilidad sísmica por medio de dos métodos teniendo resultados similares lo que establece en su mayoría una vulnerabilidad alta.

Como parte de las visitas de campo también se aplicó un cuestionario a los habitantes de las viviendas que fueron evaluadas con los métodos ya mencionados con el fin de conocer la percepción local del riesgo con el que viven y como resultado obtener una calificación en término de grado de vulnerabilidad social.
6.2 Conclusiones generales

En este estudio se cumplió con el objetivo de diagnosticar el riesgo al colapso de viviendas localizadas en zona de hundimientos generados por subsidencia del terreno en la cabecera municipal de Jocotepec. El estudio se llevó a cabo por medio de diferentes metodologías de evaluación. Partiendo de una observación en campo, en la cual fueron identificados los diferentes tipos de daños en dos conjuntos de viviendas definidos en dos manzanas del pueblo. Tomando como base un mapa de grado de riesgo de hundimiento se determinó la zona de estudio pertinente para tomarla como muestra y representar el resto de las manzanas de la localidad.

La evaluación de daños de la zona de estudio demostró algunos patrones que siguen los daños en las construcciones de mampostería de tabique de barro rojo recocido, block de jal y adobe las cuales no fueron construidas con muros correctamente confinados, es decir, no cumplen el reglamento de construcción de las normas técnicas complementarias ni tampoco siguen diseño sísmico resultando daños en elementos estructurales que fueron analizados.

Se realizó la evaluación de vulnerabilidad sísmica por medio de dos metodologías las cuales coincidieron en sus resultados, la mayoría de las viviendas evaluadas obtuvieron una clase de vulnerabilidad alta por tener un sistema constructivo de mampostería no confinada sin refuerzo. Se detectaron pocas viviendas que cumplen con normativas y reglamentos de construcción además que aún no presentan daños. También, las viviendas de adobe resultaron con un grado de vulnerabilidad muy alto siendo las edificaciones más antiguas y que representan el tipo de construcción con más riesgo al colapso.

Es importante entender que la vulnerabilidad estructural es uno de los componentes del riesgo, al igual que la exposición y la amenaza que esta puede ser generada por ubicarse cerca de las placas tectónicas o localizarse en zona sísmica de alta intensidad y por la que se genera por la subsidencia. La exposición es generada por la cercanía a una fuente de amenaza como se ha hablado anteriormente de la subsidencia y falla geológica. La vulnerabilidad estructural la ocasionan los materiales empleados en las edificaciones y la estructura sin diseño sísmico en viviendas típicamente hechas por medio de la auto-construcción.
La evaluación de la vulnerabilidad social por medio de encuestas resultó en su mayoría ser de grado alto, ya que pocos habitantes sabían lo que está pasando en el pueblo, porque se están dañando sus casas, porque ven vialidades y banquetas deformadas. También la falta de conocimiento si existen programas de mitigación contra desastres o apoyos por parte de las autoridades para conservar su patrimonio o en un momento dado ser reubicados.

En este estudio, la mayor parte de las viviendas auto-construidas, típicamente de mampostería y adobe resultaron ser las que más han sufrido daños por motivo de no seguir un correcto procedimiento constructivo. Además, por no cumplir los reglamentos de construcción y diseño sísmico que brinde la seguridad estructural en la edificación de manera que los ocupantes no sean vulnerables a un posible colapso local o total.

Las viviendas de adobe de esta región son las más antiguas y las más vulnerables a seguir sufriendo daños por sus características mecánicas de comportamiento pobre y baja resistencia y por su sistema constructivo en general, el cual no cuenta con refuerzos necesarios para soportar los movimientos del terreno y hundimientos que están ocurriendo en el pueblo. Caso contrario es el de algunas edificaciones construidas recientemente que se observaron en las dos manzanas de la zona de estudio, las cuales no presentaron daños ya que siguieron un diseño antisísmico, utilizaron materiales de alta calidad y la mampostería fue bien confinada. Además, probablemente se les invirtió en una cimentación rígida y de buena calidad, indispensable para la seguridad estructural del edificio y más en donde existen deformaciones importantes del terreno.

En algunos casos no se pueden proponer reparaciones o construcciones nuevas completamente ecológicas ya que depende mucho las condiciones del terreno y donde está ubicado. Se debe de realizar pruebas de laboratorio que se requieran desde mecánica de suelos hasta pruebas de materiales a utilizar en la edificación para verificar que estos son óptimos para que la estructura se desempeñe adecuadamente.

El bambú podría ser un buen elemento estructural para la construcción de viviendas en esta zona ya que es un material muy resistente y ligero que a su vez su flexibilidad puede ayudar a contrarrestar los asentamientos diferenciales y evitar posibles agrietamientos. Esto debe de combinarse con un sistema resistente que no se puede descartar como el concreto reforzado o el acero y probablemente la tierra.
natural como adobe, aunque en la evaluación se comprueba que el adobe como elemento sin refuerzo se clasifica con una vulnerabilidad muy alta. Además, se tendría que contemplar el suministro del bambú, de donde se puede traer, el costo, o si se podría crear un plan de cultivo para que en un futuro se pueda producir localmente y utilizar como material estructural.

El mismo caso es el de la madera, el cual a pesar de ser un material natural tiene un buen comportamiento estructural debido a sus propiedades mecánicas aceptables y bajo peso. Sin embargo, la madera necesita pasar por diferentes tratamientos que contribuyan a durar un largo tiempo para funcionar bien como material de construcción. Pero también se debe analizar de qué regiones cercanas se puede traer el material, es decir, de aserraderos certificados sustentables que no se fomente la tala clandestina o que se tenga que conseguir la madera en negocios locales que esto solo eleve el costo de la construcción.

Toda propuesta que en un momento dado pueda concretarse con proyectos como vivienda emergente, por ejemplo, deben de ubicarse en la zona del pueblo con menos riesgo de hundimiento, aunque sean diseñadas ante estos efectos y antisísmicas para que su vulnerabilidad estructural sea mínima y se brinde la mayor seguridad posible a sus habitantes. Actualmente se están fraccionando terrenos que antes eran de uso agrícola y se está creando un cambio de uso de suelo que las autoridades deberían inspeccionar si es pertinente este cambio.

Como medida de acción a corto plazo se podrían considerar las edificaciones con vulnerabilidad estructural muy alta y grado de daño alto ser demolidas por medio de la autorización de Protección Civil como solución inmediata para evitar cualquier catástrofe y salvaguardar el bienestar de los habitantes. Como solución de mediano y largo plazo se podría intervenir estructuralmente los elementos dañados de las viviendas con materiales sustentables, es decir, integrar estructuras de bambú o madera para refuerzo del sistema vertical resistente y para muros con agrietamientos se puede colocar un tipo de malla que en vez de ser de acero electrosoldado convencional se pudiera utilizar una malla con fibras naturales.

Finalmente, la contribución que resulta de este estudio es un diagnóstico de la vulnerabilidad que existe por el riesgo que está afectando al pueblo de Jocotepec. Hay estudios geológicos e hidrológicos previos en el pueblo que solo quedan en datos y reportes de laboratorios los cuales se podrían
aprovechar aún más en combinación con estudios de carácter más social que se enfoquen en el bienestar de los habitantes. Este estudio aporta una evaluación estructural por subsidencia y por sismo.

Para poder hacer propuestas de mejoramiento estructural se tenía que conocer primeramente el nivel de daño de las edificaciones a través de la evaluación de la vulnerabilidad estructural por subsidencia y por sismo. Además, se evaluó la vulnerabilidad social de una muestra del pueblo de Jocotepec que puede ser utilizado para investigaciones futuras.

6.3 Perspectivas de investigación futura

Se debería atender más esta problemática con estudios más a fondo de carácter geológico, actualización de monitoreo de hundimiento del terreno y atención a los habitantes de Jocotepec con el apoyo de brindar información para que estén preparados a cualquier evento sísmico o de cualquier amenaza que pueda afectar materialmente las viviendas del pueblo y las vidas de los ocupantes.

Se recomienda investigar una combinación de materiales que contribuyan a la sustentabilidad y que al mismo tiempo sean resistentes en un sistema estructural que funcione ante asentamientos diferenciales y con un diseño sísmico que brinde la seguridad estructural para un posible sismo.

Adicionalmente, si se tienen los materiales de construcción idóneos para el tipo de terreno que sufre de hundimiento por falla geológica se podrían proponer viviendas emergentes para habitantes que tengan que demoler su casa con riesgo muy alto y la estructura sea considerada ya inhabitable, esto con fin de poder ser reubicadas las familias a un hogar seguro y que también sea económico y cumpla con especificaciones que lo hagan sustentable.

Por parte de las autoridades, se recomienda seguir más de cerca esta problemática ya que como muestran los resultados del estudio el pueblo de Jocotepec se encuentra en zona de riesgo alto de hundimientos. Además, sus viviendas fueron evaluadas en su mayoría con una vulnerabilidad sísmica alta y la percepción de la población concluye en una vulnerabilidad social de grado alto lo cual se deberían implementar programas de mitigación al riesgo e información a los habitantes para disminuir este índice de vulnerabilidad.
Referencias

Applied Technology Council (1985). Earthquake damage evaluation data for California, ATC-13, Redwood City, California, USA.

UNISDR. (2012). Desarrollando Ciudades Resilientes. Panamá, Panamá: Regional Office - The Americas

